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Abstract. As in the clear flow case, the forced convection process in porous media flows can be charac-

terized by a thermally developing region and a fully developed region. In this study, microscopic laminar

flow simulations are carried out in a bi-dimensional porous medium to study the characteristics of each

region. For the two porosities simulated, 65% and 85%, the spatial variation of the macroscopic heat

transfer coefficient and the streamwise thermal dispersion is computed for different Pe numbers. The

dependence of the thermal entry length on the Pe number is also computed. This quantity is found to be

larger than five Representative Elementary Volumes for Pe numbers larger than 2500. This shows that,

for high Pe numbers, the thermal entrance effect is not limited to the pore-scale and that macroscopic

models used in the open literature are only accurate in the fully developed region.
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1 INTRODUCTION

Porous media models are often employed to describe systems that are difficult to simu-

late in detail with the computer power that is available today. For example, the design of a

heat exchanger requires the analysis of the heat transfer process in a heterogeneous system

formed by a complex solid matrix filled with a fluid. In general, these type of systems require

a precise description of geometrical details that makes their simulation computationally expen-

sive. This motivates the continuous development of macroscopic models that do not resolve the

small scale of the system yielding a less expensive computational description (e.g. (Takemoto

et al., 2010; Pathak and Ghiaasiaan, 2011; Vijay et al., 2015)). The Volume Average Theory

(VAT) (Whitaker, 1999) is the most popular tool to derive macroscopic model (i.e. macro-

scopic partial differential equations) that can be numerically solved to obtain a macroscopic

description of the system. One of the simplest but not trivial cases that can be studied from

the macroscopic point of view is an isothermal fluid that enters to a constant porosity porous

medium with a constant wall temperature different than that in the fluid. From the macroscopic

point of view, the momentum equations for this case simple reduce to a constant volume av-

erage velocity in the streamwise direction. However, the macroscopic energy equation must

be capable to accurately describe the behavior of the fluid-average temperature when the fluid

flows and transfers heat from/to the solid structure. Under considerations of steady, incom-

pressible, one-dimensional flow (x-direction) in a constant porosity medium with constant wall

temperature, the solid phase is uncoupled from the fluid phase and the transport equation for

the macroscopic fluid temperature, findable elsewhere (Nakayama et al., 2006), resumes:

ρCpφU
dT

dx
=

d

dx
[φ(kf + kD−xx)

dT

dx
] + hsfasf (Tw − T ), (1)

where the over bar indicates the intrinsic Cellular Average (CA) operation (Quintard and Whitaker,

1994a,b) over the Representative Elementary Volume (REV, V ) and, φ, U , asf are the poros-

ity, streamwise velocity and interfacial area per unit volume respectively. Equation 1 is a

convection-diffusion equation with the CA temperature as dependent variable. This equation

is characterized by two macroscopic coefficients, the interfacial heat transfer (hsf ) and the

streamwise thermal dispersion (kD−xx). These two coefficients are generally defined from mod-

eling assumptions and conservation criteria. The interfacial heat transfer, or its equivalent non-

dimensional number, NuD, is defined to assure the conservation of energy (Nakayama et al.,

2006):

NuD =
hsfD

kf
=

D

kf

1

V

∫

V
[ 1
V

∫

Asf
kf∇T · dĀ]dV

asf (Tw − T )
. (2)

And the streamwise thermal dispersion is defined employing a diffusion hypothesis following

the ideas of Taylor (Taylor, 1953) and Aris (Aris, 1956):

kD−xx = −ρCp

1

Vf

∫

V
[ 1
V

∫

V
iuiTdV ]dV

∇xT
, (3)

where iu, iT are the space fluctuations of the streamwise velocity and temperature respectively,

and Vf is the fluid volume inside the REV. These two macroscopic coefficients were studied

in detail in the flow configuration under consideration in Teruel (2015) for different porosities

than those simulated in this study. In this work, the macroscopic energy Eq. (1) will be tested
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evaluating its accuracy to represent the macroscopic fluid temperature in the porous medium.

This will be achieved comparing results from the model with those obtained from numerical

experiments. Additionally, the common assumption found in the open literature that considers

constant values for the macroscopic coefficients NuD y kD−xx, will be tested. Under this as-

sumption, the macroscopic model given in Eq. (1) has an analytical solution characterized by

an exponential decay:

θ(x∗) =
T (x∗)− Tw

Ti − Tw

= e−αx∗

, (4)

where Tw and Ti are the solid wall and the inlet fluid temperatures respectively and x∗ is the

non-dimensional streamwise coordinate. In Eq. (4), the decay rate, α, is a function of the

macroscopic coefficients as well as the flow and medium properties:

α =
1−

√
1 + 4AC

2A
,A =

√
1− φ

2PeD
(1 +

kD−xx

kf
), C =

8NuD

PeD

√

1− φ. (5)

Therefore, the α parameter can be computed from numerical data and compared with values

calculated from model equations.

2 DOMAIN SIMULATED

A schematic diagram of the domain selected for the simulation is shown in Fig. 1. The fluid

flows from left to right, entering the porous medium after flowing a distance of H as a clear flow.

The porous medium extends in the streamwise direction from x = 0 to a location x = 140H .

Therefore, the porous region extends for 70 REVs in a row (the REV is chosen as a cell of

2H×H in the streamwise and spanwise directions respectively). The fluid-solid interface is set

to a different temperature than that in the fluid at the entrance. But this is done at the location

x = 6H to achieve a smooth transition in the CA temperature in the entrance region and to

allow the flow to develop hydrodynamically. To save computational time, only the bottom half

of the REV (H/2) is simulated.

Figure 1: Domain simulated.

The governing equations for the fluid phase (mass, momentum and energy) are solved em-

ploying an in-house solver that uses the SIMPLER algorithm (additional details of the solver

can be found in Teruel (2015)). Boundary conditions are given as follows. For the velocity, the

no-slip BC is employed at the walls and periodicity is employed at the outlet (note that after

a hydrodynamically developing length the flow has a 2H periodicity). For the thermal field, a
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fixed temperature is employed at the interface and periodicity is employed at the outlet (after

the flow is thermally developed, the non dimensional temperature field is periodic except for

an exponential decay that is iterativelly solved (Teruel, 2015)). The domain was discretized

using a uniform and structured grid of squares. Macroscopic quantities reported in this study

were found to be independent of any further grid refinement. The grid resolution employed

for each REV was 180 x 45 (2H × H/2, streamwise x vertical direction). Simulations were

carried out for laminar flow conditions with ReD=50 (based on the Darcy velocity and size of

the obstacles). The PeD number, defined as ReDPr, was varied from 200 to 5000. For each

simulation carried out, the macroscopic temperature and macroscopic coefficients are obtained

applying the CA operation to microscopic results. For instance, for each macroscopic point x
(the centroid of a given REV), the CA temperature is calculated as:

T (x) =
1

2H

∫ H

−H

dζ[
1

φH2

∫ H

−H

dη

∫ H/2

0

T (x+ ζ + η, y)dy]; (6)

and the space-fluctuation of this averaged quantity is defined as:

iT (x, y) = T (x, y)− T (x). (7)

3 DEVELOPING REGION

The microscopic (i.e. real geometry) results are shown in Fig. 2. Contours of the non-

dimensional temperature are shown for both porosities simulated and PeD = 1000. The color

pattern clearly shows that the fluid heats faster in the medium with larger interfacial area or

lower porosity.

Figure 2: Non-dimensional microscopic temperature θm.

Based on microscopic results, the macroscopic temperature is computed carrying out the

CA operation. The complete set of macroscopic non-dimensional temperatures are shown in

Fig. 3. Qualitatively, it is shown that the decay rate of this macroscopic variable decreases

with the porosity and PeD. Additionally, it is shown that the behavior of this quantity does not

follow an exponential decay from the inlet. This is exemplified showing a line that fits the data

corresponding to the last 10 REVs simulated with an exponential decay (as in Eq. (4)). This

line is only shown for the cases with the largest PeD simulated. The fit deviates from the data

near the inlet showing the existence of a developing region.

The macroscopic coefficients, NuD and kD−xx, can also be computed as a function of the

streamwise coordinate employing Eqs. (2) y (3). Fig. 4 shows calculated values for the macro-

scopic heat transfer coefficient. This quantity, similar to that found in the clear flow case in the

developing region, presents a peak at the entrance followed by a decay to its fully developed
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(a) 65% porosity. (b) 85% porosity.

Figure 3: Macroscopic non-dimensional temperature. PeD as parameter.

value. A space dependent quantity is also obtained for the streamwise thermal dispersion. This

quantity is shown in Fig. 5. This diffusion coefficient increases from zero at the inlet to a fully

developed value in a distance that depends on the porosity and PeD.

(a) 65% porosity. (b) 85% porosity.

Figure 4: Macroscopic heat transfer coefficient.

The deviation of the macroscopic temperature from the exponential fit and the dependence

on the spatial coordinate of the macroscopic coefficients suggest, by comparison with the clear

flow case, the need of a definition for a thermally developing region characterized by a ther-

mal entrance length. This quantity can be defined considering the value of the parameter that

controls the behavior of the macroscopic temperature in the developed region, α (see Eq. (4)).

When this parameter is approximately constant, the macroscopic temperature can be assumed

to vary exponentially. The Thermal Entry Length (TEL) is then defined in this study as the

position in the porous medium from where the α-parameter, calculated with Eq. (5), shows

a difference lower than 5% respect to its fully developed value. Although Eq. (5) is strictly

valid when the macroscopic coefficents are constants, it is an excellent approximation when

these coefficients are close to their fully developed values. With this definition, the TEL is then

calculated for all cases simulated. Fig. 6 shows the dependence of this quantity on PeD and

porosity. For large Péclet numbers this quantity extends for several REVs in a row (this fact is
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(a) 65% porosity. (b) 85% porosity.

Figure 5: Streamwise thermal dispersion coefficient.

emphasized for high porosities). This suggests that the use of a macroscopic model with con-

stant coefficients, as those found in the open literature (Kuznetsov and Nield, 2009; Sano et al.,

2011; Alfieri et al., 2012; Ouyang et al., 2013), yields large deviations from the data for flow

with high PeD numbers.

Figure 6: TEL computed for different PeD numbers. φ as parameter.

4 FULLY DEVELOPED REGION

In the fully developed region the macroscopic coefficients are constant and the macroscopic

model predicts an exponential decay rate of the temperature. This decay rate can be compared

with that obtained from the data to evaluate the accuracy of the model in the fully developed

region. To obtain the experimental decay rate, the macroscopic data for the temperature is

fitted near the outlet of the domain, in the last five to ten REVs, depending on the case. The

correlation-coefficient for the fit was calculated to be greater than 0.9999 in all cases, insuring

that a linear regression in a linear-log scale is an appropriate fitting model. Fig. 7 shows the

decay rate computed with both methods, fitting the data and employing Eq. 5. The agreement

is excellent (differences are below 1% for all cases simulated) showing that the macroscopic

model can accurately predict the behavior of the macroscopic temperature in the fully developed

region.
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Figure 7: Values for α. Meassured and computed with the model.

5 CONCLUSIONS

The performance of the macroscopic energy equation model for laminar flows through porous

media has been analyzed. Two regions have been identified, a developing region where the

macroscopic coefficients are space dependent and a fully developed region where the macro-

scopic temperature decays exponentially. The thermal entry length dependence on PeD has

been calculated. This parameter extends for several REVs for Péclet numbers larger than 2500.

This suggest that the use of a macroscopic model with constant coefficients in flows with high

PeD is questionable and that novel models are needed to accurately describe the developing

region. On the contrary, the macroscopic model was shown to be very accurate in the fully

developed region.
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