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Abstract. Turbulent flow in ducts of rectangular section presents secondary flows due to the presence

of turbulence. In this work we study this kind of turbulent flow driven by a non-uniform force in the

vertical direction. This kind of forcing is used to model the stratification effect over the driving force

of the flow. Of particular interest to this work are gravity currents, which are stratified flows generated

by the gravity action over relatively small differences in density between two fluids. The fact that the

flow is forced by the action of gravity on the density profiles causes the stratification effects to appear

on two very different scales. On the microscopic scale stratification modulates turbulence and on the

macroscopic scale stratification modulates the driving force of the flow. The objective of this work is to

analyze separately the macroscopic effect of stratification inhibiting completely the microscopic effect

of stratification. In this work, variations produced on secondary flow of the second kind when the flow is

driven by forces that vary linearly and exponentially in the vertical direction are analyzed. These results

are compared with the case of flow driven by an uniform force in the vertical direction. To this aim fully

resolved direct numeric simulations are performed with a pseudo-spectral code.
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1 INTRODUCTION

The secondary flow presents in the turbulent flow in straight ducts is generated only due to
the presence of turbulence. This kind of flow was classified by Prandtl (1926) as secondary flow
of the second kind. The secondary flow of the first kind, however, can be arised in both laminar
and turbulent flows and it is generated by the skewness of the vorticity vector (Bradshaw, 1987).

Although the secondary flow of the second kind can only reach values of approximately 2-
3% of the main velocity, its effects can be important. This secondary flow increases wall shear
stresses and this is significant in problems of sediment transport and erosion (Abad et al., 2013).
Similarly, heat transfer and contaminants dispersion are affected by the secondary flows (Simp-
son, 1997). For these reasons it is important to understand the behavior of the secondary flow
and to achieve precise prediction of this phenomena.

Many works concerning with this kind of secondary flow can be found in the literature.
The first works that presents Direct Numerical Simulation (DNS) (Gavrilakis, 1992; Huser and
Biringen, 1993) analyze the origin and behavior of the secondary flow. More recently works
show the influence of the Reynolds number in the mean flow (Pinelli et al., 2010; Zhang et al.,
2015) and the effect of the duct section aspect-ratio (Vinuesa et al., 2014), all of them using
DNS. Regarding to Large Eddy Simulations (LES), the works of Madabhushi and Vanka (1991);
Yao et al. (2015) and Breuer and Rodi (1994) can be mentioned. In these studies the analysis
of the characteristics of the flow for different Reynolds numbers is also carried out. Among
the experimental studies, the works of Brundrett and Baines (1964); Launder and Ying (1972)
and Melling and Whitelaw (1976) can be found for high Reynolds numbers (Reb > 35000;
where Re = ubh/ν, where ub is the bulk velocity, h is the half-width of the duct and ν is the
kinematic viscosity). For low Reynolds number the works of Kawahara et al. (2000) (Reb =
3535) and Owolabi et al. (2016) (Reb = 1203 y 2230) can be referred to.

Stratified flows are those in which the density varies in the vertical direction. Gravity cur-
rents, in particular, are stratified flows generated by the gravity action over relatively small
differences in density between two fluids (García, 1992). In these flows the action of gravity on
the density profiles causes the stratification effects to appear on two very different scales. On the
microscopic scale stratification modulates turbulence and on the macroscopic scale stratification
modulates the forcing of the flow.

Turbidity currents are flows in which the variation of the density occurs by solids in suspen-
sion due to the action of gravity. The sediment interacts with the flow changing its turbulent
structure and, in consequence, modifying the solid phase-ambient fluid turbulent mixing and
the velocity and concentration profiles. In this direction, Armenio and Sarkar (2000) made LES
simulations of a stably-stratified flow in a channel and observed that an increase in the stratifica-
tion causes a systematic reduction of the turbulence levels, density fluctuations and associated
vertical transport. Furthermore, Cantero et al. (2009a,b) and Shringarpure et al. (2010, 2014,
2015) performed DNS simulations of a self-stratified turbulent flow forced by suspended sedi-
ments and showed that the self-stratification of the flow decrease the turbulence, in particular,
near the bottom of the channel. In these works both the microscopic stratification effect on the
modulating of the turbulence and the macroscopic stratification effect on the driving force are
studied and the individual impact of each effect can’t be identified.

In this work secondary flow of the second kind generated by turbulent flow in a duct of
square section is studied. To model the macroscopic stratification effect separately, a non-
uniform force in the vertical direction is used to drive the flow. In a previous work (Martorana
et al. (2016)) linear variations of the driving force were imposed with this aim. In this study,
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variations produced on secondary flow of the second kind when the flow is driven by forces
that vary linearly and exponentially in the vertical direction are analyzed. These results are
compared with the case of flow driven by an uniform force in the vertical direction. For this
purpose, fully resolved direct numeric simulations are performed with a pseudo-spectral code
that uses Fourier expansions for the flow direction and Chebyshev expansions for the remaining
directions. Results on the variations in the mean flow, in secondary flow and in turbulence are
reported.

2 MATHEMATICAL AND NUMERICAL MODEL

In this work an incompressible flow in a straight duct driven by a force in the streamwise (x)
direction is considered. The flow is governed by the dimensionless equations

∂ũ

∂t̃
+ ũ · ∇ũ = −∇p̃+

1

Reτ
∇2

ũ+ F,

∇ · ũ = 0

(1)

where ũ = {ũ, ṽ, w̃} is the dimensionless velocity, p̃ is the dimensionless pressure and F is
the non-uniform force in the vertical direction that forces the flow in the streamwise direction
(x) (F = {Fx(y), 0, 0}). The dimensionless equations 1 are obtained using the friction velocity
uτ =

√

τw/ρ as the velocity scale, where τw is the wall shear stress and ρ is the fluid density.
The semiwidth h is taken as the length scale, T = h/uτ is used for temporal scale and ρU2 is
chosen for pressure scale. The flow depends on the Reynolds number Reτ = uτ h/ν, where ν
is the fluid kinematic viscosity.

The dimensionless equations in 1 are solve using a pseudo-spectral code (Canuto et al.,
1988). This code employs Fourier expansions in the streamwise direction (x) and Chebyshev
expansions with Gauss-Lobato quadrature points in the remaining directions (z − y). The frac-
tional step method (Kim and Moin, 1985) is used to solve the momentum equation and the
incompressibility condition. A third order Adams-Bashforth and a Crank-Nicolson scheme is
used for temporal discretization of the advection and diffusive terms respectively. The solutions
of the discretisized partial differential equations are obtained by means of a fast 2D Helmholtz
solver. Details of the calculation process of this code can be found in the work of Martorana
et al. (2016) .

The dimensions of the duct employed for the simulations are Lx×Ly×Lz = 4πh×2h×2h.
The streamwise length can be considered sufficiently long in order to allow an adequate decay
of the two-point velocity correlations according to Gavrilakis (1992) and Pinelli et al. (2010).
The grid resolution used is (Nx, Ny, Nz) = (131, 131, 192). Periodic boundary conditions are
enforced along the streamwise direction (x) for all variables. For the four walls of the duct the
no-slip boundary condition is enforced for the streamwise velocity. For the horizontal velocity
w (vertical velocity v) no-slip boundary condition is imposed in the horizontal walls (vertical
walls) and the condition of no-penetration in the vertical walls (horizontal walls). The initial
condition used for the velocity field is taken from a fully developed turbulent open channel flow
solution.

3 RESULTS

The behavior of the secondary flow generated in a flow with non-homogeneous forcing in
the vertical direction is studied. This analysis is perform for several linear and exponential
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variations in the vertical direction as it is shown in table 1. These variations are given by

Fx = β(1− y) + 2, for CC y CL,

Fx =
−4β

e−2β − 1
e−βy, for CE

(2)

where the coefficient values β are listed in the table 1. For the studied cases

∫

2

0

Fxdy = 4 (3)

and the net forcing of the flow is the same for all cases. The statistics of the mean flow was
obtained by averaging both in the time and in the flow direction the instant values. For the cases
CL and CE the averaging was also made between the two vertical halves taking advantage of
the symmetry of the problem. The integration time was of 600 time units. Additionally, the
bulk velocity ub, the Reynolds number based on the bulk velocity Reb = ubh/ν, the position
of the maximum value of main velocity at the vertical center line of the section yu,max and the
local friction velocity at the center of the walls (uτ,t for top wall, uτ,b for bottom wall, uτ,h for
horizontal walls) are exhibited in table 1.

Caso β ub/uτ,avg Reb yu,max uτ,t uτ,b uτ,h

CC 0.0 15.12 2721 1.00 1.072 1.072 1.072
CL1.5 1.5 14.90 2683 0.86 1.026 1.010 1.070
CL2 2.0 14.72 2650 0.81 1.016 0.982 1.061
CE3 3.0 13.63 2381 0.36 0.869 1.225 0.909
CE5 5.0 11.98 2157 0.22 0.789 1.374 0.824

Table 1: Cases studied in this work

Driving force variations in the vertical direction are shown in figure 1. The driving forces
imposed in this study are similar to the density profiles of the turbidity currents. This kind of
forcing is used to modelate the stratification effect on the forcing of the flow separately.
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Figure 1: Vertical variation of the imposed forces for the studied cases.

Figure 2 shows vertical variation of the main velocity normalized with the main bulk velocity
in two lines of the section. Figure 2(a) presents the variation at z/h = 0.5 and figure 2(b)
exhibits the profile at z/h = 1. It can be seen in both lines that the position of the maximum
values of main velocity decrease in all the studied cases compared with the base case (case
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CC). In particular, for the linear variation cases (cases CL) these maximum are located near the
maximum value of case CC. For cases with exponential variations (cases CE), instead, a bigger
descend of these values can be observed, being located near the horizontal bottom wall. The
positions of the maximum values at the center line of the section (figure 2(b)) for each case are
presented in table 1. The descend of the maximum values is higher at z/h = 0.5 than at the
center line of the section. With regard to the magnitude of velocity, an increment in the lower
half of the section and a decrease in the upper half of the section can be identified compared
with the base case. The maximum values of velocity are higher at the center line of the section.
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Figure 2: Vertical variation of the streamwise velocity. (a) At z/h = 0.5. (b) At z/h = 1

The variations of the main velocity at horizontal lines are presented in figure 3. As it can
be seen in figure 2, the main velocity decreases with respect to case CC at the upper region
of the section (figure 3(a)) and increases at the bottom region (figure 3(c)). At the upper line
y/h = 1.5 the variation is similar between cases CL and is practically the same for cases CE.
The profiles are constants at the central third of the section. At the horizontal center line of
the section (figure 3(b)), the profiles for cases CL are very similar to the base case, while the
values of velocity for cases CE are lower than the values for case CC. Cases CE show the same
variation of velocity between each other along the center line. At the lower part of the section
(z/h = 0.5, figure ), the velocity profiles for cases CE present a significant increase at the center
region of the section compared to case CC.

The profiles for the vertical secondary velocity v in two vertical lines, z/h = 0.5 and z/h = 1
are shown in figure 4. The variation across the line z/h = 0.5 presents an increase of the
velocity in the central zone of the section with respect the base case and a decrease in the lower
third of the section. On the other hand, at the center line of the section z/h = 1, an increase in
the lower third of the section can be observed for cases CL and a significant increment in the
central third of the section for cases CE. The maximum values are higher for cases CE than for
cases CL.

With regard to the horizontal secondary velocity w, the profiles across the horizontal lines
z/h = 1.5, z/h = 1 and z/h = 0.5 are presented in figure 5. At the upper region of the section

Mecánica Computacional Vol XXXV, págs. 953-963 (2017) 957

Copyright © 2017 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

z/h

u
/
u
b

CC

CL1.5

CL2

CE3

CE5

(a)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

z/h

CC

CL1.5

CL2

CE3

CE5

(b)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

z/h

CC

CL1.5

CL2

CE3

CE5

(c)

Figure 3: Horizontal variation of the streamwise velocity. (a) At y/h = 1.5. (b) At y/h = 1. (c) At y/h = 0.5
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Figure 4: Vertical variation of the vertical velocity v. (a) At z/h = 0.5. (b) At z/h = 1

(figure 5(a)), changes of sign near the vertical walls are not produced compared to case CC for
cases CL and CE. At both lateral regions of the section, the velocities intensify with respect of
case CC. These values are higher for cases CE than for cases CL. At the horizontal center line of
the section (figure 3(b)) at each vertical half, changes in the sign for the studied cases compared
to case CC can be observed. These profiles show higher values for cases CE than for cases CL.
At the lower region of the section (figure 3(c)) the changes in the sign that present both CC
and CL cases, are not produced for cases CE, in which at each vertical half of the section, the
horizontal secondary velocity preserves the sign.

Figure 6 presents the total shear stress profiles in the vertical direction τtot,y = −u′v′+ 1

Reτ
∂u
∂y
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Figure 5: Horizontal variation of the horizontal velocity w. (a) At y/h = 1.5. (b) At y/h = 1. (c) At y/h = 0.5

(figure 6(a)), the Reynolds stress (figure 6(b)) and the viscous stress (figure 6(c)) normalized
with the local friction velocity at the center of the bottom wall for the studied cases. In both
cases CL and CE the zero-value point of τtot,y descends towards the bottom wall. However,
while in cases CL these points are located at the center region of the section, in cases CE these
points move to the lower third of the section. In the lower half both values for cases CE and
CL decrease compared with case CC, while at the upper half of the section, the values of cases
CL increase in magnitude and the values for cases CE decrease in magnitude with regard to the
base case. These variations are owed almost exclusively to the modifications of the Reynolds
stress −u′v′ as it can be seen in figures 6(b) and 6(c). The latter figure shows that the variations
with respect to case CC are small.

If, instead, the corresponding local velocity friction value is used to normalized the variables
at each half of the section, figure 7 is obtained. The values at the upper half of the section
are normalized with the value of the friction velocity at the center of the upper wall uτ,t and
the lower half is normalized with the value of friction velocity at the center of the lower wall
uτ,b. In this case, a different behavior at each vertical half of the section can be observed.
The modifications of the total shear stress τtot,y, owing mainly to the variations of the Reynolds
stress −u′v′ (figures 7(a) and 7(b)), show a decrease of the values at the lower half of the section
and an increase in the magnitude at the upper half of the section. The decrease represents an
attenuation of the turbulence due to the imposed forcing to the flow. The values at the upper
half, on the contrary, indicate an intensification of the turbulence.

The rms values for each velocity component urms = u′2
1/2

, vrms = v′2
1/2

y wrms = w′2
1/2

at
the vertical center line normalized at the lower half of the section with the local friction velocity
at the center of the bottom wall and in the upper half with the local friction velocity at the center
of the top wall are shown in figure 8. At the lower part of the section, while cases CL present
similar profiles compared to case CC, cases CE show a different behavior. The maximum values
decrease and the profiles become more flatted at the most part of the lower half of the section.
At the upper half of the section, the profiles for all the studied cases show an increment with
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Figure 6: Profiles at z/h = 1. (a) Total vertical shear stress τtot,y . (b) Reynolds stress −u′v′. (c) Velocity gradient
1

Reτ

∂u
∂y

. All the values are normalized with local friction velocity at the center of the bottom wall uτ,b.
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Figure 7: Profiles at z/h = 1. (a) Total vertical shear stress τtot,y . (b) Reynolds stress −u′v′. (c) Velocity gradient
1

Reτ

∂u
∂y

. The values from the upper half are normalized with local friction velocity at the center of the upper wall
uτ,t and the values from the bottom half are normalized with local friction velocity at the center of the bottom wall
uτ,b

respect to the base case. In particular, cases CE present flatter profiles than cases CL as a bigger
increment occurs at the central region of the section. The decrease of the maximum values of
urms shows an attenuation of the turbulence at the lower third of the section. The increase in the
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upper region is related with the increment of vertical momentum flux in that part of the section.
The transverse rms values also exhibit variations that represent an attenuation of the turbulence
at the lower third of the section and an increase in the upper region.
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Figure 8: Profiles of rms values at z/h = 1. (a) urms. (b) vrms. (c) wrms. The values from the upper half are
normalized with local friction velocity at the center of the upper wall uτ,t and the values from the bottom half are
normalized with local friction velocity at the center of the bottom wall uτ,b

4 CONCLUSIONS

In this work the secondary turbulent flow generated in a turbulent flow in a straight duct of
square section is analyzed. The flow is forced by a non-uniform force in the vertical direction.
The imposing of linear and exponential forces is used to model the macroscopic stratification
effect separately.

Regarding the effects over the flow main velocity, it can be observed that the values increase
at the lower half of the section and decrease at the upper half compared to case CC. These vari-
ations are more significant for cases CE than for cases CL. Also, even though the position of the
maximum move towards the bottom wall for both cases CL and CE, for cases CE these values
are located in the lower third of the section while for cases CL the position of the maximum
remains at the center region of the section.

The components of the secondary velocity show an increase in magnitude and changes of
the signs compared to case CC for both cases CL and CE. Cases CE shows higher values than
cases CL.

The parameters related with turbulence also show variations compared with case CC. Both
the Reynolds shear stress −u′v′ and the rms values for all the studied cases present an increase
at the upper half section. At the lower half of the section, cases CL exhibits similar profiles than
case CC while cases CE present lower values than case CC. The reductions of these parameters
show an attenuation of the turbulence at the bottom region and the increments at the upper half
of the section represent an intensification of the turbulence.
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