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Abstract. The stability of guyed structures is highly dependent on the cables tensile force. Therefore, a

versatile and reliable method for the verification of such force starting from the construction and during

its service lifespan, is desirable. In the present work, an inverse method for the determination of the

tensile force in cables with insulators is proposed, through the implementation of an Artificial Neural

Network (ANN). Firstly, a Finite Element model is used to obtain the first natural frequency of different

cable configurations. In this way it is possible to vary the tensile force, length, tilt angle, and number

of insulators. The data resulting from the computational simulations is used to train the ANN. During

this stage, corresponding input and output samples are introduced to the network. Once the training

is completed, the ANN is capable of representing the relation between the input parameters (length,

tilt angle, number of insulators and first natural frequency) and the cable tensile force. Additionally, a

physical model of the cable is developed in the laboratory. A dynamic study of several configurations

is performed in order to obtain the corresponding experimental natural frequencies. Finally, in order to

validate the method, the parameters of the physical model configurations are introduced as the inputs of

the ANN and the tensile force values are inferred. The results are compared to the actual force on the

laboratory model. The resulting error is acceptable in all the cases.
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1 INTRODUCTION

Guyed structures are frequently used in the Civil Engineering: from the most simple ones as

advertising banners and urban power lines, to more complex structures such as slender towers

which support communication antennas, high voltage transmission lines, and bridges. The

rigidity of this kind of structures is highly dependent on the guys and their pretension level.

Therefore, it is essential to verify the design tensile force of the cables both at the moment of

the assembly of the structure and during its service lifespan. A method for determining the

cables tensile force based on structural dynamics principles would be a versatile and useful

tool. In this sense, some authors (Fu et al., 2004; Ren et al., 2005; Kim and Park, 2007) have

addressed the study of the dynamical behaviour of bridge cables. In particular, the second

paper deals with the development of an empirical formula relating natural frequencies with

the tensile force. However, at the current state of development of the technique, the usage

of these methods is conditioned by the high degree of uncertainty in the results and by the

impossibility of application in a wide range of common use configurations. Particularly, in

cables with insulators along their lengths.

Artificial Neural Networks (ANNs) are a family of models inspired by biological neural

networks which are used to estimate or approximate relationships between inputs and corre-

sponding output values, after a training process based on repeated exposition to sample patterns

(supervised learning). The scope of application of the ANNs in the field of structural mechanics

is wide. Ghaboussi (2010) and Yagawa and Okuda (1996) present a general review of their use

in the solution of computational mechanics problems. Due to its favourable characteristics for

solving minimization tasks, this kind of learning models arises as specially adequate for the

resolution of inverse problems. Aydin and Kisi (2015) and Rosales et al. (2009), for instance,

report the application of ANN based inverse models to identify failure in beams using experi-

mental and computational data for training, respectively. Giorelli et al. (2015) apply the same

approach for the determination of the tensile force in cables which govern the kinematics of

a bio-inspired manipulator arm. In the articles published by Bandara et al. (2014) and Cheng

et al. (2007), the learning samples are obtained through a computational model based on the

Finite Element Method (FEM). In particular, the second paper deals with the use of an ANN for

the determination of the maximum tensile force in continuum cables of a bridge structure.

In the present paper, an inverse approach is applied for the identification of the pre-stress

level in cables. The use of an ANN acting as an inverse relation between the parameters of

the cable and its tensile force is proposed. Taut inclined cables with one or two insulators and

different tension levels are considered. The pattern samples needed for training the ANN are

obtained from a FEM based model constructed ad hoc. The computational model allows to

easily perform parametric variations of the system in order to obtain the corresponding first

natural frequency of each configuration. Additionally, a physical model is constructed in the

laboratory. A study of the cable undergoing free vibrations is performed. The experiment is

registered using a high speed camera. Furthermore, using a video analysis software, the dy-

namics are reconstructed and the first natural frequency is experimentally measured. Finally, in

order to validate the method, the parameters of the physical model (length, number of insulators,

tilt angle and natural frequency) are introduced as inputs to the already trained ANN and the

corresponding tensile forces are inferred. Several experimental configurations are studied. The

network outputs are then compared to the targets and the performance of the inverse method is

evaluated.
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2 COMPUTATIONAL MODEL

In this section, the computational procedure is described. The model is built with the aim

to provide a reliable, fast and versatile method to perform parametric variations of the system

configuration. In this way, it is possible to obtain the required amount of training samples for the

ANN. The model is constructed in the COMSOL Multiphysicsr (2015) environment: a FEM

software adequate for physics and engineering applications. The simulations are performed

using the LiveLinkTM for MATLABr, an extension of COMSOL which allows to integrate both

programs. Thus, the results can be easily post-processed in MATLAB.

2.1 Description of the model

A scheme of a possible configuration of the studied system is depicted in Fig. 1. It consists

of a pre-stressed stranded steel cable of diameter d = 0.0015 m, pinned at both ends. Several

configurations are considered by varying certain parameters: the length L, tilt angle θ relative

to the horizontal, and tensile force P . The reference length L refers to the distance between

supports. As will be detailed below, a first stage of the calculation includes the action of gravity

on the cable and the insulators. Thus, under self-weight, the prestressed cable extends and the

true length is modified. Regarding the insulators m, they are modelled using beam elements

which simulate the insulator itself, and two point masses placed at each end node of the beam

(insulator), which simulate the fixing clamps. The range of values assigned to each of the

mentioned parameters is reported in Table 1.

L/3

L/3

L

P

P

in

θ

in

Figure 1: Taut cable with two insulators.

In the context of COMSOL, the study Prestressed Analysis, Eigenfrequency available for the

truss interface using the Structural Mechanics module, is performed. Such study consists of

two stages: in the first step the static load - self-weight and tensile force - is applied; in the

second step, the eigenfrequencies of the structure under the resulting load state from step one,

are computed. Truss elements with initial stress are adopted to model the cable. In addition to
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the characteristics informed in Table 1, it is necessary to define some geometric and material

properties of the cable, namely: diameter d = 1.5 mm, density ρ = 6281 kg/m3, Modulus of

Elasticity E = 156.96 109 N/m2 and Poisson ratio υ = 0.28. Self-weight is modelled as a

distributed force per unit length w = 0.1361 N/m. Regarding the insulators, they are modelled

as Polymethyl methacrylate (PMMA) beams of length Lin = 0.025 m, rectangular cross section

of sides bin = 0.011 m and hin = 0.012 m, density ρin = 1190 kg/m3, Modulus of Elasticity

Ein = 3 109 N/m2 and Poisson ratio υin = 0.40. Point masses of mass mcl = 0.008 kg are

placed at the ends of each insulator to simulate the fixing clamps.

As a result of the simulation, the first natural frequency of the structure is obtained.

Parameter Minimum Maximum Step N◦ of cases

Length [m] 1 3 0.5 5

Tensile force [kgf ] 1 15 2 8

Tilt angle [degrees] 0 60 20 4

Insulators [n◦] 1 2 1 2

Table 1: Variation range for each of the system parameters.

2.2 Computational results

The results of the computational simulations are depicted in Fig. 2. In graphics (a) and

(b), the calculated first natural frequencies are plotted against the length and tilt angle, for

cables with one and two insulators along their lengths, respectively. Additionally, each colour

represents the cable tensile force and is duly referenced above each graphic. As expected, the

magnitude of the natural frequencies for cables with two insulators are lower than for cables

with one insulator. In graphics (c) and (d) the same data is plotted in a different way: first

natural frequencies along the ordinate axis versus tilt angle and cable tensile force. This time,

each colour identifies the values assigned to the cable length according to Table 1.

3 ARTIFICIAL NEURAL NETWORK

3.1 Description

In this paper, an ANN approach is applied to solve the inverse problem of the tensile force

inference in cables with insulators. ANNs are data processing algorithms inspired by the hu-

man brain (Nelles, 2001). They allow to estimate or approximate functions which are usually

unknown and can depend on several inputs and outputs. Basically, ANNs consist of a num-

ber simple processing units called neurons, which are grouped in parallel substructures named

layers. The neurons in the successive layers are massively interconnected through synaptic

weights and biases which magnitudes are tuned using training samples by means of a learning

process. In the following sections, a brief explanation of some basic concepts concerning ANNs

is given. For a wider and more detailed approach on the subject, see for example Haykin (2010)

or Bishop (1995).
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(a) Length vs. Angle vs. Freq (1 insulator)

(b) Length vs. Angle vs. Freq (2 insulators)

(c) Angle vs. Tension vs. Freq (1 insulator)

(d) Angle vs. Tension vs. Freq (2 insulators)

Figure 2: Results from the FEM simulations.
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3.2 Structure

Basing on the Universal Approximation Theorem (Cybenko, 1989), a feedforward Multi

Layer Perceptron (MLP), consisting of an input layer, an output layer, and a single hidden layer

is adopted for this study. In a feedforward MLP the information moves in one direction only:

forward, from the input layer going through the hidden to the output layer. The input layer

allows the entrance of the signal ū = [u1, u2, ..., un] and distributes it.

The number of neurons (also called nodes or units) in the input and output layers is given

by the number of input and output variables, respectively. In the present case, the input layer

consists of 4 neurons, whereas the output layer is constituted by a single neuron. However,

the selection of the number of neurons in the hidden layer is not straighforward. The approach

adopted in this regard is discussed in Section 3.4.

u2

u1

un

w21
wn1
w12
w22
wn2

w1m
w2m
wnm

φ

φ

φ

wmS

w2S

w1S

Input layer Hidden layer Output layer

ŷ

w11

Figure 3: Multi Layer Perceptron (MLP) with one hidden layer.

Each neuron operation can be regarded as a two stages process (Fig. 4): first, the inputs

are projected into the synaptic weights w̄, and the bias term bi is added. In the second step,

the projection is transformed through an activation function (transfer function). In the hidden

layer units the activation function ϕ is a non-linear hyperbolic-tangent sigmoid function (Eq.

1) which fulfils the conditions stated by the Universal Approximation Theorem in this regard.

The use of this kind of functions improves the efficiency of the learning algorithm resulting on

a faster convergence speed (Bishop, 1995). Its output vi lies in the range (-1,1).

The activation function in the output layer neuron is linear. Its job consists in projecting the

signal incoming from the hidden layer units into the corresponding weights and adding the bias.

The operation results in the network output ŷ.

ϕ(x) =
2

(1 + e−2x)
− 1 (1)
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Figure 4: Operation performed by a neuron in the hidden layer.

3.3 Learning

During the learning stage, the parameters of the ANN (weights and biases) are tuned in order

to minimize the cost function (i.e., the function which measures the discrepancy between the

desired output y and the network output ŷ). In the present paper, the learning is performed

by means of the Backpropagation (BP) algorithm (Rumelhart et al., 1985), which is used in

conjunction with the gradient descent optimization technique. An adaptive learning factor is

applied in order to improve the performance of the steepest descent algorithm. Furthermore,

with the purpose of avoiding the BP algorithm to getting stuck in local minima, a momentum

term is included.

The training dataset is obtained from the FEM simulations and it consists of 320 samples

(see Table 1). The input variables to the ANN are: the cable length L, tilt angle θ, number

of insulators (1 or 2) and the first natural frequency f . On the other hand, the tensile force

P represents the output. The dataset is split into a training set (TS)(80%) and a validation

set (VS)(20%). Furthermore, in order to avoid over-fitting of the network parameters to the

learning patterns, a different subset containing 80% of the TS is chosen randomly every 100

iterations. This last subset is named estimation set (ES) and is the one used for learning. The

VS is employed to evaluate the performance of the network in generalization using samples

which had not been used during the learning Giorelli et al. (2015).

To improve the efficiency of the learning algorithm the data is pre-processed before pre-

senting it to the ANN: a linear mapping is applied through Eq. 2, so that the maximum and

minimum value (zmax and zmin) of each input and output variable z are normalized into the

interval [0,1].

znormalized =
z − zmin

zmax − zmin

+ zmin (2)

3.4 Number of neurons in the hidden layer

In the absence of general rules for determining the optimum size of the hidden layer, the

criteria adopted in this work is based on finding the ANN with the best generalization perfor-

mance. In this regard, a procedure based on cross-validation is applied (Bishop, 1995). Various

ANNs are trained during a fixed number of iterations Nepochs. The number of neurons in the

hidden layer Nnhl is varied from Nmin
nhl to Nmax

nhl . The TS is used in the learning stage. Following

training, the performance of the ANN is evaluated on generalization using new samples from

the independent VS. The validation error corresponding to each Nnhl is registered. The results

are compared and the ANN with the smallest validation error is chosen. The error functions

used in the TS and VS are given by the mean squared errors (Eq. 3) between the desired value
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ŷ and the network output ŷ.

TSrms =

√

∑

(ytri − ŷtri)
2

NTS

V Srms =

√

∑

(yge
i
− ŷge

i
)2

NV S

(3)

The synaptic weights and biases of the ANN are randomly initialized in the first iteration of

the BP algorithm. Thus, very different solutions for the same problem can be reached depending

on those initial values, deriving in very different training and validation errors as well. For this

reason, the approach proposed by Giorelli et al. (2013) is adopted, and the procedure described

above for the selection of the optimum number of hidden units is repeated Nmax
ts times.

The following parameters are chosen before running the optimization algorithm: Nmin
nhl = 1,

Nmax
nhl = 20, Nepochs = 10000, Nmax

ts = 60. The results are reported in the histogram in Fig. 5.

It shows that ANNs with number of hidden units in the range [8-10] give the smallest validation

error the highest number of times (Nts = 28). Consequently, a feedforward ANN with 9 hidden

neurons is adopted for the problem in this paper.

Figure 5: Hidden layer size optimization.

3.5 Training

Some parameters concerning the BP algorithm are defined before beginning the training,

namely: momentum µ = 0.01, initial learning rate ν = 0.000001, learning rate increment

νincr = 1.05, learning rate decrement νdecr = 0.75, maximum learning rate νmax = 2, minimum

learning rate νmin = 0, maximum number of iterations MAXepochs = 100000. One of the

problems that may arise during training is over-fitting (i.e., the network memorize the training

data, but fails to generalize when new data is input). In order to prevent this, the early stopping

method is applied. In this technique the validation error is monitored every NV E = 20 iterations

during the training. When the network begins to over-fit the data, the VS error typically begins

to rise. When the VS error increases for Nstop = 100 consecutive iterations, the training is

stopped, and the weights and biases at the minimum of the validation error are returned. The

training was repeated four different times. The evolution of the VS error is plotted in Fig. 6

versus the number of iterations. The BP algorithm was never stopped by the early stopping
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method. However it can be observed that that after 50000 iterations the decrease rate of the

error is very low. Thus, the training is finished considering that the ANN gives an adequate

generalization performance. The weights and biases corresponding to the minimum VS error

are adopted as the definitive ANN parameters.

Figure 6: Evolution of the VS error for each training.

4 TEST OF THE ANN BASED INVERSE METHOD

In this section, the trained ANN is used as an inverse model to infer the cable tensile force

corresponding to certain physical models. The experimental procedure and the validation results

are herein reported.

4.1 Experimental setup

In the laboratory, dynamic tests were performed on different cable configurations. In all the

cases the stranded steel cable diameter was d = 1.5 mm. The tests contemplated cables of 1 m

length with one insulator and cables of 2 m length with two insulators. These configurations are

identified as scenario A and B respectively. Different tilt angles and tensile forces were applied,

and the corresponding first natural frequencies were measured experimentally. Table 2 depicts

the parameters of each experimental configuration.

A particular experimental configuration is shown in Fig. 7. The lower end of the cable was

attached to a tensioning screw whereas the upper end was fixed to an S-type load cell which reg-

istered the applied tensile force. The insulators consisted on rectangular parallelepipeds built

on Polymethyl methacrylate (PMMA). Their shape and connection to the cable simulated the

ceramic egg-shaped insulators used in the real scale guy wires. The desired axial load was ap-

plied by acting on the tensioning screw. In order to promote the free vibrations of the structure,

the equilibrium was interrupted by a manual perturbation. A Casio Exilim EX-FS10 high speed

camera was used to register the displacements of a particular point of the cable undergoing free

vibrations. The records were taken at 420 frames per second during 4 seconds. Then, using the

free video analysis software Tracker 4.94 (2016), the dynamics of the experiment were recon-

structed and the time series displacements response was obtained. The autotracker functionality

of the software allows to automatically track a video feature of interest. For this purpose, a red

circular marker of negligible weight had previously been attached to the cable at the point which

was going to be filmed. In this way, a time series of the in-plane transverse displacements of the

cable was registered. The data obtained was exported and processed in Matlab were the time
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Scenario A Scenario B

Case Angle [◦] Force [kgf ] Freq. [Hz] Case Angle [◦] Force [kgf ] Freq. [Hz]

a1 28.8 4.15 14.45 b1 30.5 3.90 7.83

a2 28.8 6.14 16.88 b2 30.5 5.85 9.47

a3 28.8 8.26 19.74 b3 30.5 7.98 10.87

a4 28.8 10.01 21.50 b4 30.5 9.56 12.14

a5 28.8 12.25 23.52 b5 30.5 12.02 13.30

a6 28.8 14.28 25.16 b6 30.5 14.00 14.19

a7 43.9 3.92 13.44 b7 46.5 3.95 8.12

a8 43.9 5.86 15.96 b8 46.5 6.07 9.84

a9 43.9 7.87 18.06 b9 46.5 8.11 11.16

a10 43.9 9.95 19.74 b10 46.5 10.20 12.39

a11 43.9 12.40 23.10 b11 46.5 12.20 13.53

a12 43.9 14.19 24.78 b12 46.5 14.21 14.48

a13 60 3.97 14.03 b13 59.5 3.78 7.751

a14 60 6.00 17.05 b14 59.5 5.91 9.43

a15 60 8.04 19.32 b15 59.5 7.88 10.79

a16 60 9.93 21.00 b16 59.5 9.65 11.69

a17 60 11.80 23.02 b17 59.5 11.78 12.51

a18 60 13.97 24.86 b18 59.5 13.63 13.41

Table 2: Data for Scenario A: L = 1 m, 1 insulator; and Scenario B: L = 2 m, 2 insulators

domain representation of the signal was deconstructed into the frequency domain using the Fast

Fourier Transform (FFT). The first natural frequency of the cable was determined by identifying

the highest peak from the FFT. With the aim to perform a better estimation and considering the

measurement uncertainties inherent to any physical experiment, the tests were repeated 5 times

and the results were averaged.

Figure 7: A particular experimental setup of the cable with two insulators.
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4.2 Inference results

This paper constitutes a first step in the development of an inverse method which, based on

experimental measures of the first natural frequency of the system, allows to estimate the tensile

force in the cables of guyed towers. Thus, in this section, the inverse procedure is applied on

a reduced scale: the input patterns to the ANN are the first natural frequency measured in the

laboratory and the parameters of the physical model (see Table 2). The outputs ŷ (filled circles)

and targets t (empty squares) corresponding to each experimental configuration are depicted

in Fig. 8 for the cases in scenarios A and B. The tilt angles are identified by the different

colours: blue, green and red. The magnitude of the error between the ANN outputs and the

targets does not seem to depend on the model parameters. Furthermore, it is observed that

the inferred values lie close enough to the targets, independently from the tilt angle, tensile

force or number of insulators. It can also be seen that the outputs are, in general, of higher

magnitude than the targets. This discrepancy could be regarded to the fact that the frequencies

measured experimentally are generally higher than those calculated using the equivalent FEM

based model.

(a) Scenario A

(b) Scenario B

Figure 8: Comparison of the ANN outputs and the corresponding targets for the different ex-

perimental configurations.
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The accuracy of the inverse model is analysed in more detail by means of a regression anal-

ysis between the ANN output and the corresponding targets. For this purpose, the regression()

Matlab function is used. Three parameters are obtained as result: m and b represents the slope

and the y-intercept of the best linear regression respectively, whereas R represents the correla-

tion coefficient between outputs and targets. If there were a perfect fit, then m would be 1 and b

would be 0. Likewise, a value of R = 1 implies that a linear equation describes the relationship

between outputs and targets perfectly (i.e., perfect correlation). The results are depicted in Fig.

9 for the cases in scenarios A and B.

(a) Scenario A

(b) Scenario B

Figure 9: Regression analysis between ANN outputs and targets.

The targets are measured along the x-axis whereas the inferred values are measured along

the y-axis. The best linear regression fit for the data is plotted as a blue line: the parameters

b and m are reported, together with the regression parameter R. Additionally, the dashed line

represents the curve of perfect fit where the network outputs are equal to the targets. The fit
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is reasonably good, with R values very close to one in each case. It is worth noting that for

cables of 1 m length with one insulator (scenario A), the distance between the fit line (blue) and

the line of perfect fit is very small and that value is kept almost equal for all the values of the

tensile force (m is very close to one), which indicates uniformity in the error between outputs

and targets. The results are less uniform for the cases in scenario B. This suggests a higher

discrepancy between outputs and targets for small values of the tensile force. However, it can

be seen that the error improves for higher values of the pre-stress level.

Finally, the relative error with respect to the actual tensile force (target) was calculated for

each inferred value according to Eq. 4. The distribution of the relative errors for the complete

set of inferred values (scenarios A and B) is shown in the histogram of Fig. 10. Additionally,

the mean value, maximum value, and standard deviation are reported. This representation con-

firms that the error is very small most of the times (MeanErr = 2.5%) and, even in the least

favourable cases, its magnitude is reasonably low (MaxErr = 11%).

error =
(ŷ − t)

t
(4)

Figure 10: Histogram of the relative errors in the inferred values using the ANN based inverse

model.

5 CONCLUSION

The identification of the tensile force of inclined taut cables with insulators is addressed

in this paper. In particular, an ANN is proposed as an inverse model for the inference task,

based on measurements of the first natural frequency of the cable. Their capacity for estimating

functions which are usually unknown makes ANN particularly appropriate for this problem.

The data needed for training the ANN is obtained from computational simulations, using a

FEM based model of the system.

Once the ANN is trained, it is validated using experimental data. Overall, 36 different config-

urations are evaluated, including cables with one and two insulators. The first natural frequency
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corresponding to the physical configurations was measured in the laboratory. Then, the ex-

perimental frequency and the geometrical parameters of the physical models are introduced as

inputs patterns to the ANN and the corresponding estimates of the tensile force are obtained.

The network outputs are compared to the true tension acting on the experimental models, and

the relative errors are computed. The average error is reasonably low, and the maximum error

remains within acceptable ranges.

In summary, the proposed ANN based inverse model is straightforward and provides accept-

able estimates of the tensile force in different configurations of cables with insulators based on

measurements of the first natural frequency. The results are promising for the application of the

method in the real scale.
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