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Abstract. We present a method for understanding Fluid Structure Interaction simulations in continuous

media, an important class of phenomena that cover several fields of applications and research lines. Spe-

cialized literature has experienced a compelling need for improving the predictive skills of the models for

simulations of fluid flow under arbitrary boundary conditions. In the present work, complex boundary

conditions are those imposed by devious domains through where the fluid flows. We show a modeling

procedure based on the Virtual Power Balance that results in a variational equation. The main conse-

quence of this modeling procedure is the characterization of kinematic admissible loadings (stress-like

and force-like loadings). Within the variational framework, we employ a numerical solver based on

Lattice Boltzmann Method. The solver obtains the complete description of the desired phenomena like

equilibrium conditions, constitutive equations, among other relevant features. Numerical experiments

are presented to show the potential of the modeling procedure studied in this work to deal with several

complex boundary constraints.
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1 INTRODUCTION

When deriving a primal kinematic variational procedure for an arbitrary constrained model

like Fluid Structure Interaction (FSI) phenomena, the mandatory principle for setting the basis,

is the Principle of Virtual Power Balance, properly described in the research work of Germain

(1973); Maugin (1980). If the context provides such conditions for writing the Principle of Vir-

tual Power Balance, the characterization of generalized forces and generalized motion actions is

obtained in a straight-forward manner as natural consequences. The characterization procedure

is based on a duality of power when studying the interplay between powers’ loads and mo-

tion actions. This duality allows the understanding of variational formulations as constrained

minimization problems in which fluid flows embedded in complex domains.

Since the late 80’s the Lattice Boltzmann Method (LBM) has undergone uncountable up-

grades, allowing the community to perform efficient simulation of complex fluid dynamics in

many different applications. Significant advances in computational hemodynamics have been

shown in the research of Golbert et al. (2012); Artoli et al. (2004) and also in the work of Freund

(2014), where the cellular detail of blood is an essential factor in its flow, especially in vessels

or devices with size comparable to that of its suspended cells. It is within this context that we

study the consequences of including obstacles in the flow.

This article is organized as follows: Section 2 presents the appropriate environment to de-

velop with variational arguments, a dual balance principle for arbitrary challenging engineering

situations; Section 3 assesses the modeling procedure exposed previously to model the fluid flow

phenomena under arbitrary boundary constraints; Sections 4 and 5 expose the consequences of

implementing the derived Euler-Lagrange equations when a Lattice Boltzmann Method is used

for numerical simulations. To recall the pertinence of the modeling procedure, a bi-dimensional

implementation is shown in Sections 6 and 7, where several relevant numerical experiments are

presented. Finally, the concluding remarks are shown in Section 8.

2 VIRTUAL POWER BALANCE IN CONTINUUM MECHANICS

The physical modeling based on Virtual Power is one of the reliable modeling techniques

in terms of including in the phenomena compatible loadings, as shown in Germain (1973);

Maugin (1980) and Taroco et al. (2014). The Virtual Power Balance is going to be written as a

fundamental principle, whose local and global consequences are established as follows.

Axiom 1 (Principle of Virtual Power Balance.) Let a system Ω be in equilibrium with respect

to a given Galilean frame; then, in any virtual motion, the virtual power of all the internal

forces and external forces acting on Ω is null.

The Principle of Virtual Power Balance can be finally written as

Pi(D(û)) + Pe(û) = −〈T;D(û)〉+ 〈f ; û〉 = 0 ∀ û ∈ VarU , (1)

where the

• Kinematic admissible manifold for generalized velocities and generalized strain rate ten-

sors, are defined as:

KinU = {u ∈ U ≡ H
m(Ω) + extra constraints},

KinW = {D(u) ∈ W ≡ L
m(Ω)};
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• Kinematic admissible space for velocities variations:

VarU = {u1 − u2 ∈ VarU : u1,u2 ∈ KinU }.

For this purpose the adjoint transformations are obtained when performing integration by

parts of the internal power, then due to Riesz representation theorem, adjoint transformations

are equivalently defined with:

〈T;D(û)〉
W∗×W

= 〈D∗
T; û〉

U∗×U
. (2)

Within this context, the dual spaces (·)∗ are defined when applying adjoint transformation

for any arbitrary member in (·). A major conclusion from the previous statement is that the

nature of internal and external power belongs to the same set, thus they can be manipulated

equivalently. Figure 1 presents a schematic illustration to represent the duality between internal

and external power.

Figure 1: Schematic representation of duality in the Principle of Virtual Power.

Consider a loading system f = {b, t} ∈ U∗, as shown in Figure 2, where t ∈ L
2(∂ΩN)

and b ∈ L
2(Ω) are loadings to be considered compatible with the model if the velocity field

u ∈ KinU satisfies

∫

Ω

(T;D(û)) dΩ =

∫

Ω

(b; û) dΩ +

∫

∂Ω

(t; û) d∂Ω , ∀ û ∈ VarU ; (3)

where Cauchy’s stress tensor is given by a particular constitutive law in terms of strain rate

tensor such that T(u) = ϕ(D(u)).
The loadings given by f = {b, t} are uniquely characterized when integrating by parts the

left hand side of Equation (3), that is
∫

Ω

(T(u);D(û)) dΩ = −

∫

Ω

(div (T(u)); û) dΩ +

∫

∂Ω

(T(u)n; û) d∂Ω.

Thus, by replacing the previous expression in Equation (3) the loadings f can be defined as

{

div (T(u)) + b = 0, in Ω,

T(u)n− t = 0, on ∂ΩN .
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Figure 2: Generic motion actions and kinematic constraints acting over the domain, represented in a spatial refer-

ence.

3 VARIATIONAL APPROACH FOR INCOMPRESSIBLE NAVIER STOKES EQUA-

TIONS

Navier Stokes equations are based on the analysis performed before, enhancing the Section

2, making special focus on the interplay between forces due to convective effects. Thus the

following problem can be written:

Problem 2 (Navier Stokes equations) Given a regular domain Ω, a source function f defined

on L
2(Ω), find the velocity field denoted by u, defined on the following manifold

KinU∗ ≡ {w ∈ H
1(Ω) : w|∂ΩD

= uD},

and find the Lagrangian multiplier p defined on the L2(Ω) space, such that

∫

Ω

ν (∇u;∇v) dΩ−

∫

Ω

(f ;v) dΩ−

∫

Ω

ηp div (u) dΩ−

∫

Ω

p div (v) dΩ

+

∫

Ω

ρ (∇uu;v) dΩ = 0,

∀ (v, ηp) ∈
(

VarU∗, L2(Ω)
)

,

where the subspace VarU∗ is defined as

VarU∗ = {u1 − u2 ∈ VarU∗ : u1,u2 ∈ KinU∗ }.

Considering the region of the boundary with no Dirichlet boundary conditions, represented by

∂ΩN = ∂Ω \ ∂ΩD
1, and recalling that all admissible variations v vanish in the Dirichlet

boundary ∂ΩD. Considering the use of Green’s identity on the variational equations of Problem

2, the following expressions are obtained

∫

Ω

ν (∇u;∇v) dΩ = −

∫

Ω

(div (ν ∇u);v) dΩ +

∫

∂Ω

((ν ∇u)n;v) d∂Ω,
∫

Ω

p div (v) dΩ = −

∫

Ω

(∇p;v) dΩ +

∫

∂Ω

(pn;v) d∂Ω,

1The complement of the Dirichlet’s Boundary it is often called Neumann’s Boundary, there was no reason to

consider the Robin’s Boundary condition, then it was neglected.
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which upon substitution in the variational equations presented in Problem 2, yields the following

Euler-Lagrange equations:



















− div (ν ∇u)− f +∇p+ ρ ∇uu = 0, in Ω,

div (u) = 0, in Ω,

(ν ∇u− p I) n = 0, on ∂ΩN ,

u− uD = 0 on ∂ΩD.

(4)

3.1 Variational Equation for static obstructed fluid’s flow

In fluid mechanics it is usual to have obstacles inside the regular domain Ω. Consider the case

in which obstacles remains fixed and the no-slip condition is considered over its boundaries. In

such cases, the obstacles introduces external forces which are the reactive forces to the no-slip

conditions that the flow must comply. These reactive forces are put in evidence through the

corresponding Lagrange multipliers. Considering that Γi, i = 1, · · · , N 2 are the boundaries

corresponding to the obstacles, Lagrange multipliers are denoted by γi ∈ L2(Γi). Figure 3

shows a description of the mentioned scenario, where the different domains are described.

Figure 3: Schematic representation of an obstacle inclusion in the domain. Highlighted in red and black are the

Neumann and Dirichlet boundary, respectively, whereas in blue the obstacles boundaries.

As a consequence of this new motion action, the Problem 2 must be rewritten. To address

the changes due to obstacle inclusion the following problem is written:

Problem 3 (Navier Stokes equations with obstacles constraints) Given a regular domain Ω,

a source function f defined on L
2(Ω), find the velocity field denoted by u, defined over the

following manifold

KinU∗ ≡ {w ∈ H
1(Ω) : w|∂ΩD

= uD},

and find the Lagrangian multipliers p and γi defined on L2(Ω) and L2(Γi) spaces, respectively,

2Where N denotes the number of obstacles considered

Mecánica Computacional Vol XXXIV, págs. 2225-2237 (2016) 2229

Copyright © 2016 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



such that
∫

Ω

ν (∇u;∇v) dΩ−

∫

Ω

(f ;v) dΩ−

∫

Ω

ηp div (u) dΩ−

∫

Ω

p div (v) dΩ

+

∫

Ω

ρ (∇uu;v) dΩ +
N
∑

i

∫

Γ

(γi;v) + (ηγi ;u− uslip) dΓ = 0,

∀ (v, ηp, ηγi) ∈
(

VarU∗, L2(Ω), L2(Γi)
)

,

where the subspace VarU∗ is defined as

VarU∗ = {u1 − u2 ∈ VarU∗ : u1,u2 ∈ KinU∗ }.

The corresponding Euler-Lagrange Equations for this obstacle inclusion results in the fol-

lowing boundary value problem






































− div (ν ∇u)− f +∇p+ ρ ∇uu = 0, in Ω

div (u) = 0, in Ω

(ν ∇u− p I) n = 0, on ∂ΩN

(ν ∇u− p I) n = γi, on Γi

u− uslip = 0, on Γi

u− uD = 0 on ∂ΩD.

(5)

3.2 Variational equation for spinning obstructed fluid’s flow

Here we the study the Magnus effect, described in Holzer and Sommerfeld (2009), which is

the result of a non symmetric fluid flow condition produced when considering a spinning object

embedded in a Poiseuille schematic flow. Figure 4 illustrates the proper context conditions to

study the Magnus effect.

Figure 4: Representation of an circular spinning obstacle embedded in a rectangular channel.

Following the recent studies shown in Holzer and Sommerfeld (2009); Galindo-Torres (2013)

and Shin et al. (2013), the Magnus effect still challenges the computational mechanics when

modeling phenomena like soccer or baseball ball’s distinct trajectories due to the combined

translation and spinning. Since the obstacle is no longer fixed, rather it is spinning, the varia-

tional counterpart of Problem 3 must be updated.
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Problem 4 (Navier Stokes equations with spinning obstacles constraints) Given a regular do-

main Ω, a source function f defined on L
2(Ω), find the velocity field denoted by u, defined over

the following manifold

KinU∗ ≡ {w ∈ H
1(Ω) : w|∂ΩD

= uD},

and find the Lagrangian multipliers p and γi defined on L2(Ω) and L2(Γi) spaces, respectively,

such that
∫

Ω

ν (∇u;∇v) dΩ−

∫

Ω

(f ;v) dΩ−

∫

Ω

ηp div (u) dΩ−

∫

Ω

p div (v) dΩ

+

∫

Ω

ρ (∇uu;v) dΩ +
N
∑

i

∫

Γ

(γi;v) + (ηγi ;u− usp) dΓ = 0,

∀ (v, ηp, ηγi) ∈
(

VarU∗, L2(Ω), L2(Γi)
)

,

where the subspace VarU∗ is defined as

VarU∗ = {u1 − u2 ∈ VarU∗ : u1,u2 ∈ KinU∗ },

and where usp is defined in terms of an angular velocity α and obstacle radius R, that is

usp =

[

0.0 α
−α 0.0

] [

Rx

Ry

]

.

The corresponding Euler-Lagrange Equations for this obstacle inclusion results in the fol-

lowing boundary value problem







































− div (ν ∇u)− f +∇p+ ρ ∇uu = 0, in Ω

div (u) = 0, in Ω

(ν ∇u− p I) n = 0, on ∂ΩN

(ν ∇u− p I) n = γi on Γi

u− usp = 0, on Γi

u− uD = 0 on ∂ΩD.

(6)

4 NUMERICAL METHODS

In the context of transport phenomena the Lattice Boltzmann model has been used exten-

sively and successfully applied for more than 30 years, as shown in the research of He and Luo

(1997); Chen and Doolen (1998). Given a set of particles, for a fixed time t, the particles inside

the interval r + δr whose velocity rank is bounded by e + δe can be measured by using the

distribution f(r, e, t).
Velocity change ratio is often due to a force action over a limited time, then if the amount of

particles does not changes through the time a balance expression can be written as

f(r+ e δt, e+ F δt, t+ δt)− f(r, e, t) = 0. (7)

For instantaneous interactions, such as particle collision, the balance is rewritten as

d[f(r, e, t)]

dt
= Q(f). (8)

Mecánica Computacional Vol XXXIV, págs. 2225-2237 (2016) 2231

Copyright © 2016 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Thus, applying the chain rule in the previous equation, the Lattice Boltzmann Equation is

achieved

∇f · e+
∂f

∂e
· F+

∂f

∂t
= Q(f). (9)

In order to get a closed solution for Equation (9) the collision operator, represented by Q,

must be defined. The simplest method to write this collision operator is to consider an equi-

librium distribution. Here, the BGK collision operator, described in Bhatnagar et al. (1954), is

considered

Q(f) = ω (f eq − f(r, e, t)) , (10)

where the ω coefficient measures the frequency of collisions. Furthermore, the Equilibrium

Distribution3 tunes and solves different physical scenarios. Replacing Equation (10) in Equa-

tion (9) the following equation is achieved

∇f · e+
∂f

∂e
· F+

∂f

∂t
= ω (f eq − f) . (11)

The explicit solution for Lattice Boltzmann with BGK collision operator is given by

f(r+ e δt, e+ F δt, t+ δt) = f(r, e, t) + δt ω (f eq − f(r, e, t)) . (12)

Neglecting external forces acting over the particles, Equation (12) takes the following expres-

sion, known as the Lattice Boltzmann Method:

f(r+ e δt, t+ δt) = f(r, e, t) + δt ω (f eq − f(r, e, t)) . (13)

For the numerical simulations we have employed the Lattice Boltzmann quasi incompress-

ible scheme given by the D2Q9 model, as proposed by He and Luo (1997).

5 BOUNDARY CONDITIONS IMPOSITION

As shown in Problems 3 and 4 the variational foundations allowed to obtain the complete set

of Euler-Lagrange equations. As described in Section 2, every compatible load is characterized

by this procedure. In this context, Lagrangian multipliers are responsible to enforce a kinematic

constraint. Therefore, to take into account boundary conditions for Problems 3 and 4, the Lattice

Boltzmann Equation (13) must be updated as

f(r+ e δt, t+ δt) = f(r, e, t) + δt ω (f eq − f(r, e, t)) + S(r, t). (14)

The extra term S(r, t) is generally used to represent external forces, as shown schematically

in Figure 5. We note that there is a certain flexibility when tunning this term. Here it is as-

sumed that a volumetric force4
F(r, t) can be applied in each Lattice array and the following

expression, based on Mohamad and Kuzmin (2010), will be used

S(r, t) =
δ t

v
(w e;F(r, t)) , (15)

where w denotes the wi−eth different weight directions. It can be concluded from the previous

expression that the source term does not add or subtract mass and it provides, at each time step,

a momentum such that the Lattice array is perturbed with a finite impulse, which is given by

(S(r, t); v e) =

(

δ t

v
(w e;F(r, t)) ; v e

)

= F(r, t) δt.
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Figure 5: Employed technique to impose Force type boundary conditions.

As mentioned before, the boundary conditions and extra forces are imposed employing extra

source loads as represented by Equation (15) and described in Mohamad and Kuzmin (2010).

Regarding the computational implementation, these forces are effectively applied following a

standard relaxation scheme:

S(r, t) = Cp ‖ug(r, t)− u(r, t)‖+ CI

∑

i

‖ug(r, ti)− u(r, ti)‖ ∆ ti, (16)

where ug(r, t) represents a known velocity, Cp and CI are relaxation coefficients, often denoted

as proportional and integral controllers. Here it is important to note that Equation (16) is satis-

fied for every Spin or No slip boundary constraints. The relaxation coefficients are described in

Table 1.

Magnitude Numerical domains Ω Numerical boundaries ∂Ω, Γ

u Cp = 1.0E − 04, CI = 1.0E − 06 Cp = 7.0E − 05, CI = 7.0E − 08
∇u Cp = 1.0E − 05, CI = 1.0E − 08

Table 1: Order of magnitude used for the relaxation coefficients.

6 NUMERICAL EXPERIMENT 1

In the first experiment a square channel with a planar shield inclusion is considered, see

Figure 6. The simulation parameters are properly defined in Table 2. This simulation attempts

to show a methodology to establish the numerical evaluation of the force that the fluid exert to

the obstacle.

3Also known as Maxwell Boltzmann distribution.
4Without loss of generality these volumetric forces are the Lagrangian multipliers.
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Figure 6: Planar shield’s inclusion in rectangular channel.

Parameter Symbol Value

Reynolds number RE 20.0
Domain size Nx ×Ny 50× 50
Obstacle length l 10
Obstacle localization (Ix; Iy) (25; 25)
Inlet Velocity profile (ux; uy) (0.10; 0)
Maximum Shield rotation θmax 0.5 π
Obstacle’s Boundary Condition - No slip

Table 2: Simulation parameters for experiment 1.

To illustrate the performance of the LBM the results at a particular shield orientation θ =
0.25 π are presented. The velocity magnitude is shown in Figure 7(a) and the acceleration field

that influences the obstacle is shown in Figure 7(b). The corresponding Lagrangian multiplier,

which enforces the no slip boundary constraint for the obstacle is shown in Figure 7(c). Finally,

Figure 7(d) shows the density variations due to the inclusion of this planar obstruction.

(a) ‖u‖ (b) ‖a‖ (c) ‖γ‖ (d) ρ

Figure 7: Solution profiles for experiment 1 using parameters of Table 2 at θ = 0.25π.
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To complete the analysis we carried out simulations varying θ from 0 to π/2 in order to

shows the corresponding variations of obstacle forces, as shown in Figure 8.
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Figure 8: Force sensitivity due to rotations of θ from 0 to π/2.

7 NUMERICAL EXPERIMENT 2

Here, a square channel with a spinning circular inclusion is considered, as described by

Figure 4. The simulation parameters are defined in Table 3. This simulation attempts to show

a methodology to establish the numerical evaluation of the force that the fluid exerts to the

spinning obstacle.

Parameter Symbol Value

Domain size Nx ×Ny 100× 100
Obstacle Radius R 10
Obstacle localization (Ix; Iy) (40; 50)
Reynolds number RE 20.0
Inlet Velocity profile (ux; uy) (0.03; 0.0)
Obstacle’s Angular velocity α −0.005
Obstacle’s Boundary Condition - Spin

Table 3: Simulation parameters for experiment 2.

To illustrate the performance of the Lattice Boltzmann Method, the results for velocity mag-

nitude are shown in Figure 9(a), the acceleration field that influences the obstacle is shown in

Figure 9(b). The corresponding Lagrangian multiplier, which enforces the spinning boundary

constraint for the obstacle is shown in Figure 9(c). To conclude the set of results, Figure 9(d)

shows the density variations due to the inclusion of this circular spinning obstruction.
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(a) ‖u‖ (b) ‖a‖ (c) ‖γ‖ (d) ρ

Figure 9: Solution profiles for experiment 2 using parameters of Table 3.

8 CONCLUSIONS

In this work we showed a modeling methodology based in the Principle of virtual power

balance which allowed to generate a meaningful variational framework for modeling viscous

flows phenomena. The developed Euler-Lagrange equations were successfully implemented

using the Lattice Boltzmann Method.

Among the Euler-Lagrange equations, the no slip and spin boundary constraints were natu-

rally obtained from the variational framework. Recalling that the boundary constraints differs

from boundary conditions as Dirichlet or Neumann in the fact that Lagrangian multipliers were

employed to modify the functional, by relaxing the constraints from the kinematic admissible

manifolds.

The LBM implementation recovers the incompressible Navier Stokes equations when con-

sidering the presence of obstacles which were established as fixed or characterized by a motion

action. Every solution field was plotted at steady state. In despite of the fact that we have not

shown transient effects, the Lattice Boltzmann Method is in it self a transient solver, the steady

state for every simulation was defined employing the following criteria

‖ut+i − ut‖∞
‖ut‖∞

≤ tolerance,

where t is a generic time step.

The results were obtained when modeling specific challenging physical situations. The self

consistent modeling procedures allows to obtain piecewise Euler-Lagrange equations, which

were included in the numerical solver based in the Lattice Boltzmann Method. The computed

solutions responds with significant accuracy, when compared with the expected behavior for the

analyzed situations.
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