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Abstract. Technology development is often limited by knowledge of materials engineering and man-

ufacturing processes. This scenario spans across scales and disciplines, from aerospace engineering

to MicroElectroMechanical Systems (MEMS) and NanoElectroMechanical Systems (NEMS). The me-

chanical response of materials is dictated by atomic/nanometric scale processes that can be explored by

molecular dynamics (MD) simulations. In this work we employ atomistic simulations to prove inden-

tation as a prototypical deformation process showing the advantage of High Performance Computing

(HPC) implementations for speeding up research. Selecting the right HPC hardware for executing sim-

ulations is a process that usually involves testing different hardware architectures and software config-

urations. Currently, there are several alternatives, using HPC cluster facilities shared between several

researchers, as provided by Universities or Government Institutions, owning a small cluster, acquiring a

local workstation with a high-end microprocessor, and using accelerators such as Graphics Processing

Units (GPU), Field Programmable Gate Arrays (FPGA), or Intel Many Integrated Cores (MIC). Given

this broad set of alternatives, we run several benchmarks using various University HPC clusters, a former

TOP500 cluster in a foreign computing center, two high-end workstations and several accelerators. A

number of different metrics are proposed to compare the performance and aid in the selection of the best

hardware architecture according to the needs and budget of researchers. Amongst several results, we find

that the Titan X Pascal GPU has a ∼3 x speedup against 64 AMD Opteron CPU cores.
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1 INTRODUCTION

Molecular dynamics is a method that allows for the simulation of N-body problems, such

as the physical movements of atoms and molecules, by numerical integration of the equations

of motion of a set of particles in the material. The motion of the particles (atoms) is normally

assumed to be classical and governed by Newton’s laws, where each atom is allowed to interact

with a certain number of neighboring atoms by means of an interatomic potential Allen and

Tildesley (1989). The technique enabled many important contributions to the study of con-

densed matter and materials science Bringa et al. (2005, 2006).

High Performance Computing (HPC) allows to solve computational complex problems that

without the use of parallel algorithms or clusters of computers would be impossible to solve

due to time constraints. Multiple solutions exists to implement HPC software and hardware:

specially developed supercomputers like the ones present in the Top 500 Supercomputers list

(TOP500.org (2017)), small Beowulf-type clusters and, in the last ∼10 years, the use of Graph-

ics Processing Units (GPUs) as accelerators. Generally, to access a supercomputer with thou-

sands of CPU cores is restricted to researchers that belong to the institution that owns the super-

computer or have a research project in collaboration with local researchers of that institution.

An attractive alternative is to install a small cluster of computers or use GPU as accelerators

in workstations (or a combination of both). GPUs have been successfully used in multiple

research works: in Molecular Dynamics Kohnke et al. (2017); Brown et al. (2011); Anderson

et al. (2008), Settlement Dynamics Millán et al. (2015), N-body simulations Huang et al. (2016),

statical/machine learning Gruber and West (2016); Cybenko (2017).

By taking one of the classical problems of contact mechanics, that is the spherical inden-

tation of a metal, as a case study for a molecular dynamics simulation, this work presents a

performance comparison between several HPC clusters and GPUs. The purpose of this work

is to demonstrate how materials science simulations can be significantly accelerated and how

this acceleration can be achieved even with desktop computers, provided the right hardware is

chosen. Section 2 presents a detailed description of the indentation problem, the simulation

model (Sec. 2.1) and its results (Sec. 2.2) from a materials science point of view. Section 3

provides the computational benchmarks performed with the MD simulation. The description of

the metrics used for the benchmarks is described in section 3.1. Section 3.2 provides a detailed

description of the software used and the hardware tested and section 3.3 summarize the results

and discussion of the performance tests. The main conclusions are outlined in Section 4.

2 MOLECULAR DYNAMICS SIMULATION OF INDENTATION

Indentation is an important experimental technique, both for research and technology. It is

not only used to gather information about the elastic modulus and hardness of a material, but

also provides insights into cracking mechanisms, fracture toughness, strain-hardening, phase

transformations, creep, and the mechanical response of superhard thin films Fischer-Cripps

(2004); Armstrong et al. (2013). Since the seminal contribution by Kelchner et al. (1998),

molecular dynamics (MD) simulations have been extensively applied to study plasticity mech-

anisms during indentation processes, and therefore it is the simulation method chosen in this

work.

2.1 Model

Molecular dynamics simulations were carried out with the Large-scale Atomic/Molecular

Massively Parallel Simulator (LAMMPS) Plimpton (1995). The material chosen for this study
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Figure 1: Simulation setup.

is tantalum, modeled by means of an interatomic potential of the extended Finnis-Sinclair type

Dai et al. (2006).

The simulation setup is shown in Fig.2a. The indenter was modeled as rigid hemispherical

indenter interacting with the atoms in the target with a harmonic potential Kelchner et al. (1998),

V i = K(R− ri)
2, with R the indenter radius and ri the position of atom i, and with K = 1000

eV/nm2 being the specified force constant. Simulations were conducted in a displacement-

controlled fashion by applying a constant penetration rate of 20 m/s, corresponding to ∼ 1/170

C0, where C0 is the directionally averaged sound velocity for Ta. Five different tip radius were

tested, namely 3.2, 4.0, 5.2, 6.4, and 8.0 nm. The simulation box was varied according to in-

denter size: 18 × 18 × 16 nm3 (∼0.3 million atoms), 23 × 23 × 20 nm3 (∼0.6 million atoms),

30 × 30 × 25 nm3 (∼1.3 million atoms), 36 × 36 × 32 nm3 (∼2.4 million atoms), and 46 ×
46 × 40 nm3 (∼5 million atoms), respectively. (Note: The aforementioned simulations will be

referred with numbers 1 through 5 in the computational benchmarks section (Sec. 3), simula-

tion 1 being the biggest (8.0 nm radius) and simulation 5 being the smallest (3.2 nm radius)).

Periodic boundary conditions were applied in the directions perpendicular to the indenting one,

and the two bottom most layers of the sample were fixed to prevent movement of the substrate.

To avoid thermally activated mechanisms, the simulations were performed at 0 K by applying

a Langevin bath to the sides and bottom of the simulation domain. This boundary condition

also serves as a damping boundary to prevent stress wave reflections. The entire sample was

energetically minimized prior to nanoindentation. The study was restricted to the indentation of

single crystals in [100] orientation.

Defective structures were filtered by Common Neighbor Analysis (CNA) Tsuzuki et al.

(2007) and by means of the Dislocation Extraction Algorithm Stukowski and Albe (2010), and

visualized using OVITO Stukowski (2010).
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2.2 Results

Load-penetration curves for the five different tips (3.2-8.0 nm) are presented in Fig.2a. The

curves are characterized by an elastic stage and, once a critical penetration is achieved, a sudden

load drop is seen, corresponding to the onset of plasticity. The plastic stage of the curve then

continues as that of a typical indentation experiment. The point at which the onset of plasticity

occurs and the slope of the elastic-plastic stage increase with increasing radius, as revealed in

fig.2a. This is something expected, and can be explained by Hertz study of the elastic interaction

between a sphere of radius R and an elastic isotropic solid Hertz (1882). The force F imparted

by the sphere perpendicular to the surface is proportional to the radius of the indenter and related

to the displacement h into the surface through the following relationship:

F =
4

3
E∗ R1/2 h3/2. (1)

E∗ is often called the "combined indentation modulus" of the system, and is given by:

1

E∗
=

1− ν2

E
+

1− ν ′2

E ′
, (2)

where E, ν, E ′ and ν ′ are the elastic modulus and Poisson’s ratio of the surface and indenter,

respectively. The indenter used in our simulations Kelchner et al. (1998) is assumed to be rigid

and, hence, the second term in Eq.2 is dropped. Also, the indenter used here is frictionless,

analogous to a Hertzian indenter and, therefore, there are no forces in the direction tangential to

the tip. Based on the loading penetration curves, the elastic modulus is estimated in the range

of 120 - 130 GPa, in agreement with the value derived from eq. 2 for the potential used Ruestes

et al. (2014).

The hardness of the material is defined as the contact pressure that, once critical indentation

depth has been exceed and a possible load drop has occured, stays rather constant with increas-

ing indentation. By relating the evolution of the load to the contact area, the attained contact

pressures were determined, rendering a hardness of the order of 12 - 14 GPa, which in spite

of being higher than experimental values Biener et al. (2007); Rajulapatit et al. (2010), it is in

fact consistent with typical high values for MD simulations of perfect crystals Ziegenhain et al.

(2010).

For all the radii studied here (3.2-8.0 nm), the onset of plasticity occurs by the homogeneous

nucleation of dislocations, namely shear loops. Past the initial defect-nucleation stage, plas-

ticity evolves by means of dislocation activity. Dislocation loops evolve in {110}, {112} and

{123} planes with 〈111〉 directions, consistent with the three slip systems for bcc metals Mey-

ers and Chawla (2009). The screw segments of the dislocation loops cross-slip, leading to the

generation of prismatic loops, which further move along 〈111〉 directions. The whole process

of prismatic loop formation is similar to the lasso mechanism, described in detail by Remington

et al. (2014). The resulting structures at the end of the simulation for the 8.0 nm radius indenter

are presented in Fig.2b, in which only atoms in defective positions are seen.

By means of the dislocation extraction algorithm Stukowski and Albe (2010), the atoms in

defective positions were analyzed and dislocations were extracted from the structure, see fig.

2c also corresponding to the 8.0 nm radius indenter at the end of the simulation. Lines in green

color correspond to dislocations with Burgers vector 1/2〈111〉, while those in violet correspond

to dislocations with Burgers vector in 〈001〉 direction that occur as a reaction of the former.

Their presence in bcc metals is rare due to the high energy needed for the reaction to occur. Red

arrows indicate the direction of the Burgers vector.
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Figure 2: (a) Loading penetration curves. (b) Atomistic view of defects generated under the

surface. (c) View of dislocations as identified by the dislocation extraction algorithm. (d)

Typical pile-up pattern.

During the analysis of indentation experiments, pile-ups at the indenter site are often ex-

plored by Atomic Force Microscopy (AFM) Biener et al. (2007). By means of a height contrast,

the pile-up pattern was extracted from our simulations for the 8 nm radius tip, shown in Fig.2d.

Biener et al. (2007) observed a 4-fold symmetry and anisotropy of the pile-up pattern when

studying {100} Ta under a spherical indenter. This 4-fold symmetry is expected for indenta-

tion of a {100} surface in a cubic crystal, because of the 4-fold symmetry of 〈111〉 slip in this

case. The height of the pile-ups is determined by net material transport towards the surface by

loop emission and glide on 〈111〉 directions. Crystal plasticity models implemented in Finite

Element Method (FEM) calculations can predict pile-ups with the same geometry, but perfectly

symmetric, i.e. equivalent in all planes Casals et al. (2007); Casals and Forest (2009). Here,

local thermal and stress fluctuations lead to slightly different hillocks on the surface.

In conclusion, in spite of the fact that the simulations presented here have length scales much

smaller than that of FEM simulations and experiments, the simulation strategy chosen allows

for an adequate representation of the behavior of tantalum under spherical nanometer-sized in-

dentation and opens the possibility to provide further insights into the deformation mechanisms

of metals under similar loading conditions.
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3 COMPUTATIONAL BENCHMARKS

One of the serious challenges in the simulation of nanoindentation is the limited time scales

accessible to simulations because of limited computational resources. The restrictions in com-

putational resources not only affect the time scale, but also the system size that can be explored

with the technique. The problem of the dimensional scale can be treated by means of do-

main decomposition and parallelization, using multiple cores simultaneously, each one solving

a subdomain of the original system. The issue of the time scale is more problematic, but com-

putationally speaking it is linearly related to the processor speed. It is clear that parallel high

performance computing is a mandatory resource to adequately study these kinds of problems

Szlufarska et al. (2008), however, the election of the proper HPC architecture is not unique.

In this section, simulation benchmarks are performed and discussed. First, the metrics used

for the benchmarks are described. Then a description is given for the hardware infrastructure

and software specifications where the simulations were executed. Finally, the discussion of the

computational benchmarks are presented.

3.1 BENCHMARKS METRICS

The most common metric to measure performance is time to complete a certain task. An-

other common metric is speedup, which is defined by the time to complete a task in a specific

hardware or software configuration divided by the time to complete the same task with other

hardware or software configuration. The speedup is commonly used to compare the perfor-

mance between CPU and GPU execution, it gives a clear understanding of how fast or slow

is certain hardware over another. The performance of each hardware architecture can also be

inferred by normalizing the wallclock time with the transistor count present in each micropro-

cessor or GPU.

In HPC, two types of benchmarks are usually performed to compare performance: strong

scaling and weak scaling. In strong scaling, the size or amount of data to process remains the

same, and the amount of parallel processes are increased. With these conditions, wallclock

time should decrease, in an ideal or perfect situation, the decrease in time should be linear.

The second benchmark is a weak scaling, here, the amount of data or size to process increases

accordingly to the increase in processing units. Each CPU core receives the same amount of

data to process. In a perfect and ideal weak scaling, the wallclock time should maintain equal

as the amount of parallel processes increases. The type of simulation that is presented in this

work do not easily allows to perform a weak scaling, for this reason, only a strong scaling is

performed. The strong and weak scaling allows obtaining a parallel efficiency that enables to

know how a certain hardware or software configuration performs.

3.2 HARDWARE INFRASTRUCTURE AND SOFTWARE SPECIFICATIONS

The hardware and software specifications are described in this section. The simulations were

executed in two workstations and three HPC clusters. The two workstations and the Opteron

cluster (named “Toko”) belongs to Universidad Nacional de Cuyo, Argentina. The Mendieta

cluster resides in Universidad Nacional de Córdoba, Argentina. And finally, access to the “Cab”

cluster was granted by the Lawrence Livermore National Laboratory, United States of America.

Table 1 shows the basic hardware description of each workstation and clusters. In table 2 it

can be seen the software specifications used to compile LAMMPS Plimpton (1995) in each

hardware infrastructure.

All simulations were executed using the same stable LAMMPS version, 17 November 2016,
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compiled with -O3 optimizations using the GCC compiler and OpenMPI. The GPU simulations

were executed using the LAMMPS “GPU” package Brown et al. (2011) compiled with double

floating point precision (“-D_DOUBLE_DOUBLE” compile variable). It has been seen that in

the GPUs it is possible to execute more than one parallel process of the same simulation and

obtain better performance than executing only one process Millán et al. (2012); Brown et al.

(2011). For this reason, the simulations in the GPUs were also executed in parallel processes

using only one GPU (see section 3.3).

Table 1: Hardware infrastructure.

Name CPU RAM GPUs

FX-8350 AMD FX-8350 32 GB GeForce GTX Titan X Maxwell (GM200) 12 GB

8 cores at 4 GHz Tesla C2050 Fermi (GF100) 3 GB

Ryzen AMD Ryzen 1700X 16 GB GeForce Titan X Pascal (GP102) 12 GB

8 cores at 3.4 GHz

with 16 threads

Opteron Four AMD Opteron 6373 128 GB None

16 cores each, at 2.3 GHz

Mendieta Two Intel Xeon E5-2680 v2 64 GB Tesla K20x Kepler (GK110) 6 GB

10 cores each (20 cores)

at 2.8 GHz (HT disabled),

14 nodes (used only 4)

Cab Two Intel Xeon 8-core E5-2670 32 GB None

8 cores each (16 cores), per node

at 2.6 GHz (HT disabled), 41.5 TB total

1296 nodes

Table 2: Software used to execute the simulations.

Name Linux Kernel OpenMPI GCC CUDA NVIDIA

distribution version Driver

FX-8350 Slackware 14.1 64bit 3.10.17 1.10.0 4.8.2 7.0 349.16

Ryzen Ubuntu 16.04 64bit 4.10.1 1.10.2 5.4 8.0 375.39

Opteron Slackware 14.1 64bit 3.10.17 1.10.0 4.8.2 NA NA

Mendieta CentOS 6.5 64bit 2.6.32-504 2.0.2 4.8.4 8.0 340.29

CAB TOSS (RedHat) 64bit 2.6.32-696 1.4.3 4.4.7 NA NA

3.3 BENCHMARKS RESULTS

In this sections several benchmarks are shown for the simulations previously described. The

performance of the GPUs accelerators and the different CPU clusters can be seen in Figure 3.

This figure shows the simulation number 3 executed with different number of parallel processes

(commonly called a strong scaling). The strong scaling parallel efficiency is shown in Figure 4.

Figure 5 shows the performance of CPU clusters and GPU accelerators for the five simulations

running in eight parallel processes. In Figure 6 the results for the simulation 3 are shown

normalized with the transistor count of each processing unit (CPU and GPU). Figure 7 shows

the relative performance of all the GPUs compared with some CPU configurations and the
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Figure 3: Results for simulation number 3 executed in the GPUs using up to 8 parallel processes

in each GPU (left), and the CPUs clusters and workstations in up to 1024 parallel processes

(right). Higher is better.

newly available AMD Ryzen CPU (Zen microarchitecture) is compared against CPU clusters

and GPUs.

The performance of the GPUs for one of the simulations (simulation number 3) can be seen

in figure 3 (left). This simulation was executed in one process in each GPU and in parallel

using also one GPU (see Millán et al. (2012); Brown et al. (2011) for more information). Four

generations of NVIDIA GPUs were tested: Fermi (c2050), Kepler (k20x), Maxwell (Titan X)

and Pascal (Titan X Pascal). The Pascal GPU results in the best performance and the k20x

follows. The k20x is one generation older than the Titan X, but the latter is less prepared to

execute double precision computations than the k20x that was specially designed to GPGPU.

The k20x has more double precision units than the Titan X which is more prepared for gaming

rather than HPC (see technical details in NVIDIA (2012) and NVIDIA (2016)). From the

Fermi architecture and onward, switching between kernels of different applications running in

the same GPU works 20 times faster than in previous generations Glaskowsky (2009), this is

one of the reasons why it is advisable (if the application allows it) to execute multiple processes

in the same GPU.

The CPU clusters and workstations performance for the same simulation (number 3) can be

seen in figure 3 (right) and the parallel efficiency in figure 4. The Cab and Mendieta clusters

shows a good scaling up to 1024 cores (Cab) and 80 cores (Mendieta). The Ryzen workstation

has a good performance compared with Mendieta, FX8350 and Opteron up to 8 cores, when

executing in 16 threads the efficiency decays but still performs better than 24 FX8350 CPU

cores and 64 Opteron cores. This drastic decrease in performance and efficiency (see figure 4)

in the Ryzen CPU using 16 threads is due to the fact that this CPU only has 8 real CPU cores,

each of them capable of executing two threads with an approach called SMT (simultaneous

multithreading) similar to Intel HyperThreading. The Opteron cluster shows a good scaling up

to 16 cores, then, when using 32 and 64 cores the efficiency decays considerably. The results

for the FX8350 CPU shows a good linear scaling up to 24 cores. The strong scaling parallel

efficiency can be observed in figure 4, the Cab and Mendieta clusters show a good parallel

efficiency, but the Opteron cluster displays a poor parallel efficiency.

The results for all 5 simulations running in 8 parallel processes can be seen in figure 5. The
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Figure 4: CPU strong scaling parallel efficiency for the same simulations as figure 3 (right)

best performance is obtained with the Titan X Pascal GPU, and the k20x follows. For the bigger

cases the Titan X Maxwell and the Ryzen CPU have a similar performance, for the smaller

simulations the Titan X performs better. The oldest GPU, the c2050, has a better performance

than the FX8350 CPU and the Opteron cluster (all running with 8 parallel processes) and a

similar performance than the Ryzen CPU and Mendieta cluster. The decrease in performance

as the size of the system increases is due to the increment in communication time and the

increase of computations of LAMMPS fixes and modify commands as the number of particles

increases.

Figure 6 show performance (measured in system size normalized with wallclock time in

seconds) normalized with the transistor count present in each microprocessor or GPU (simu-

lation number 3). The FX8350 and the Opteron processors show a performance per transistor

very similar (with 16 cores using two FX-8350 and one Opteron 6376), this is an expected

result since both processors share the same microarchitecture, Bulldozer for the Opteron and

Piledriver (small improvement over Bulldozer) for the FX8350 (AMD (2013)). The Mendieta

and Cab cluster also show an equivalent performance per transistor, both clusters have a similar

microprocessor, the Xeon E5-2680 v2 in Mendieta (released in late 2013) and Xeon E5-2670

v1 (released in early 2012) in Cab. The results for the same benchmark performed in the GPUs

(figure 6 (left)), shows that the performance per transistor for the k20x is better than the Titan X

Maxwell performance, a result already observed in figure 3. The oldest GPU, the c2050, shows

the best performance per transistor, although it does not have the best performance as shown

previously, this is due to improvements in each CUDA core (shaders) and the increase in core

count in newer GPUs.

A commonly used metric to directly compare the performance between CPUs and GPUs is

the speedup, the difference between wallclock time of two simulations executed in different

hardware. Figure 7 (left) shows the speedups between GPUs and different CPU hardware con-

figurations. As seen in the previous benchmarks, the Titan X Pascal shows the best performance

in all the hardware configurations shown in the figure. This GPU has better performance than

16 CPU cores of the Cab cluster, has the double of performance than 24 cores FX8350, ∼4
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Figure 6: Results for simulation number 3 executed in the GPUs (left) and CPU clusters and

workstations (right), normalized with the transistor count present in each microprocessor.
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times better than 8 cores of the same CPU, is ∼2.5 faster than 64 Opteron cores, more than

10 times faster than one Ryzen CPU core and ∼2 times faster than 8 Ryzen CPU cores. The

Titan X Maxwell has a similar performance than 24 FX8350 cores and 8 Ryzen cores. The

k20x GPU has a performance equivalent to 16 Cab cores and is faster in all cases to the Titan X

Maxwell, is almost twice as fast as 24 FX8350 cores and ∼1.5 faster than 8 Ryzen cores. The

oldest GPU, the c2050, is almost equivalent to 32 Opteron cores, faster than 8 FX8350 cores

and cannot achieve the performance of the rest of the CPU configurations. In table 3 and in the

figure 8 it can be seen the difference in performance between executing the simulation in one

process in each GPU and in 2, 4 and 8 parallel processes in the same GPU. As previously stated,

in general, executing more than one process in a GPU results in a much better performance than

executing only one. This is, separating the same simulation in equal parts and executing them

in the same GPU. In the case of MD simulations, the Domain Decomposition is applied, and

each subdomain is executed as a separated process in the same GPU. For this type of MD sim-

ulation, changing a GPU from one CPU hardware configuration to another can have an impact

on the performance of the simulation. Performing the simulation number 3 and 5 with the Ti-

tanX (Maxwell) GPU in the Ryzen CPU improves the performance by ∼15 % against the same

simulation executed in the FX-8350 CPU with the same GPU.

Table 3: Speedups of each GPU comparing wallclock time for one processes between 2, 4 and

8 parallel processes in the same GPU

Parallel processes c2050 k20x TitanX TitanX_Pascal

1 1 1 1 1

2 1.26 1.55 1.09 1.23

4 1.53 1.77 1.41 1.53

8 2.21 2.64 1.83 1.71

Also in Figure 7 (right) it can be seen the performance comparison of the 16 threads of the

Ryzen CPU against all GPUs and CPUs clusters up to 64 parallel processes. Values beneath 1

indicates that the Ryzen CPU cannot match the performance with that hardware configuration.

Values above 1 indicates that the Ryzen CPU in 16 threads perform better than the selected con-

figuration. The interesting result to highlight is that the 16 Ryzen threads are ∼1.4 faster than 24

FX8350 cores, ∼1.7 faster than 32 Opteron cores and ∼1.6 faster than 64 Opteron cores. The

improvement in performance with the new AMD Zen microarchitecture over the older Bull-

dozer microarchitecture is significant. Comparing against Xeon CPUs (without HyperThread-

ing), the 16 Ryzen threads run ∼1.3 faster than 8 Xeon E5-2680 v2 cores and slower (∼0.6 x)

than 16 Xeon E5-2670 v1 cores (Cab cluster). The Ryzen 16 threads match the performance of

the Titan X Maxwell GPU (in 8 parallel processes) and has almost half the performance of the

Titan X Pascal GPU (also in 8 parallel processes).

A common metric to compare the performance of MD simulations is the wallclock time

divided by the total number of atoms in the system, divided by the number of steps that the

simulation was executed and finally divided by the number of parallel processes the simulation

was executed on. A typical value for an EAM simulation obtained by the LAMMPS community

is ∼1.85 µs for a Intel Xeon 3.47 GHz processor using one CPU core (see LAMMPS benchmark

page at LAMMPS (2017)). Table 4 shows the performance obtained in this work for simulation

number 3 using one CPU core in all hardware configurations except the Cab cluster.

The memory consumption in some cases can determine if the simulation can be executed
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Figure 7: Performance comparison for simulation number 3 between each of the GPUs and a

selected number of CPU configurations (left). In the plot on the right, speedup between the

Ryzen CPU using 16 threads and all CPU and GPU hardware configurations (from 8 parallel

processes up to 128). Speedup represents wallclock time from CPU divided by GPU time for

the same simulation.
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Figure 8: GPU speedups from parallel processes against one GPU process in each of the four

tested GPUs. See data in table 3. This figure shows how much improvement in performance

was obtained in each GPU when executing more than one parallel process in each of them.
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Table 4: Performance measured in wallclock time / natoms / nsteps in µs running in one CPU

core for simulation number 3.

Hardware Opteron FX-8350 Mendieta Ryzen TitanX TitanX_Pascal k20x c2050

Performance 1.19 0.81 0.53 0.4 0.1 0.06 0.12 0.2

in µs

in a GPU or not. For the simulations performed in this work, simulations 1 and 2 cannot be

executed in the c2050 GPU due to memory constraints, a problem that was not present in the

CPU clusters and workstation. Simulation number 3 uses up to ∼1800 MB of GPU memory

(reported by the nvidia-smi utility) and the same simulation running in the Ryzen CPU uses

∼920 MB of RAM (reported by LAMMPS).

From the performed benchmarks one could highlight a number of results. The use of GPUs

to perform MD simulations is an attractive alternative to CPU only supercomputers or clusters,

due to the cost of implementation, the obtained performance and the availability of software.

The k20x GPU (released in 2012) has a greater performance than 8 Ryzen CPU cores (2017),

and matches the performance of 16 Xeon CPU cores from the Cab cluster (2012). The most

recent Titan X Pascal doubles the performance of 8 Ryzen CPU cores and performs better than

64 Opteron 6376 cores (∼3 x of speedup). It can be interesting to evaluate the cost to acquire

a GPU workstation and one node of an Opteron cluster. For example, the Titan X Pascal can

cost up to US$1600 (July 2017) and a workstation in Argentina for that GPU costs approx.

US$1200. A 64 cores Opteron 6376 node like the one used in this work costs up to US$9000

(with 64 GB of RAM and in the year 2016). If the simulation can be executed in the GPU (the

software is GPU-ready and the 12 GB of GPU memory are enough), it can be much cheaper to

acquire a GPU workstation than invest in a Cluster Node.

The newly released AMD Ryzen CPU shows a good performance compared with the older

Xeon and AMD Opteron processors. Running in 16 threads in the Ryzen CPU results in better

performance than in three AMD FX-8350 CPUs (24 cores), comparing with 32 Opteron cores

gives a speedup of ∼1.7 x. The Intel Xeon CPUs present in the Cab and Mendieta clusters

show perfect scaling up to 1024 cores (in Cab) and 80 cores (in Mendieta). The AMD Opteron

6376 shows a poor scaling in almost every simulation performed here, except for the smaller

simulation number 5, the scaling problems of this microprocessor are discussed in detail in

Millán et al. (2015) for an HPC Cellular Automata implementation.

4 CONCLUSIONS AND FUTURE WORK

One of the serious challenges that atomistic simulations face has to do with the limitation

on the scales which can be accessed, which in turn is dictated by limitations on computational

resources. This problem can often be overcome by means of high performance computing,

provided adequate equipment is chosen. In this work, several CPU and GPU architectures were

tested using local resources and an international supercomputer.

The multiple benchmarks performed in this work show that using a workstation with a pow-

erful GPU can match or exceed the performance of a CPU cluster. The Titan X Pascal match

the performance of 16 Xeon cores from the Cab cluster, and it has a ∼3 x speedup against 64

Opteron CPU cores. The newly released AMD Ryzen 1700X CPU performs well compared

with the GPUs and against other CPU processors. The 16 threads of the Ryzen CPU outper-

forms 24 FX-8350 CPU cores and match the performance of 10 Xeon E5-2680 v2 CPU cores

from the Mendieta cluster. The Cab and Mendieta clusters with Xeon processors show a good
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scaling up to 1024 cores (Cab) and 80 cores (Mendieta). The Opteron cluster shows a poor

scaling and performance compared with other CPU configurations.

In the future, it will be of interest to test Xeon Phi processors and compare the performance

of theses devices with the GPUs presented in this work, as in recent work Parks et al. (2017);

Pennycook et al. (2013). The new AMD processors for Servers, named EPYC, based on the

Zen microarchitecture present an attractive platform to test, since the Ryzen CPU performed

well in these benchmarks. This new processor has 32 cores (64 threads) per socket (with the

possibility of using two sockets per cluster node) and 8 memory channels.
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