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Abstract. The image inpainting problem consists of restoring an imagefrom a (possibly noisy) obser-
vation, in which data from one or more regions is missing. Several inpainting models to perform this task
have been developed, and although some of them perform reasonably well in certain types of images,
quite a few issues are yet to be sorted out. For instance, if the image is expected to be smooth, the inpaint-
ing can be made with very good results by modeling the solution as the result of a diffusion process using
the heat equation. For non-smooth images, however, such an approach is far from being satisfactory. On
the other hand, Total Variation (TV) inpainting models based on high order PDE diffusion equations can
be used whenever edge restoration is a priority. More recently, the introduction of spatially variant con-
ductivity coefficients on these models, such as in the case ofCurvature-Driven Diffusions (CDD), has
allowed inpainted images with well defined edges and enhanced object connectivity. The CDD approach,
nonetheless, is not quite suitable wherever the image is smooth, as it tends to produce piecewise constant
solutions. Based upon this, we propose using CDD to introduce a-priori information into an anisotropic
diffusion model that allows for both edge preservation and object connectivity while precluding the stair-
casing effect that TV-based methods entail. Comparisons between the results of the implemented models
will be illustrated by several computed examples, along with performance measures.
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1 INTRODUCTION

The image inpainting problem consists of restoring an imagefrom an occluded and possibly
noisy observation of it, i.e. data from one or more regions are missing. There are a few pro-
posed models to perform this task and although some of them perform reasonably well in certain
types of images, all of them are far from being totally satisfactory. If the image is expected to be
smooth, for instance, inpainting can be reasonably performed by means of a Bayesian approach
and a maximum a posteriori computationCalvetti et al.(2006), while for non-smooth images
such an approach is far from being satisfactory. Although the introduction of anisotropy ideas
to the latter methodology is known to produce better resultsfor slim occlusionsCalvetti et al.
(2006), the quality of the restoration decays as the occluded regions widen. also Total Varia-
tion (TV)and inpainting models based on PDE diffusion equations can be used whenever edge
restoration is a priority. Recently variants of these methods, such as Curvature-Driven Diffusion
(CDD) inpaintingChan and Shen(2002) which takes into account curvature into the diffusion
coefficient, have resulted in inpainted images with very good edge preservation and object con-
nectivity properties. The CDD approach, nonetheless, doesnot produce satisfactory results in
regions where the image is smooth, as it tends to produce piecewise constant restorations, which
is a reminiscent manifestation of its TV origins.

In this article we present a two-step inpainting process consisting of a first in painting round
for building a pilot image from which to infera-priori structural information on the image’s
gradient via CDD and a second step where the final inpainting is performed via mixedL2-
anisotropic TV regularization. We present a few results showing the improvement of our two-
step approach over all preexisting inpainting methods.

Our (in principle grayscale) image is defined by a functionu : Ω ⊂ R
2 → [0, 1], where

u(x, y) represents the light intensity of the point(x, y) (u = 1 being white andu = 0 being
black). The occlusion will be denoted byD while v

.
= u|Ω\D shall denote the known part ofu.

Before describing our two-step method, we briefly recall three of the most traditional in-
painting methods.

1.1 Tikhonov-Phillips Inpainting

The Tikhonov-Phillips regularization method of order 1 (T1) can be used to performed a
basic inpainting. With this method, the inpainted solutionis defined as

û
.
= argmin

u∈L2(Ω)

{‖T u− v‖2L2(Ω\D) + λ‖∇u‖2L2(Ω)}, (1)

whereT : L2(Ω) → L2(Ω \ D) is theD-occlusion operator,T u = u |Ω\D andλ > 0 is an
appropriately chosen regularization parameter. If the original image has edges or borders set
apart by an occlusion, then such an inpainting method fails to extend them inside the occluded
region (see Figure1(b)). This lack of edge preservation can then be improved by appropriately
modifying the penalizing term in (1), for instance by means of the introduction of introduce an
anisotropy matrix fieldA Calvetti et al.(2006), which attenuates penalization on on directions
of large gradients. In this case, the inpainted image is defined as

û
.
= argmin

u∈L2(Ω)

{‖T u− v‖2L2(Ω\D) + λ‖A∇u‖2L2(Ω)}. (2)

The construction ofA requieres prior information of the gradient inside the occlusion. Ways
of constructingA will be presented later. Figure1(c) depicts an order 1 Tikhonov-Phillips
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anisotropic inpainting for whichA was build upon ana-priori order 2 Tikhonov-Phillips in-
painting of the gradient field, as suggested inCalvetti et al.(2006). Although this method sig-
nificantly improves the performance os its isotropic counterpart, it becomes inappropriate as
occlussions widen (see Figure1(c)).

(a) (b) (c)

Figure 1: (a) Occluded image; (b) T1 inpainting; (c) Anistoropic T1 inpainting.

1.2 Total Variation inpainting

Total variationAcar and Vogel(1994), Rudin et al.(1992) inpainting is defined by:

û
.
= argmin

u∈L2(Ω)

{‖T u− v‖2L2(Ω\D) + λ‖|∇u|‖L1(Ω)}. (3)

The Euler-Lagrange equations show that the solution of (3) is also the steady-state solution
of the following diffusion PDE (seeLi et al. (2010))

∂u

∂t
= ∇ ·

[ ∇u
|∇u|

]

+
2

λ
(T u− v). (4)

(a) (b)

Figure 2: Occluded image (a); TV inpainting (b).

The property of being able to link similar objects on opposite sides of an occlusion is referred
to asobject connectivity. Although TV inpainting improves object connectivity it has two main
draw backs. One one side, it tends to produce piecewise constant solutions (see Figure2) and
on the other hand the results strongly depend on the width of the occlusion (see Figures2(a)
and2(b) ).
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(a) (b)

Figure 3: (a) Occluded image; (b) TV inpainting.

Although this puts into evidence that any inpainting process can entail a high level of subjectiv-
ity, a “good” inpainting method could be conceived as one that would most frequently emulate
what most humans would do. The rest of the article is stronglyaligned with this belief.

1.3 Curvature Driven Diffusion Inpainting

Roughly speaking, anisophoteof an imageu can be thought of as a level line ofu that
separates regions of different light intensities. It is highly desired for an inpainting method to
be able to connect isophotes inside the occlusions since this will result in the "reconnection"
of edges set apart by the occlusion. In fact, in Figure3(b) we see that the original isophotes
(the edges of the black bar) do not result connected as we (or at least most of us!) would hope.
Note also that the isophotes of the inpainted image have corners, meaning that their curvature
κ at those points is±∞, in contrast with the zero curvature in the isophotes of the “expected”
inpainted image (Figure2(b)). This observation led Chan and ShenChan and Shen(2002) to
include the curvature into the diffusion model (4). By lettingD̂ = 1

|∇u|
, equation (4) restricted

to the occlusion reads
∂u

∂t
= ∇ ·

[

D̂∇u
]

.

In Chan and Shen(2002) the diffusion coefficientD̂ was redefining aŝD = g(|κ|)
|∇u|

, whereg :

R
+
0 → R

+
0 is an increasing function such thatg(0) = 0 andg(∞) = ∞. In this way, diffusion

is strong where curvature is large, while it is weak where curvature is small. This modification
leads to the so called Curvature-Driven Diffusion (CDD) equation

∂u

∂t
= ∇ ·

[

g(|κ|)
|∇u| ∇u

]

. (5)

Since the curvature of the level lines is±∞ at the corners of the TV inpainted image in
Figure3(b), is is clear now that such an image cannot be the steady-state of equation (5). It
turns out that in this case the method strongly favors connectivity on the steady state, as it can
be seen in Figure4. Nonetheless, as mentioned before, being this method a byproduct of TV
regularization, it tends to produce piecewise constant restorations, and therefore it does not
produce completely satisfactory results over smooth regions (see Figure4).
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(a) (b)

Figure 4: (a) Occluded image; (b) CDD inpainting.

The CDD inpainting model (5) can also take into account the presence of noise outside the
occlusion, for instance, by using TV regularization outside the occluded region. The resulting
diffusion PDE takes then the form

∂u

∂t
= ∇ ·

[

g(|κ|)χD + χΩ\D

|∇u| ∇u
]

+
2

λ
(u− v)χΩ\D. (6)

Note that (6) reduces to equation (5) inside the occlusion, and to (4) outside of it.
The main objective of this article is to develop an inpainting model which simultaneously

complies with edge preservation, object connectivity and good inpainting performance over
smooth regions.

2 COMBINED, TWO STEP CDD + T1-TV INPAINTING

Regularization methods can be combined by using spatially-varying weighted averages of
two or more penalizersMazzieri et al.(2014) to extract the the good characteristic properties of
each one. We shall consider here the case of mixed T1 and TV regularization, taking advantage
of the fact that the first one tends to produce smooth restorations, while the latter is better suited
for edge preservation. In this case the inpainted image is then be defined as the minimizer of

J (u)
.
= ‖T u− v‖2L2(Ω\D) + λT1‖|

√
1− θ A∇u|‖2L2(Ω) + λTV ‖|θA∇u|‖L1(Ω), (7)

whereλT1 > 0 andλTV > 0 are appropriately chosen regularization parameters,A = A(x, y)
is an anisotropy matrix field andθ = θ(x, y) ∈ [0, 1] is a spatially-varying function weighting
both penalizers at each point. Note thatθ = 0 leads to pure anisotropic T1 regularization, while
θ = 1 leads to pure anisotropic TV regularization.

Thereare several ways of constructing the matrix fieldA : Ω → R
2×2 used for introducing

anisotropy. One way can be found inCalvetti et al.(2006), where it is built by using the gradient
field of ana-priori estimationup(x, y) of u(x, y), as follows. First a continuous and decreasing
functionh : R+

0 → (0, 1], satisfyingh(0) = 1 andlimt→∞ h(t) = 0 is defined, to determine the
eigenvalues ofA(x, y), which is constructed as follows:

A(x, y) = I − (1− h(|∇up(x, y)|))
[ ∇up(x, y)
|∇up(x, y)|

] [ ∇up(x, y)
|∇up(x, y)|

]T

. (8)

As a consequence,A has the following important properties:
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• A(x, y) is a symmetric positive definite matrix∀(x, y) ∈ Ω.

• If ∇up(x, y) = 0, A(x, y) = I (the identity matrix).

• If ∇up(x, y) 6= 0, A(x, y) has eigenvaluesσj(x, y) and eigenvectorsvj(x, y), j = 1, 2,
such that

v1(x, y) ‖ ∇up(x, y), σ1(x, y) = h(|∇up(x, y)|),
v2(x, y) ⊥ ∇up(x, y), σ2(x, y) = 1.

With the required properties onh, the eigenvaluesσ1(x, y) are small at points(x, y) where
the norm of the estimated gradient∇up(x, y) is large, whileσ2(x, y) remains constant. This
is desirable since it will later translate into a decay on penalization in the expected gradient
direction while keeping it unchanged in its normal direction. The functionh can be chosen,
for instance, ash(t) = 1/(1 + (t/τ)k), whereτ, k > 0 are control parameters that could be
roughly thought of as a lower threshold for the values of|∇up| starting from which we infer
the image has an edge and the width of the transition region, respectively. To overcome the
disadvantage of lack of edge preservation presented for most methods, we shall use CDD to
construct the gradient field estimation∇up. Hence we shall build both the weighting function
θ and the matrix fieldA, based upon the gradients of ana-priori CDD inpainting of the image,
which as previously noted, also favors object connectivity. In particular we takeθ(x, y) =
w(|∇up(x, y)|), wherew is an appropriately chosen increasing function, with0 ≤ w(t) ≤
1 ∀t ∈ R

+
0 . It is important to remark that due to the way in which the pilot image is built, if

used directly as obtained by the CDD-inpainting process, the staircasing effect onup will have
a negative impact on the effect of the weighting and anisotropy functions, which in turn might
lead to sharp artificial edges appearing in the final inpainted image. To overcome this, the pilot
image is smoothed out with a small-variance Gaussian kernel.

Our new full inpainting process can then be stated as follows:

Step 1: CDD inpainting. Perform a CDD inpainting to obtain a first pilot imagẽup as the
steady state of the equation

∂u

∂t
= ∇ ·

[

g(|κ|)χD + χΩ\D

|∇u| ∇u
]

+
2

λ
(u− v)χΩ\D.

Step 2: Pilot image smoothing.Smooth out̃up by means of a low-pass filter by computing

up
.
= G ∗ ũp,

whereG is, for instance, a low-variance Gaussian kernel.

Step 3: Construction of the anisotropy matrix field. Useup to constructA as

A = I −
(

1− 1

1 + (|∇up|/τ)k
)[ ∇up

|∇up|

] [ ∇up
|∇up|

]T

.

Step 4: Construction of the weighting function. Useup to buildθ as

θ(x, y) =
|∇up(x, y)|

max(w,z)∈Ω |∇up(w, z)|
.
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Step 5: Final inpainting. UseA andθ as above to build the mixed weighted T1-TV anisotropic
functional and compute the restored image as

û = argmin
u∈L2(Ω)

{‖Tu− v‖2L2 + λT1‖|
√
1− θ A∇u|‖2L2 + λTV ‖|θA∇u|‖L1}. (9)

Having stated our new inpainting method, we shall proceed tobriefly describe an appropriate
numerical implementation.

3 NUMERICAL IMPLEMENTATION

We start the implementation of our inpainting method by performing a discretization over
the image domain. We assume that the grayscale image domain isΩ = [0, 1] × [0, 1] and we
discretize it to obtain anM-by-M pixel grid and anM-by-M matrixU , consisting its entries of
the values of the functionu at the centerpoints of the pixels. Next, we stack the columnsof the
matrixU to get a vectoru ∈ R

M2

so thatuM(l−1)+m = Um,l ∀l, m = 1, 2, . . . ,M . For better
understanding we will often identifyuM(l−1)+m with u(x, y).

3.1 The CDD method

Let us defineξ = (ξ1, ξ2)
T .
= g(|κ|)

|∇u|
∇u, whose divergence we need to approximate. We do it

by computing

∇ · ξ(x, y) ≈ ξ1(x+ h/2, y)− ξ1(x− h/2, y)

h
+
ξ2(x, y + h/2)− ξ2(x, y − h/2)

h
, (10)

whereh = 1/M is the pixel-width.
Now, in order to compute (10) at the midpoints between adjacent pixels, we need to estimate

both the gradient ofu and the curvatureκ at those points. Firstly, for the points of the form
∇u(x+ h/2, y), we compute the components of∇u as

ux(x+
h

2
, y) ≈ u(x+ h, y)− u(x, y)

h
,

uy(x+
h

2
, y) ≈

1
2
(u(x+ h, y + h) + u(x, y + h))− 1

2
(u(x+ h, y − h) + u(x, y − h))

2h
.

At the points of the form(x, y + h/2) the construction is analogous.
As for the isophote curvatureκ, we compute it explicitly as a function of the gradient ofu:

κ = ∇ ·
[ ∇u
|∇u|

]

=
∂

∂x

ux
|∇u| +

∂

∂y

uy
|∇u| .

At points of the form(x+ h/2, y), we approximate it with

κ(x+ h/2, y) =
1

h

[

ux(x+ h, y)

|∇u(x+ h, y)| −
ux(x, y)

|∇u(x, y)|

]

(11)

+
1

2h

[

uy(x+ h/2, y + h)

|∇u(x+ h/2, y + h)| −
uy(x+ h/2, y − h)

|∇u(x+ h/2, y − h)|

]

.

The computation ofκ at points of the form(x, y + h/2) is analogous. To avoid division
by zero in the last equation (when∇u = 0), we replace|s| by

√
s2 + ǫ2, with ǫ > 0 chosen

sufficiently small.
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We are then ready to state the algorithm for the CDD inpainting process. It is timely to point
out here that due to numerical stability issues, instead of using Euler’s method to solve the IVP
(as stated inChan and Shen(2002)), we use an Adams-Moulton Adams-Bashford predictor-
corrector method, which showed better performance. Our modified iterative algorithm reads as
follows:

Step 1: Initializing. Define an arbitrary initial estimationu(0), coinciding with the data outside
the occlusion, and letn = 0.

Step 2: Updating. Form : 1 . . .M , define

f(κ(n)m , u(n)m )
.
= ∇ ·

[

g(|κ(n)m |)χD + χΩ\D

|∇u(n)m |
∇u(n)m

]

+
2

λ
(u(n)m − vm)χΩ\D, (12)

and computeu(n+1)
m as follows:

ν(n+1)
m = u(n)m +

∆t

12

[

23f(κ(n)m , u(n)m )− 16f(κ(n−1)
m , u(n−1)

m ) + 5f(κ(n−2)
m , u(n−2)

m )
]

u(n+1)
m = u(n)m +

∆t

12

[

5f(κ(n+1)
m , ν(n+1)

m ) + 8f(κ(n)m , u(n)m )− f(κ(n−1)
m , u(n−1)

m )
]

where for eachm, κ(n) and∇u(n) are computed fromu(n) as previously described. A
second order Runge-Kutta method is used for the first two steps.

Step 3: Stopping. If an appropriate stopping criterion (defined upon the decayof the sum of
the curvature at each pixel) is reached, the process stops and the inpainted image is defined
asu(n+1). Otherwise,n is increased (n = n + 1) and the algorithm continues from Step 2.

Next, we show how the mixed weighted anisotropic T1-TV regularization can be numerically
implemented.

3.2 Mixed anisotropic T1-TV implementation

To find the minimizer of the T1-TV inpainting functional given in (7), we consider the dis-
cretized version

J(u) =
1

M2
‖Tu− v‖2 + λT1

M2

∑

m∈M

(1− θm)

∥

∥

∥

∥

Am

(

M(um − um+1)
M(um − um−M)

)
∥

∥

∥

∥

2

2

+
λTV
M2

∑

m∈M

θm

∥

∥

∥

∥

Am

(

M(um − um+1)
M(um − um−M)

)
∥

∥

∥

∥

2

, (13)

whereT ∈ R
M2×M2

is the diagonal matrix associated to the occlusion operatorT , θm andAm
are the evaluations of the weighting function and of the anisotropy matrix field at the centerpoint
of themth pixel, andM denotes the set of indices corresponding to the interior pixels, on which
the gradient is estimated, that isM

.
= {m ∈ N : M < m < M(M + 1), Mk 6= m 6=

Mk + 1 ∀k = 1 . . .M}.
Although there are several efficient ways to estimate the minimizer of (13), we have chosen

a half-quadratic approach, which is described below, for ithas proven to cope very well with
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the great dimensions that this problem can present (detailscan be found inIbarrola and Spies
(2014)).

First, we approximateJ by a differentiable functional and make use of a duality relation to
iteratively approach its minimizer. We begin by replacing the last term in (13) by a differentiable
approximation in order to find the minimizer by considering the first order necessary condition.
We do so by replacing, forw ∈ R

2, the value of‖w‖2 by φ(‖w‖2), whereφ : R → R is
given byφ(t)

.
=

√

t2 + η2 − η, for η sufficiently small. With this choice ofφ, it can be shown
(Rockafellar(1970)) that there exists a functionψ satisfying the following duality relation

φ(t) = inf
s>0

(st2 + ψ(s)), (14)

ψ(s) = sup
t∈R

(φ(t)− st2),

and therefore
∥

∥

∥

∥

Am

(

M(um − um+1)
M(um − um−M)

)
∥

∥

∥

∥

2

≈ inf
sm∈R+

{

sm
(

t2m,1 + t2m,2
)

+ ψ(sm)
}

, (15)

where

tm,1 =
am1,1(um − um−M) + am1,2(um − um+1)

1/M
, (16)

and

tm,2 =
am2,1(um − um−M) + am2,2(um − um+1)

1/M
. (17)

Define now theM2-by-M2 diagonal matricesAi,j, for i, j = 1, 2, such thatAi,jm,m = ami,j
if m ∈ M andAi,jm,m = 0 otherwise. In a similar fashion, letΘ

.
= diag(θm)M2×M2 andS

.
=

diag(sm)M2×M2. Let Lx andLy be theM2-by-M2 first order finite difference approximating
matrices for the components of the gradient, and letR1 andR2 be theM2-by-M2 matrices
defined asR1

.
= A1,1Lx + A1,2Ly andR2

.
= A2,1Lx + A2,2Ly. Finally, letI be theM2-by-M2

identity matrix, and define the functional

Kθ,φ(u, s)
.
=

1

M2
‖Tu− v‖2 + λT1

M2
uT(RT

1(I −Θ)R1 +RT
2(I −Θ)R2)u+

+
λTV
M2

uT(RT
1ΘSR1 +RT

2ΘSR2)u+
λTV
M2

∑

θmψ(sm). (18)

It can be shown (Ibarrola and Spies(2014)) that

inf
s∈RM2

Kθ,φ(u, s) = Jφ(u) ≈ J(u), (19)

whereJφ is the functional obtained fromJ by using approximation (15). Hence, our problem
turns out to be equivalent to minimizingK with respect to bothu ands simultaneously. Note
that the first order necessary condition onK with respect tou can be written as

(

T
T
T + λT1(R

T
1 (I −Θ)R1 +R

T
2 (I −Θ)R2) + λTVR

T
1ΘSR1 + λTVR

T
2ΘSR2

)

u = T
T
v. (20)

In order to minimizeKθ,φ(u, s) with respect tos, we define

bm
.
= argmin

sm∈R+

{

sm
(

t2m,1 + t2m,2
)

+ ψ(sm)
}

,
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wheretm,1 andtm,2 are defined as in (16) and (17), respectively, and resort to (14) to deduce
thatbm must satisfy

bm =
φ′
(√

t2m,1 + t2m,2

)

2
√

t2m,1 + t2m,2

. (21)

Although details on de derivation of equation (21) can be found inIdier (2008), we give here
a brief sketch of the proof. Letf : R2 → R be defined asf(s, t)

.
= st2 + ψ(s). Then, if

b
.
= argmins∈R+ f(s, t), the first order necessary condition overf with respect tos yields

0 = t2 + ∂ψ(b)
∂b

. Notice thatφ(t) = f(b, t), and hence

∂φ(t)

∂t
=
∂f(b, t)

∂t
= 2bt +

∂b

∂t
t2 +

∂ψ(b)

∂b

∂b

∂t
= 2bt+

∂b

∂t

(

t2 +
∂ψ(b)

∂b

)

= 2bt.

Finally, we state our cyclic iterative algorithm for the T1-TV image inpainting as follows:

Step 1: Initializing. Setj = 0, and initializeuj = u0 (e.g. u0|Ω\D = v andu0|D = 0) and
bj = b0 (e.g.b0 = 0).

Step 2: Counting. Makej = j + 1.

Step 3: Updatingb. Updatebj using equation (21):

bjm =

φ′

(

√

(tjm,1)
2 + (tjm,2)

2

)

2
√

(tjm,1)
2 + (tjm,2)

, m ∈ M,

where

tjm,1 =
am1,1(u

j
m − ujm−M) + am1,2(u

j
m − ujm+1)

1/M
,

and

tjm,2 =
am2,1(u

j
m − ujm−M) + am2,2(u

j
m − ujm+1)

1/M
.

Step 4: Updatingu. Updateuj by solving the linear system
(

T
T
T + λT1(R

T
1 (I −Θ)R1 +R

T
2 (I −Θ)R2) + λTV (R

T
1ΘB

j
R1 +R

T
2ΘB

j
R2)

)

u
j = T

T
v

whereBj is theM2-by-M2 diagonal matrix with elementsbjm form ∈ M and0 otherwise. It
is worth noticing that this linear system is well posed (Mazzieri et al.(2014)) since the matri-
ces appearing as a consequence of the penalization terms have strictly positive eigenvalues,
and hence solving it entails no difficulties.

Step 5 - Convergence:if a previously defined convergence criterion is satisfied, the algorithm
ends and our inpainted imageû is defined asuj (in our case, this criterion was defined upon
the norm‖uj − uj−1‖). Otherwise, the algorithm repeats from step 2.

In the next section we present some examples of the performance of the previously described
inpainting method.
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4 INPAINTING APPLICATION RESULTS

We begin by comparing the performance of our new approach with the isotropic order-one
Tikhonov-Phillips and Curvature-Driven Diffusion methods on the previously used test image,
occluded over both smooth and piecewise constant regions. A1% Gaussian white noise was
added to the grayscale image. Figure5 depicts the occluded noisy image together with the
results obtained with three different inpainting methods.As it can be clearly seen, the mixed
anisotropic T1-TV inpainting outperforms the isotropic T1method in terms of edge preser-
vation, while it also works better than CDD inpainting on thesmooth region of the image.
Although this is a somewhat subjective analysis, these conclusions are supported by the corre-
spondingpeak signal-to-noise ratios(PSNR) shown in Table1. ThePSNRis defined as follows:

(a) (b)

(c) (d)

Figure 5: (a) Occluded image; (b) Isotropic T1 inpainting; (c) CDD inpainting; (d) Mixed anisotropic T1-TV
inpainting.

PSNR(û) = 10 log10

(

1

MSE(û, u0)

)

,

whereû, u0 ∈ R
M2

are the vectors associated to the inpainted image and to the original image
(unknown in real problems), respectively, and

MSE(û, u0) =
1

M2
‖û− u0‖22 =

1

M2

M2

∑

m=1

(ûm − u0,m)
2.
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Isotropic T1 CDD
Anisotropic

T1-TV
PSNR 20.140 35.497 36.329

Table 1:PSNRvalues for the test image (Figure5).

(a) (b)

(c) (d)

Figure 6: (a) Occluded noisy image; (b) Isotropic T1 inpainting; (c) CDD inpainting; (d) Anisotropic T1-TV
inpainting.

Up next, we show the performance of our new method on a more realistic example. A300×300
pixel grayscale image was occluded and contaminated with%2 Gaussian white noise. Figure6
shows the resulting occluded noisy image, along with the isotropic T1, CDD and anisotropic T1-
TV inpainted images. Once again we observe an improvement onthe quality of the inpainting
with the two-step method, which is reflected on thePSNRvalues shown on Table2.
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Isotropic T1 CDD
Anisotropic

T1-TV
PSNR 29.127 29.952 30.868

Table 2:PSNRvalues for grayscale image (Figure6).

(a) (b)

(c) (d)

Figure 7: (a) Occluded noisy image; (b) Isotropic T1 inpainting; (c) CDD inpainting; (d) Anisotropic T1-TV
inpainting.

Next we show an example of the performance of our method on a color image. In this case,
the inpainting process was performed separately over the red, green and blue layers of a300×
300 pixel image. Here again, a %2 Gaussian white noise was added to the occluded image.
Figure7 shows the occluded noisy image, along with the CDD, isotropic T1 and the anisotropic
T1-TV inpainted images. A close look at Figure7(c) shows that CDD inpainting tends to
produce artificial edges, which are not produced by the combined T1-TV method. Note also
that although no artificial borders are generated with the latter method, significantly better edge
preservation properties are achieved with respect to the pure T1 method. Table3 shows the
obtainedPSNRvalues for the three inpainting methods.
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Isotropic T1 CDD
Anisotropic

T1-TV
PSNR 20.568 21.360 22.112

Table 3:PSNRvalues for color image (Figure7).

5 CONCLUSIONS

In this article we developed a two-step method for image inpainting. The first step consists
of implementing a Curvature-Driven Diffusion process, which serves to obtain a good approxi-
mation of the gradient of the image inside the occlusion. Such an approximation is then used to
construct an appropriate weighting function and an anisotropy-inducing matrix field. The sec-
ond step consists of using these functions to build a mixed Tikhonov-Total Variation spatially
varying anisotropic functional, whose global minimizer defines the final inpainting.

The use of a CDD inpainting process in the construction of theweighting function and the
anisotropy matrix field results in the fact that the well known object-connectivity property of
this method is incorporated into the mixed T1-TV model. This, along with the spatial adaptivity
and anisotropy features of the mixed T1-TV method results inan inpainting model having both
good object-connectivity and edge preservation properties as well as high-quality inpainting
performance over smooth regions.

The performance of the method was shown through several examples, in which it produced
better results than the CDD and T1 models. Furthermore, a thorough analysis of the color
examples shows that while the CDD inpainting seems to sometimes produce little artifacts near
edges inside the occlusions, such artifacts do not appear when using our two-step method.

Finally, it is appropriate to mention that there is room for further improvements. For in-
stance, other means of constructing the weighting functionθ and the matrix fieldA can be
explored. Also, if there is adequate availablea-priori information about the “expected” image,
that information could be embebed into the model through thefunctionsθ andA.
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