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Abstract. Currently, structures are being evaluated for a greater number of actions when compared to a
few decades ago. This improvement in designing stage is happening because projects providing
lightweight and slender structures, with lower implantation costs, are being more requested. As a result,
evaluating structures not only subjected to static loads, but also to dynamic loads has become necessary.
Dynamic loads acting on a structure are more damaging than static loads, if they are not well considered
and dimensioned. Dynamic loads could occur from earthquakes, wind, equipment, movement of people
or vehicles, among other sources, which cause vibrations in structures and may lead to a collapse. The
tuned mass damper (TMD), a passive control device, emerges as a possibility to control and reduce
vibration amplitudes. The TMD has several advantages, such as large capacity to reduce amplitude of
vibration, easy installation, low maintenance, low cost, among others. This study aims at evaluating,
through numerical simulation, the dynamic behavior of a ten-storey building subjected to seismic
excitation, before and after the installation of TMD, which is optimized to get the best structural response
towards the dynamic excitation. For this purpose, a computational routine is developed in Matlab using
the Newmark method to determine the dynamic structural response in terms of displacement, velocity
and acceleration. The seismic excitation accelerogram used regards to ground acceleration record
occurred in 1940, under the Imperial Valley in southeastern California, called El Centro. First, structure
is analyzed only with its own damping for comparison and reference. Second, TMD optimization is
carried out, in which the objective function is to minimize the maximum displacement at the top of the
building, and the design variable is the modal mass ratio (Structure-TMD). Firefly algorithm is used for
optimization. The TMD is installed on top of the building and, after optimizing its parameters, new
dynamic structural responses are determined. Finally, responses obtained after the optimized TMD
installation are considerably reduced, minimizing the risk of damage and building collapse.
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1 INTRODUCTION

Buildings, structures of equipment, bridges, transmission line towers; to name a few types
of real structures that may be subjected to dynamic actions. Increased demand for lighter
structures with lower deployment cost has made it necessary to evaluate structures not only
under static loads, but also under dynamic loads. Dynamic loads can be more damaging than
static loads, if they are not well considered and dimensioned. Dynamic loads could arise from
earthquakes, wind, equipment, movement of people or vehicles, among other sources, which
cause vibrations and may lead to a collapse. These actions may also cause damage and collapse
when their frequencies match natural frequencies of structures.

To obtain structural amplitudes of vibration subjected to seismic events, we can proceed in
two different ways. The first is to use accelerogram records of actual earthquakes near the
deployment of the structure. However, there are no earthquakes records in several regions,
which leads to the second alternative: simulate a seismic excitation record. One option of
generating a seismic record would be acceleration across the spectrum proposed by Kanai and
Tajimi, which considers site characteristics where the structure will be deployed.

Tuned mass damper (TMD), a passive control device, can be installed in the structure to
control and reduce vibration amplitudes. A vibration control system aims at reducing vibration
amplitudes by installing external devices, which increase structural damping. According to
Ospina (2008), control systems can be classified into four categories: passive, active, semi-
active and hybrid.

Active systems are used to adapt structures to different frequencies. According to the action
to which the structure is subjected, the control system, using sensors installed on the structure,
is connected to an external system, which processes and verifies the best force and damping to
control this action. However, active systems require monitoring, power and permanent external
control.

Passive control systems do not require external power to have a good performance. These
devices are designed for one type of action, and use the structure movements to dissipate energy
due to dynamic action. Therefore, they are advantageous in relation to active systems when it
comes to cost, installation, maintenance and easiness of control. Examples of passive systems
are tuned mass damper, tuned liquid dampers, among others.

Semi-active systems are an intermediate solution between passive and active control
systems, requiring no external power supply to the system due to its ability to adjust to structural
responses. Examples of this device are variable friction dampers, variable orifice dampers,
among others, as mentioned by Chaves (2010).

Combinations of active and passive systems are hybrid devices, which make them more
efficient and economic.

This paper develops a computational routine in Matlab to determine the system response
before and after the installation of tuned mass dampers, aiming at controlling vibrations caused
by seismic excitation. The excitation signal used for the seismic event relates to ground
acceleration record occurred in 1940 under the Imperial Valley in southeastern California,
called El  Centro. This accelerogram is  available for  download at
"http://www.vibrationdata.com/elcentro.htm". Dynamic response, in terms of displacement and
acceleration amplitudes, is determined by the Newmark method. The determination of the
parameters (mass, stiffness and damping) of the tuned mass damper (TMD) to be installed on
top of the building is made in accordance with the method proposed by Villaverde (1980),
Villaverde (1985). Firefly algorithm is used to optimize TMD parameters with different modal
mass ratios (Structure-TMD). Responses before and after the implementation of TMD are
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compared, revealing optimal parameters, aiming for best cost-benefit in which an average with
considerable reduction in amplitude of displacements and accelerations is achieved, minimizing
risk of structural damage and collapse.

2 METHODOLOGY

2.1 Seismic excitation signal

Earthquake (also known as a quake, tremor or temblor) is the name given to the release of
energy in the crust of planet Earth, which usually occurs due to the shock of tectonic plates,
creating seismic waves. Seismic activity regards to frequency, type and size of earthquakes
recorded in an area over a period of time. Earthquakes are recorded by seismometers with units
of a moment magnitude scale (MMS), measuring magnitude of earthquakes in terms of energy
released. Earthquakes records with magnitude below 5 occur more frequently, and are verified
by observatories using local magnitude scale better known as Richter scale. Moment magnitude
scale and Richter scale have numerical similarities. Moment magnitude scale was introduced
by Thomas C. Haks and Hiroo Kanamori as an alternative to replace the Richter scale developed
by Charles Francis Richter. Earthquakes with intensity below 3 on a local scale are almost
imperceptible, whereas higher than 7 can cause damage to various structures, depending on
their depth. Mercalli scale, developed by Giuseppe Mercalli, is used for greater scales. The
shallower the earthquake, which is more superficial on Earth's crust, the greater magnitude and
damage.

Every year, estimated 500,000 earthquakes are detected by existing instrumentation, and
about 20% of those can be felt (Pressler, 2010). Most earthquakes often occur in places like
California and Alaska, in the United States, and also in countries like El Salvador, Mexico,
Guatemala, Chile, Peru, Indonesia, Iran, Pakistan, the Azores in Portugal, Turkey, New
Zealand, Greece, Italy, India and Japan, according to the Earthquake Hazards Program.

In 1940, the earthquake called El Centro (or 1940 Imperial Valley earthquake) occurred at
21:35 Pacific Standard Time on May 18, in the Imperial Valley Southeast California, near the
international border between the United States and Mexico. The magnitude of this earthquake
was 6.9 and a maximum perceived intensity of X (Extreme) in Mercalli intensity scale. The
first and strongest earthquake recorded in the Imperial Valley by a large seismograph located
near a fault rupture (Hough, 2004). El Centro was characterized as a typical moderate-sized
destructive event, causing widespread damage to irrigation systems, the death of 9 people and
damage of 80% of buildings to some degree. On Brawley’s business area, 50% of the structures
were condemned and all were hit. It was the first endurance test to public schools after the Long
Beach earthquake in 1933. The earthquake’s seismic record indicates duration of about 54
seconds. Figure 1 shows El Centro’s record.

In order to validate the dynamic structural responses, the structure will be subjected to a
seismic signal corresponding to El Centro’s record, available for download at
"http://www.vibrationdata.com/elcentro.htm".

Copyright © 2016 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar



1556 L. VELLAR ROSSATO, L. FLECK FADEL MIGUEL, L. FLECK FADEL MIGUEL

3 Excitation of acceleration versus time
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Figure 1: El Centro earthquake - acceleration versus time.

2.2 Dynamic structural response

The dynamic response of a structure with multiple degrees of freedom, subjected to an
acceleration in the base, is given by the differential equations of dynamic motion system in
Equation (1)

[MIX(©)+ [CIX()+KIX ()= -[M]x;(t) (1)

in which:

[M] is the mass matrix of the system
[C] is the damping matrix of the system
[K] is the stiffness matrix of the system
t is the time

§(t) is the vector of system acceleration, as a function of time

X(t) is the vector of system velocity in function of time
X(t) is the displacement vector of the system as a function of time

g(t) is the acceleration of the soil

From the structural characteristics, such as mass and stiffness, natural structural frequencies

are calculated, being later used to determine optimal parameters of the tuned mass damper
(TMD).

2.3 Newmark method

Direct numerical integration methods are classified into implicit and explicit. These methods
consist of numerical procedures that do not require prior calculation of structural eigenvalues
and eigenvectors. Functions representing variation of velocity and displacement within time
interval At are obtained by integrating the function representing acceleration variation within
the same time interval At. Convergence and accuracy of the solution depend on the capacity of
the adopted function to represent acceleration accurately within each time interval At; also,
depend on the interval size.

According to Groehs (2001), the Newmark method is the most effective of implicit methods,
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using the equation of motion at time t + At to calculate the response at this same time. Equations
representing variation in displacement, velocity and acceleration at time t + At, are given by
Equation (2), (3) and (4) respectively:

X(tir1)=(ag[M]+as[C]+[K]) {F(tIH)JF ][aoi(ti)ﬂlg(ti)ﬂz;{(ti)] +[C][asX(t)+agx (t)+asx(t)]} (2)
X(ti1) = ag[X(ti )X () ]-agX () -a7X(t;) (3)
R (1) = 8y [X () X (1) ]-a, X (1)-2,X(8) (4)

Vectors X(tj,;), E(?(tiﬂ), gi?(tiﬂ) represent displacement, velocity and acceleration at t+At
time, respectively; and vectors i’(ti),i?(ti),g(?(ti) correspond to displacement, velocity and
acceleration at time t, respectively.

Constant parameters a; are given by Equation 5:

1 1 1
aOZQAtZ’ alza_ma 3225'15 a3:(1_6)At

)

5 At (5
o 2o a3 (32)
Parameters o and o are unconditionally stable for values a = 0.5 and 6 = 0.25. For the first-

time step, boundary conditions of displacement and velocity vectors must be known. The initial
acceleration vector is given by Equation 6:

X (t)=[M]"! [F (t) -[CIX (to)-[KR(t0)] (6)

a4=5At, as=

2.4 TMD Dimensioning

Tuned mass damper (TMD) is a passive device to control vibration, consisting of a mass, a
spring and a damper attached to a structure. This device is usually installed on top of a structure,
and it is tuned to dampen the vibrations of the first vibration mode. The TMD is tuned to the
same frequency of the first structural vibration mode, so that when the structure vibrates, part
of the energy generated in the system is absorbed by the device. In case one wishes to control
more than one vibration mode, additional TMDs will be required, so that each device will be
tuned to the frequency of the corresponding mode.

Defining optimum parameters for TMD installation depends on the type of action to which
the structure is subjected. The method proposed by Villaverde (1980), Villaverde (1985) is used
for seismic action, in which dimensioning must satisfy Equation 7:

|C-Cr =01 (7)

( is the structural damping; {r is the damping of the TMD, which should be highest possible,
being below the critical damping, so that energy is dissipated and TMD may oscillate; ¢y, is
the vibration mode to perform amplitude control; and p is the mass ratio, defined by Equation
8:

mt

p=tt ®)

mg

mr is the mass of the TMD, and my is the mass of the structure.

According to Paredes (2008), the TMD dimensioning is performed using a dynamic system
having a single vibrational mode. However, actual structures have several DOF, i.e., several
vibration modes. Thus, for the method to be valid, vibration modes should be normalized,
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having unitary participation factors. For seismic actions, normalization is made with
participation factors (Fj), expressed as:

F=— 9)

L; is the modal participation factor in mode j:
Li=¢,[M]{1} (10)

¢; is vibration mode already normalized; [M] is the mass matrix of the structure; and {1}
is a column vector with dimension n x 1, n representing the total number of DOF, and 1
indicating all vector elements are equal to a unit (1).

The modal mass system is given in the following:

M;=; [M]¢, (n

In order for the participation factor to be unitary, Equation 12 must be solved, finding out
the value of constant 3;, which multiplied by ¢; will provide normalized vector of the unitary

participation factor ;.

(Bjo;) M1}
R = 12
(CTRLGICTY) (12
Isolating f;:
(¢;) im0}
)Mt 13
) "
Resulting in solution:
¢;=B;0,=Fj9; (14)

2.5 Firefly algorithm

In mathematical optimization, Firefly algorithm is a metaheuristic proposed by Xin-She
Yang and inspired by social flashing behavior of fireflies.

Based on characteristics of the light of fireflies, the algorithm is developed. Yang states three
rules in optimizing the Firefly algorithm:

o All fireflies are unisex, so that one firefly will be attracted to other regardless of its
sex;

e Attractiveness is proportional to its brightness, thus for any two bright fireflies, the
less brighter will move towards the brighter one. The attractiveness is proportional
to the brightness and both decrease as their distance increases. However, the intensity
diminishes as they are more distant;

e The brightness of a firefly is affected or determined by the landscape of the objective
function.

Based on these three rules, the FA is presented briefly through pseudocode in steps shown
in Figure 2:
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Begin
1) Objective function: f(x), x= (z1,®2,...,%4);
2) Generate an initial population of fireflies x; (i=1,2,...,n);.

3) Formulate light intensity I so that it is associated with f(x)
(for example, for maximization problems, I oc f(x) or simply I = f(x);)
4) Define absorption coefficient }

While (t < MaxGeneration)
for i =1 i n (all n fireflies)
for =1 :n (n fireflies)
if (I; > L),
move firefly i towards j;
Vary attractiveness with distance r via exp(—vyr7);
Evaluate nhew solutions and update light intensity;
end if
end for j
end for i
Rank fireflies and find the current best;
end while

Post-processing the results and visualization;

end

Figure 2: Pseudocode Firefly Algorithm [reproduced from Xin-She Yang, 2009].

In Firefly Algorithm, there are two important issues: the change in light intensity and the
formulation of attractiveness. Simply put, we can assume the attractiveness of a firefly is
determined by its brightness, which is associated with the encoded objective function; the
brightness / of a firefly at a certain location x can be defined as /(x) a f(x).

However, the attractiveness 8 is relative, it should be seen in the eyes of the beholder or
judged by other fireflies. Thus, it will vary with the distance r; between firefly 7 and firefly ;.
Additionally, light intensity decreases with distance from its source, and light is also absorbed
in the media, then we should allow attractiveness to vary with the degree of absorption.

In the simplest form, the light intensity /() varies according to the inverse square law,
expressed in Equation 15:

I(r)= = (15)

r

L represents light intensity at the source. For a given medium with a fixed light absorption
coefficient y, light intensity / varies with distance 7:

[=le (16)

1o is the original light intensity. To avoid singularity at » = 0, in Equation 15, the combined
effect of both the inverse square law and absorption can be approximated using Gaussian form
in Equation 17:

I(r) = Ie™ " (17)

As a firefly’s attractiveness is proportional to the light intensity seen by adjacent fireflies,
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we can define the attractiveness 8 of a firefly by

B =PBoe™ " (18)

Bo is the attractiveness in » = 0. As it is generally faster to calculate 1/( 1+ r?) than an
exponential function, the above function (equation 18) can be conveniently approximated by
Equation 19

p =L (19)

1+yr2

Both Equations 18 and 19 define the characteristic distance

1
r=— 2
= (20)
Over which the attractiveness changes significantly from 8 to fye ! in Equation 18, or /2
in Equation 19.
In the implementation, the form of attractiveness function ;- can be any function
decreasing monotonically, such as Equation 21

B(r) =Boe™", (m=1) e2y)

The movement of a firefly i that is attracted to another firefly j (brighter) is determined by
Equation 22

X; = x; + Boe V" (xj — x;) + ae (22)

Second term regards to the attraction. Third term is the randomization, in which a represents
the randomization parameter, and €; is a vector of random numbers from a Gaussian distribution
or uniform distribution.

2.6 Additional data

The building model adopted to determine structural responses subjected to the seismic
event El Centro is the 10-storey building shown in Figure 3. The values adopted for mass and
stiffness of each floor are shown in Table 1. The structure’s own damping is initially adopted
for calculation, corresponding to 0.5%. For the integration method, At =0.02 seconds.

In order for the reduction of vibration amplitudes to be the greatest possible, TMD will be
installed on top of the building, as supported by literature.

(== <]

.

Figure 3: Structure with 10 degrees of freedom, from Mohebbi et al. (2012)
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Floor Mass [Kg] Stiffness [N/m]
1 105000 9950000000
2 105000 990000000
3 105000 792000000
4 105000 792000000
5 105000 792000000
6 105000 792000000
7 105000 404400000
8 105000 288600000
9 105000 185400000
10 105000 185400000

Table 1: Data for the building structure study

3 ANALYSIS OF RESULTS

This chapter presents the results, from the determination of the dynamic structural
responses to the implementation of TMD and its optimization, obtaining best cost-benefit.

3.1 Dynamic analysis without TMD

First, ten natural frequencies of the structure without TMD are calculated, resulting in Hz:
1.93; 4.44;7.61; 10.28; 12.04; 14.64; 17.54; 21.89; 25.60; 27.75.

Subjecting the structure of the building to the earthquake record El Centro shown in Figure
1, we obtain the amplitudes presented in Table 3.

Maximum values of displacement and acceleration occur on top floor of the building.
Figure 4 shows structural responses on top floor, without the TMD, in terms of displacement
and acceleration versus time.

Displacement 10" floor Without TMD versus time

fr r—
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Time[s]
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Figure 4: Structural response in terms of displacement and acceleration as a function of time

3.2 Dynamic analysis with TMD

Equations presented in Section 2.4 were used to dimension the TMD, along with the Firefly
algorithm. For firefly parameters, lower bound and upper bound values were, respectively, 0.0
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and 0.02; these limits were adopted by the user to define modal mass ratio (structure-TMD),
which is the design variable. Population size adopted corresponded to 10 individuals, with 50
iterations. Thus, bringing the total number of 500 evaluations. Best result was found when
modal mass ratio (p) is 0.02; values adopted for TMD parameters as mass, stiffness, damping
and damping ratio are presented in Table 2.

Mass [kg] Damping [Ns/m] | Stiffness [N/m] Damping ratio [TT]
15466 79647 2265257 0.2128

Table 2: Values of TMD parameters for modal mass ratio of 0.02

The mass of TMD is not directed related to the total mass of the structure, but it is determined
as established in section 2.4., i.e., the mass of TMD is defined using the modal mass ratio, and
not 2% of total structural mass.

After attaching the TMD and setting values presented in Table 3, the dynamic analysis is
redone in order to verify vibration amplitudes. A comparison between the structural responses,
before and after using TMD, is given in Table 3.

Without TMD With TMD
- - ) - % Reduction of % Reduction of
Displacement | Acceleration | Displacement | Acceleration . .
Floor , , Displacements Accelerations
(m] [m/s?] [m] [m/s?]
1 0.00111 0.37770 0.00084 0.32836 24.32 13.06
2 0.00218 0.66025 0.00165 0.60147 24.31 8.9
3 0.00343 0.98042 0.00259 0.73857 24.49 24.67
4 0.00455 1.18824 0.00347 0.82008 23.74 30.98
5 0.00554 1.21014 0.00426 1.01244 23.1 16.34
6 0.00653 1.43001 0.00496 1.17302 24.04 17.97
7 0.00821 1.73907 0.00613 1.25532 25.33 27.82
8 0.01014 1.88588 0.00752 1.15675 25.84 38.66
9 0.01246 2.23697 0.00923 1.71536 25.92 23.32
10 0.01367 2.54138 0.01019 2.11332 25.46 16.84
TMD - - 0.02319 3.00268 - -

Table 3: Displacements and acceleration per floor

As presented in Table 3, displacement and acceleration amplitudes reduced on all floors of
the building. Significant reduction in displacement was observed, ranging from 23% to 26%.
Reductions were even higher for acceleration, ranging from 9% to 39%.

Figure 5 shows structural responses on top floor, with and without the TMD, in terms of
displacement and acceleration versus time.
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Figure 5: Response of the structure, with and without TMD, in terms of displacement and acceleration as a
function of time

4 CONCLUSIONS

This paper presented a method to control vibration using TMD. A dynamic analysis of'a 10-
storey building subjected to the El Centro earthquake was performed, before and after the
installation of TMD, showing a significant reduction in maximum displacement and
acceleration after implementing TMD.

TMD’s frequency was tuned to the natural frequency of the first mode, which is usually the
most relevant in this case.

If the earthquake has another predominant frequency matching the natural frequency of the
structure, it can lead to its resonance and collapse. However, each excitation frequency of the
earthquake will result in a new tuning of TMD to the structure. Each tuning frequency will have
a corresponding mass ratio to the reduction of amplitudes of structural response; in other words,
for each frequency, a TMD with optimal parameters will be set for obtaining a good
performance in reducing amplitudes caused by earthquakes.

The greater the total number of function evaluations on the algorithm adopted, the more
refined the objective function resulted will be; but consequently, computational time required
to perform optimization will also be greater. The objective function was set in 500 evaluations,
in order to ensure a good resulting ratio mass and cost-benefit, since reductions in displacement
and acceleration were not as significant from a certain mass increment and total number of
evaluations.

Optimal parameters of the TMD were achieved when modal mass ratio () corresponded to
0.02. Maximum displacements were reduced considerably.

In order to avoid costs and difficulty during implementation due to structural overload, mass
ratio () must not be too high.

After implementing the TMD, reductions ranged from 23% to 26% for the displacements,
and from 9% to 39% for the maximum accelerations were reached.
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