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Abstract. Many hydrocarbon reservoirs are naturally fractured, and fracture orientation and distribution

is an important subject of research, since fractures control the permeability of the reservoir. In this

work presents a methodology to determine a viscoelastic transversely isotropic (VTI) medium long-wave

equivalent to a fluid-saturated densely fractured poroelastic medium. The long-wave assumption implies

that the VTI approximation is valid for fracture distances and fracture apertures much smaller than the

average wavelengths of the predominant travelling waves. The fractures are modeled as discontinuities in

displacements in the solid and fluid displacements and fluid pressures across fractures. The coefficients

of the VTI medium are obtained using harmonic experiments on representative samples of the poroelastic

material. In particular, the sensibility of VTI to variations in pore pressure is analyzed.
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1 INTRODUCTION

Hydrocarbon reservoir rocks have in many cases plane compliant discontinuities, like frac-

tures and faults, that in general control the hydrocarbon flow and production in the reservoir

Gurevich, B. (2003), Gurevich, B. et al. (2009). Also, in many cases reservoirs rocks contain

dense sets of fractures aligned in preferred directions. A fracture in a fluid-saturated poroelastic

- Biot - medium is a very thin compliant and highly permeable layer, with the layer thickness

on the order of milimeters. In this paper, fractures are modeled using the boundary conditions

in Nakawa, S. and Schoenberg, M. A. (2007). These boundary conditions impose continuity

of the total stress components, pressure discontinuities proportional to average fluid velocities

across the fracture, and displacement discontinuities proportional to stress components and av-

erage fluid pressures along the fracture. Wave-induced fluid flow Santos, J. E. et al. (2011);

Santos et al. (2014), by which the fast waves are converted to slow (diffusive) Biot waves when

traveling across fractures (mesoscopic-loss) is well represented by these conditions.

A Biot medium with a dense set of horizontal fractures behaves as a TIV medium for average

fracture distances much smaller than the predominant wavelengths of the travelling waves.

The relaxed and unrelaxed stiffnesses of the equivalent poro-viscoelastic medium to a finely

layered horizontally homogeneous material were determined in Gelinsky, S. and Shapiro, S.

A. (1997). Later, the five complex and frequency-dependent stiffnesses of the equivalent TIV

medium were derived in Krzikalla, F. and Müller, T. (2011)..

This work uses the set of five harmonic FE compressibility and shear experiments described

in Santos, J. E. et al. (2011); Santos et al. (2014) to determine a long-wave equivalent TIV

medium to a highly heterogeneous horizontally fractured Biot medium.

The FE results are first validated comparing the results using the boundary conditions to

model fractures with those obtained with harmonic FE experiments with fractures represented

as thin layers as in Santos et al. (2014). Then the procedure is applied to analyze the response

of a fractured Biot media varying the volume fraction of the heterogeneities, represented as

stochastic fractals.

A FRACTURED BIOT MEDIUM AND THE EQUIVALENT TIV MEDIUM

We consider a fractured isotropic Biot medium Ω = (0, L1)× (0, L3) with boundary Γ in the

(x1, x3)-plane, with x1 and x3 being the horizontal and vertical coordinates, respectively. Let

us and ũf , denote the averaged displacement vectors of the solid and fluid phases, respectively.

Let uf = φ(ũf − us) be the relative fluid displacement, where φ denotes the porosity and set

u = (us,uf ). Let ε(us), τ (u) and pf (u) denote the strain tensor of the solid, the stress tensor

of the bulk material and the fluid pressure, respectively. The stress-strain relations are (Biot,

M.A., 1962):

τst(u) = 2Gεst(us) + δst(λU ∇ · us + α M ∇ · uf ), (1)

pf (u) = −α M ∇ · us −M∇ · uf . (2)

The coefficient G is the shear modulus of the dry matrix, while the other coefficients in (1))-(2)

can be determined in terms of Ks, Km and Kf , the bulk moduli of the solid grains, dry matrix

and saturant fluid, respectively, (Carcione, 2007). Biot’s equations in the diffusive range and in

the absence of external forces are (Biot, M.A., 1962):

∇ · τ (u) = 0, (3)

iωuf +
µ

κ
∇pf (u) = 0, (4)
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where i =
√
−1, ω is the angular frequency, µ is the fluid viscosity and κ is the frame perme-

ability.

Assume that Ω has a set of J (f) horizontal fractures Γ(f,l), l = 1, · · · , J (f), each one of length

L1 and aperture h, so that Ω = ∪J(f)+1
l=1 R(l). Consider a fracture Γ(f,l) and the two rectangles

R(l) and R(l+1) having as a common side Γ(f,l). Let νl,l+1 and χl,l+1 be the unit outer normal and

a unit tangent (oriented counterclockwise) on Γ(f,l) from R(l) to R(l+1). Let [us], [uf ] denote the

jumps of the solid and fluid displacement vectors at Γ(f,l), i.e. [us] =
(
u
(l+1)
s − u

(l)
s

)
|Γ(f,l) ,

where u
(l)
s denotes the displacement values in R(l). The following boundary conditions at Γ(f,l)

are derived in Nakawa, S. and Schoenberg, M. A. (2007):

[us · ν l,l+1] = ηN

(
(1− αB̃(1− Π))τ (u)νl,l+1 · ν l,l+1

−α
1

2

(
(−p

(l+1)
f ) + (−p

(l)
f )

)
Π

)
, (5)

[us · χl,l+1] = ηT τ (u)ν l.l+1 · χl,l+1, (6)

[uf · ν l,l+1] = αηN (−τ (u)ν l,l+1 · ν l,l+1 (7)

+
1

B̃

1

2

(
(−p

(l+1)
f ) + (−p

(l)
f )

))
Π,

(−p
(l+1)
f )− (−p

(l)
f ) =

iωµΠ

κ̂

1

2

(
u
(l+1)
f + u

(l)
f

)
· ν l,l+1. (8)

τ (u)νl,l+1 · ν l,l+1 = τ (u)νl+1,l · ν l+1,l (9)

τ (u)νl,l+1 · χl,l+1 = τ (u)νl+1,l · χl+1,l. (10)

Here ηN and ηT are the normal and tangential fracture compliances, respectively and κ̂ = κ/h,
with h denoting the facture aperture. The fracture dry plane wave modulus Hm = Km+(4/3)G
and the dry fracture shear modulus G are defined in terms of the fracture aperture and the

fracture compliances as

ηN =
h

Hm

, ηT =
h

G
.

Besides, Π(ǫ) = tanh ǫ/ǫ, B̃ = (αM)/HU (HU is the undrained plane wave modulus) and

ǫ =
(1 + i)

2

(
ω µα ηN

2 B̃ κ̂

)1/2

, α = 1−Km/Ks.

Here HU = KU +
4

3
G is the undrained plane wave modulus, where

KU = Ks
Km + Ξ

Ks + Ξ
, Ξ =

Kf (Ks −Km)

φ(Ks −Kf )
. (11)

A horizontally fractured Biot medium behaves as a TIV medium with vertical symmetry axis

at long wavelengths. As in Gelinsky, S. and Shapiro, S. A. (1997); Krzikalla, F. and Müller, T.
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(2011); Carcione (2007), the stress-strain relations of the equivalent TIV medium are:

σ11(ũs) = p11 ǫ11(ũs) + p12 ǫ22(ũs) + p13 ǫ33(ũs), (12)

σ22(ũs) = p12 ǫ11(ũs) + p11 ǫ22(ũs) + p13 ǫ33(ũs), (13)

σ33(ũs) = p13 ǫ11(ũs) + p13 ǫ22(ũs) + p33 ǫ33(ũs), (14)

σ23(ũs) = 2 p55 ǫ23(ũs), (15)

σ13(ũs) = 2 p55 ǫ13(ũs), (16)

σ12(ũs) = 2 p66 ǫ12(ũs). (17)

Here ũs, σ(ũs) and ǫ(ũs) are the displacement, the stress and sthe train tensor at the macroscale,

respectively.

To determine the coefficients in (12)-(17), we applied five compressibility and shear tests

on representative 2D samples of fractured poroelastic material. Each test is asociated with a

boundary value problem for Biot’ s equations (3) with the fracture boundary conditions (5)-(10)

and additional boundary conditions representing those compressibility and shear tests. These

boundary value problems were solved using the FE method. Figure 1 illustrates the five test

used to determine the stifness coefficients. A detailed description of the procedure can be found

in (Carcione, J. M. et al., 2011) and (Santos, J. E. et al., 2011).

In order to relate the pore and confining pressure to the fracture compliances, following

Brajanovski et al. (2005), Daley et al. (2006) and Carcione et al. (2012), let us define the com-

pliances

ZN = ηN/L, ZT = ηT/L

characterizing the fractures, where L is the fracture distance.

The compliances ZN and ZT are assumed to be dependent on the effective stress σ = pc− p,

where pc is the confining pressure and p the pore pressure as

Zq = Zq∞ + (Zq0 − Zq∞) e(−σ/τq) q = N, T (18)

where Zq0, Zq∞ y τq are constants.

2 NUMERICAL EXAMPLES

The FE procedure was used to determine the complex stiffnesses pIJ(ω); the associated

energy velocities and dissipation coefficients were computed uisng the formulas given in in

Carcione (2007).

First we validate the results obtained modeling the fractures using (5)-(10) and comparing

them with those obtained for fractures modeled as thin layers. The sample is a square of side

length 5mm, with 4 equally spaced fractures of aperture h = 5mm. The FE meshes were a

100 x 109 uniform mesh for fractures as fine layers and a 100x100 uniform mesh for fractures

modeled using the bounday conditions (5)-(10). The saturant fluid is water with density 1000

Kg/m3, bulk modulus 2.25 GPa and viscosity 0.001 Pa·s. Frequency is 35Hz.

The sample contains Material 1 in the background and Material 2 in the fractures, taken from

Nakawa, S. and Schoenberg, M. A. (2007). Also contains a 10% volume fraction of Material

3 (the heterogeneities) with its material properties being averages of the other 2 materials and

having a fractal spatial distribution over both background and fractures (See Figure 2).

Figures 3- 4 exhibit a very good fit with the fine layer model for fractures. Strong velocity

and Q anisotropy is observed. Here 0 degrees and 90 degrees correspond to waves arriving
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Figure 1: Figures 1(a)-1(e) illustrate the five experiments needed to compute the stiffnesses components. Figures

1(a) and 1(b) show how to compute p33 and p11, respectively. Also, performing the experiments shown in 1(c) and

1(e) determine the stiffnesses p55 and p66. Figure 1(d) displays the experiment to determine p13.

parallel and normal to the fracture layering, respectively. Figure 3-(a) shows that attenuation

for qP waves is higher for angles between 60 and 90 degrees, while in Figure 3-(b) is seen that

for qSV the higher attenuation occurs for angles between 60 and 90 degrees. Also, in Figure

4 is seen that qSV waves have stronger velocity anisotropy than qP waves, with qSV waves

having the typical cuspidal triangles (or triplica- tions), observed previously in fractured media

(Carcione (1996)).

In the second experiment fractures are modeled using the boundary conditions (5)-(10) to

analyze the sensitivity of velocities and attenuation to variations in the volume fractions of

Material 3 in the sample. The sample is square with side length 1cm with 9 equally spaced

fractures of aperture h = 1mm. We used a 100 x 100 uniform mesh. Figure 5 displays the

fractal sample for the case of 10% volume fraction of Material 3.

Figure 6-(a) shows that qP attenuation is higher for angles between 60 and 90 degrees and

almost independent of the volume fraction of Material 3 present in the sample. Instead from

Figure 6-(b) it is concluded that qSV attenuation changes significantly for different proportions
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Rock properties

Material 1 Material 2 Material 3

Ks (GPa) 36 36 36

ρs (Kg/m3) 2700 2700 2700

φ 0.15 0.5 0.65

Km (GPa) 9.0 0.0055 0.0044

G (GPa) 7.0 0.0033 0.0022

κ (D) 0.1 10.0 20.0

Table 1: Physical properties of the solid materials used in the numerical examples.
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Figure 2: Porosity distribution for 10% volume fraction of Material 3, which is fractally distributed in both back-

ground and fractures, modeled as thin layers.

of material 3 in the sample.

Figures 7-(a) and 7-(b) shows that both qP and qSV energy velocity values decrease as

the volume fraction of Material 3 increases, mainly due to the high porosity of this material.

Besides, note that the fractal nature of the spatial distribution of Material 3 breaks the symmetry

of the curves of qSV energy velocities (see the cuspidal triangles).

Finally, to analyze the pore pressure effect on velocities and attenuation, we choose a square

sample of side length 10 m, with a fracture distance equal to 1 m (L = 1 m). The background is

homogeneous and isotropic, with the properties of Material 1. Fractures are also homogeneous

and isotropic with Ks = 36 GPa, ρs = 2700 Kg/m3, φ = 0.5 y κ = 10 D. The fracture thickness

is h = 1mm. The compliances vary as in Daley et al. (2006) as follows:

GbZN0 = 1.5, (λU,b + 2Gb)ZT0 = 0.25 (19)

where Gb is the background shear modulus and

λU,b = KU,b −
2

3
Gb (20)
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Figure 3: Dissipation factor at 35Hz. The solid line indicate the numerical values.
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Figure 4: Polar representation of the energy velocity vector at 35Hz. The solid line indicate the numerical values.
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Figure 5: Porosity distribution for 10% volume fraction of Material 3, which is fractally distributed in both back-

ground and fractures. Fractures are represented using the boundary conditions (5)-(10).

and KU,b in (20) is the undrained bulk modulus defined in (11). Also,

ZT∞
= ZT0/5, ZN∞

= ZN0/2, τT = 2MPa, andτN = 2MPa.

As shown in Carcione et al. (2012), let us consider a constant confining pressure pc = 30

MPa and two pore pressures 5 and 28 MPa, normal and overpressure values, respectively. Fig-

ure 8 shows that attenuation anisotropy is stronger in the case of overpressure. Also, velocity

anisotropy becomes stronger with increasing pore pressure, as seen in Figure 9.

3 CONCLUSIONS

This work used a finite element procedure to determine the five complex and frequency-

dependent stiffnesses of the TIV medium equivalent to a horizontally highly heterogenoeus

frac- tured Biot medium, with fractures represented as boundary conditions. The procedure was

validated comparing the results with those obtained for fractures modeled as fine layers and

then applied to analyze the sensitivity of velocities and attenua- tion to variations in the propor-

tions of heterogeneities present in the sample. In all cases, the experiments show that fractures

induce strong velocity and attenuation anisotropy. Also, it was observed that qSV attenuation is

very sensitive to changes in proportions of the heterogeneities, while qP attenuation is al- most

independent of these proportions. Also, energy velocities decrease as the volume fraction of the

heterogeneities increase, and the fractal nature of the heterogeneities breaks the symme- try of

the curves of qSV energy velocities. Finally it is concluded that an increase in pore pressure

causes increases in velocity and attenuation anisotropy.
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Figure 6: Dissipation factor at 35Hz for different volume fractions of Material 3. Fractures are represented using

the boundary conditions (5)-(10).
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Figure 8: Dissipation factor at 60Hz for fractures with normal pore pressure (blue line, 5 MPa) and overpressure

(red line, 28 MPa). Fractures are represented using the boundary conditions (5)-(10).
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Figure 9: Polar representation of the energy velocity vector at 60Hz for fractures with normal pore pressure (blue

line, 5 Mpa) and overpressure (red line, 28 MPa). Fractures are represented using the boundary conditions (5)-(10).
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