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Abstract. Structural damage detection using dynamic measurements has led to the development of 
several approaches in the last decades. Most of conventional methods associate modal variations of 
the structure to damage, like methods based on strain energy deviation, methods based on changes in 
curvature mode shapes, flexibility matrix analysis, etc. However, the technique used to extract the 
modal parameters can considerably affect the results of damage identification methods, introducing 
additional uncertainties.  Thus, approaches involving computational intelligence and statistics to 
detect structural changes directly from raw dynamic measurements are being investigated in recent 
researches. The present work aims to compare several computational intelligence algorithms to 
identify structural damage using statistical parameters of structural time histories. The proposed 
algorithms are analyzed in a numerical model of a simply supported beam. The good results 
encourage the development of computational tools using statistical analysis for structural damage 
assessment. 
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1 INTRODUCTION 

Damage in structures can be caused by design flaws, constructive problems, structural 
overload or natural events. Structural Health Monitoring (SHM) allows damage prevention 
and maintenance to ensure safe conditions for users (Cachot et al., 2015). The interest in 
damage identification is an important topic for engineering researches and has gained 
increasing attention over the years. In this context, some techniques to detect and evaluate 
structural damage using vibration data have been discussed, as it can be seen in Alvandi & 
Cremona (2006) and Alves et al. (2015). 

SHM has as primary aim the development of reliable and robust techniques able to detect, 
locate and quantify the affected regions of the structure. Due to the fact that deterioration 
process mainly reduces structural stiffness and modifies vibrational characteristics, damage 
identification approaches are usually based on changes in modal parameters or in raw dynamic 
measurements. Considering damage assessment using modal data, several approaches were 
developed: The Modal Assurance Criterion (MAC), employed as a correlation indicator 
between damaged and undamaged mode shapes; the Strain Energy Method (SEM), indicator 
based on mode shapes curvature with and without damage; analysis of flexibility matrix, 
among others. Although the aforementioned methods are efficient in numerical models, they 
present some difficulties in practical applications while dealing with experimental data. 
Furthermore, the technique used to extract the modal parameters can considerably affect the 
results of damage identification methods, introducing additional uncertainties (Alvandi & 
Cremona, 2006). In an effort to give alternatives to these issues, approaches interpreting raw 
dynamic response using statistical analysis and computational intelligence for pattern 
recognition have been suggested, such as in Haritos & Owen (2004); Iwasaki et al. (2004); 
Wen et al. (2007) and Alves et al. (2015).  

The focus of this work is to evaluate a strategy to detect structural damage based on 
Higher-Order Statistics (HOS). The statistical indicators of structural time histories are used 
as inputs to the following computational intelligence technologies: Multiple Linear 
Regression, Multiple Polynomial Regression (quadratic and cubic), Artificial Neural Network, 
Support Vector Machine and Random Forests. The fundamental idea is that HOS allows 
distinguishing apparently similar databases by inferring new statistical properties from higher-
order cumulants, whereas the computational methods can recognize similar observations in a 
database and separate them into groups that share similar characteristics. The results given by 
each algorithm are analyzed and compared within a numerical model of a simply supported 
beam. 

2 STATISTIC APPLIED IN VIBRATIONAL DATA 

Most of dataset are completely characterized by the first and second-order statistics i.e., the 
mean value and the variance, respectively. However, there are situations in which these 
statistics do not provide enough information, requiring further techniques to characterize the 
signal. Higher-Order Statistics (HOS) is a technique that uses higher-order cumulants to infer 
new properties from the data (De la Rosa et al., 2013).  

For the case of structural dynamic data, the measured signals are very similar whether in 
the presence of damage or not. Therefore, the HOS can provide parameters to identify subtle 
differences among the dynamic measurements, enabling the detection of structural 
modifications. 

The ten different statistical indicators (first, second, third and fourth order) used in this 
work to characterize the dynamic responses are listed in Table 1.  
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Table 1: Statistical Indicators (Farrar & Worden, 2012). 

3 COMPUTATIONAL INTELLIGENCE METHODS TO DETECT DAMAGE 

Computational learning methods are considered useful tools for solving structural damage 
assessment problems. These algorithms work as classifiers, which try to identify damage 
levels using, as input data, features extracted from dynamic response (Haritos & Owen, 2004; 
Wen et al., 2007; Alves et al., 2015). In the next paragraphs, some concepts of computational 
intelligence technologies used in this study are presented.  

3.1 Multiple Linear Regression (MLR) and Polynomial Regression (PR) 

Regression analysis can be defined as statistical techniques for modeling the relationship 
between one dependent variable, Y, and one or several independent variables, X or (X1, X2,…, 
Xn) (Gujarati & Dawn, 1999). The regression that involves only one independent variable X is 
called simple regression. When two or more independent variables are involved is called 
multiple regression.  

In this study it was used the Multiple Linear Regression (MLR) and Polynomial Regression 
(PR), which is considered a special case of MLR. These regression models are described by: 

 0 1 1( ) ,k
i i n in iy x x         (1) 

where n is the number of independent variables, i is the i-th observation, iy  is the value of the 

dependent variable, 0 1( , , , )n    are the model coefficients, inx  is the independent variable, 

i  is the associated error and k indicates the polynomial degree. The regression method is 

determined by the index k, thus: 
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k = 1: Multiple Linear Regression (MLR); 
k = 2: Quadratic Polynomial Regression (PR2); 
k = 3: Cubic Polynomial Regression (PR3). 

3.2 Artificial Neural Network (ANN) 

ANNs are adaptive learning machines built from many different processing elements (PE), 
called neurons. In pattern classification problems, the decision surface is divided into regions 
representing the classes. The boundary decisions are estimated in a learning process and 
constructed from the statistic variability among classes (Principe et al., 2000). The most 
common ANN is the Multilayer Perceptron (MLP), a feedforward network composed of 
interconnected processing elements trained with nonlinear functions. Each PE connection has 
two associated adjustable parameters, weight and bias, scaled by backpropagation algorithms 
(learning rules) in order to minimize the error between the predicted and measured output. As 
explained in Principe et al. (2000), the PEs sum all of these contributions and yield an output 
that is a nonlinear function of the result. The training stage is an iterative process that only 
finishes when a stopping criterion is achieved. At the end, the perceptron is able to generalize 
other inputs that belong to the same class, which were not used for training. 

3.3 Support Vector Machine (SVM) 

Another popular artificial intelligence technology for pattern recognition problem is the 
SVM, a statistical learning algorithm trained to determine the boundary between two classes 
of data in a space, where an optimal separating hyperplane is constructed in order to maximize 
the margin and minimize the misclassification (Vapnik, 1995). The maximization of the 
margin is based on an optimization function to minimize the Euclidian norm of the vector that 
defines the direction of the separating hyperplane. The training data points located at the 
margins are called support vectors. 

For non-linear binary classification, the inputs are mapped into a high-dimensional feature 
space through a kernel function. The kernel Gaussian function is used in this paper, which is 
also called Radial Basis Function (RBF). In this case, the SVM has two free parameters that 
need to be specified:   from the RBF kernel function; and C, a regularization parameter from 
the formulation of the margin maximization, used to avoid data overfitting. These parameters 
are estimated by training the SVM for multiple values of C and  .  Then, the pair that 
minimizes the generalization error is chosen. 

3.4 Random Forests (RF) 

Random Forest is a computational intelligence algorithm for classification and regression 
problems, where the idea is to build multiple decision tress based on a method called Bagging. 
According Breiman (2001), Bagging is a sampling technique to create multiple classification 
models with randomly selected subsamples of the training data, in order to use them to get an 
aggregated classifier (global model). Thus, each tree does a classification for a given input and 
the RF model returns as output the class which have the most votes (Breiman, 2001).  
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4 NUMERICAL TEST 

4.1 Description of the beam model 

The present section analyzes the proposed approach through a numerical application using 
a finite element model of a 6m simply supported beam (Alves et al., 2015). The mechanical 
properties of the beam are: 

 
Young’s Modulus (E) = 210 GPa  
Density = 7850 kg.m-3 
Cross-Section Area = 2.81 x 10-3 m² 
Moment of Inertia = 2.845 x 10-8 m4 

 
The finite element model consists of 200 elements with two nodes and two degrees-of-

freedom each (vertical translation and rotation). This beam is excited by a random force 
during 1s with different frequencies and amplitudes, applied at 0.69m from the right support, 
as it can be seen in Figure 1. The dynamic responses are considered as vertical accelerations 
measured at ten equidistant points (channels) of the beam during 100s, with a sampling rate of 
100Hz, simulating an actual instrumentation made by means of accelerometers. 

 
Figure 1: Simply supported beam model. 

Three different levels of damage are simulated: Undamaged – Class 1: healthy beam; 
Damage level 1 – Class 2: 20% reduction of Young’s modulus at the midspan of the beam, 
represented by the gray color in Figure 1; Damage level 2 – Class 3: 10% reduction of 
Young’s modulus at the quarter length of the beam, represented by the black color in Figure 1, 
plus damage level 1. Furthermore, three levels of noise are added to the measurements in each 
structural configuration aforementioned: noiseless; 5% signal/noise (noise 1) and 10% 
signal/noise (noise 2). The corresponding noise levels are simulated as shown in Eq. (2): 

 ,noise . . (0,1) ,
ii i noisen V N  Xx x  (2) 

where ,noiseix  is the noisy signal vector, ix  is the noiseless signal vector, noisen  is the noise 

level, 
i

 X  is the standard deviation and (0,1) V N is a Gaussian vector with zero mean and 

unit standard deviation. Ten different dynamic tests are simulated for each level of damage 
and each level of noise, totaling 900 signals (10 tests x 10 channels x 3 damage levels x 3 
noisy level = 900). A typical response obtained for one of these tests is shown in Figure 2. 
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Figure 2: Typical response of the beam model. 

In the present application, the input dataset is arranged in a matrix [900x11] where the 
rows are the samples (the dynamic tests), the first ten columns are the statistical indicators and 
the last column indicates the position associated to the simulated accelerometer where the 
respective response was measured (from 1 to 10). For the ANN algorithm, the output data 
classes are represented by a target matrix [900x3], where the rows indicate the sample 
category through the binary encoding: (1 0 0) – No damage; (0 1 0) – Damage level 1 and, (0 
0 1) – Damage level 2. However, for the other algorithms, the three damage classes of the 
input data are represented by a target vector encoded as: 1 – No damage; 2 – Damage 1 and, 3 
– Damage 2.  

The models created from computational intelligence methods in this study, as well as the 
statistics indicators, were developed using toolboxes and built-in functions available in R 
software (MLR, PR2, PR3, SVM, RF) and Matlab (ANN). 

The implemented neural network is a MLP with 20 neurons in the hidden layer. The MLP 
was trained performing the 10-fold cross-validation method (Kohavi, 1995). Levenberg-
Marquadt optimization method (Hagan & Menhaj, 1994) was chosen as training function, 
using the mean square to assess the error and a sigmoid hyperbolic tangent as activation 
function. Figure 3 shows an example of the network architecture for the proposed ANN 
model.  

The SVM algorithm was trained using Gaussian Radial Basis Function kernel, where the 
best parameters   = 0.794328 and C = 100 were selected by training the SVM for different 
values of these parameters in a 10-fold cross-validation. The multi-class classification 
problem was solved by using one-against-one strategy (Bishop, 2006).  

For the Random Forest method, two values were previously specified: Ntree = 500 and 
mtry = 3, that indicate the number of trees and the number of input parameters used in each 
decision tree, respectively.  
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Figure 3: MLP network architecture with 20 neurons in the hidden layer (B1 and B2 are the bias term). 

5 RESULTS 

The results of the computational intelligence models are presented in Table 2. All 
algorithms proposed in this study were executed 30 times with 10-fold cross-validation and 
the classification rate is represented by the mean values of these 30 repetitions. The results are 
the percentages of the correct classifications for the respective damage levels of each case 
(number of correct classifications divided by the number of executions). 
 

Method Mean 
Standard 
Deviation 

Max. Min. 

MLR 45.79% 5.00% 58.89% 27.78% 
PR2 58.49% 4.68% 71.11% 45.56% 
PR3 67.53% 5.00% 82.22% 55.56% 
ANN 83.92% 1.57% 86.30% 79.90% 
SVM 92.20% 2.75% 98.89% 83.33% 

Random Forest 91.54% 2.82% 97.78% 82.22% 

Table 2: Correct classification rate achieved for the simply supported numerical beam. 

Table 2 shows that the values obtained by PR2 and PR3 were better than MLR. Therefore, 
one can conclude that there is nonlinearity between input and output data, what reinforces the 
choice of ANN, SVM and RF for the present damage detection problem, once these 
algorithms achieved good classification rates. 
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6 DISCUSSIONS AND CONCLUSIONS 

In this work, a strategy to detect structural damage based on Higher-Order Statistics (HOS) 
and computational intelligence technologies was evaluated. The statistical parameters of 
structural time domain measurements were used as input for the following computational 
methods: Multiple Linear Regression (MLR), Multiple Polynomial Regression (quadratic – 
PR2 and cubic – PR3), Artificial Neural Network (ANN), Support Vector Machine (SVM) 
and Random Forests (RF). The proposed approach was investigated by comparing the 
classification results of each mentioned computational intelligence method, through a 
numerical model of simply supported beam. To simulate the practical feasibility of this 
approach, three levels of noise were added to the signals. 

By analyzing the performance of MLR, PR2 and PR3, it was observed the nonlinearity 
between input and output data, once the correct classification rates increased from 49.79% 
(MRL) to 58.49% (PR2), and from 58.49% (PR2) to 67.53% (PR3). The ANN, SVM and RF 
obtained good results for the present damage classification problem. However, SVM and RF 
had similar performances and allowed better classification rates than ANN, achieving results 
around 92%.  

The average classification performances show that statistical indicators in addition to 
computational intelligence methods were efficient in detect structural damage for the 
numerical beam model, where the HOS and the other statistical parameters provided sufficient 
information to identify subtle differences among the dynamic signals, enabling the detection 
of structural changes. The main advantage of using the damage prediction method presented 
here is to deal with data coming directly from the structure, without the need to transform 
them into the frequency domain to extract structural features.  

These previous observations encourage the development of computational tools using 
statistical analysis for damage assessment. Nevertheless, more investigation is required to 
validate this damage identification strategy, such as checking the algorithms for experimental 
data and for other structures. Once the computational intelligence methods were evaluated, 
this strategy may include weights for each parameter of input data, focusing on the best 
performance of the damage identification process, in order to reduce the input parameters and 
computational complexity. 
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