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Abstract. Wood utility poles are simple structures used in power networks and their failure may produce

a significant impact on their reliability as well as economic consequences. Wind loads are one of the

main causes of damage in wood utility poles. The present study addresses the dynamic behavior of

Argentinean Eucalyptus grandis wood poles with uncertain material properties under stochastic wind

load. Regarding the material, the lengthwise variability of the Modulus of Elasticity (MOE) and the

second moment of area are simulated through the Weak Zone (WZ) model taking into account the knots

presence. The stochastic wind velocity field is derived using the Spectral Representation Method (SRM)

considering temporal and spatial correlation. Then, the wind load is obtained under the considerations

of the Argentinean standard CIRSOC 102. The governing equations are discretized through the Finite

Element Method (FEM). The stochastic analysis is performed by means of Monte Carlo Simulations

(MCS). In this study, displacements are evaluated such that a percentage of damage is found for each

wind velocity. Fragility curves are a useful means to evaluate the failure probability of the poles for a

defined failure mode, under a given range of demand, here the wind load. The WZ model results are

compared with other MOE models previously developed (as a random variable and as a random field

through the Non Gaussian Karhunen-Loève Expansion). Also, confidence bands of the fragility curves

are obtained for 95% of confidence.
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1 INTRODUCTION

Wood utility poles are simple structures used in power networks and their failure can make a

significant impact on the reliability as well as economic consequences, and the wind loads are

one of the main loads that can cause damage. The probability of a structural failure is a function

of both uncertainty in the capacity and uncertainty in the demand. The capacity of a structure

to withstand a load is a function of its geometry and material properties. Although these quan-

tities can be considered fixed, due to the natural origin of materials, uncertainties in material

properties values are unavoidable. Among the existing tools, fragility curves can be useful to

represent the probability of failure given a failure mode and a range of loads. In particular, it

is a means to evaluate the behavior of structural systems. A study on the action of wind on

industrial steel structures is reported in Palencia et al. (2008) which includes a wide inventory

of usual typologies. Fragility curves of the complete structure as well as its components are

obtained. Eucalyptus grandis is a wood extensively used in Argentina for structural purposes,

in particular utility poles. Experimental studies are usually carried out to assess its properties

and behavior (Piter et al., 2004) and more recently, computational approaches are reported (Gar-

cía et al., 2015). An experimental assessment of Eucalyptus grandis wood poles is contained

in Torrán et al. (2009). A fragility study of wood poles including age deterioration is found

in Shafieezadeh et al. (2014). To construct the dynamic wind load, the fluctuating wind com-

ponent is obtained through the Spectral Representation Method (SRM) starting from a given

Power Spectral Density Function (PSDF). The temporal and spatial correlations are taken into

account by finding the cross-spectrum and introducing a coherence function (Shinozuka and

Deodatis, 1991). The method yields a temporal record of the fluctuating wind velocity along

the pole height. Combined with the standard recommendations, the fluctuating wind pressure

is derived. This method was employed in the dynamic study of a guyed mast and tall buildings

(Ballaben and Rosales, 2012; Castro et al., 2015).

The dynamic behavior of Argentinean Eucalyptus grandis wood poles with uncertain mate-

rial properties under stochastic wind load is herein analyzed. The uncertain material properties

are given by the variability of the Modulus of Elasticity (MOE) simulated by a stochastic pro-

cess, through the Weak Zone model (WZ) taking into account the knots presence. To study the

influence of the second area moment due to the presence of knots, this model is separated in two

submodels: M1 or WZE-model with the MOE as a random field and M2 or WZEI-model with

the MOE as a random field, now considering the influence of knots in the second area moment.

A third model with the MOE value equal to deterministic mean value for whole length, is con-

sidered as a comparison model. The fragility curves are obtained from these material models

for a given failure mode. Then, they are compared among them and with other MOE models

previously developed in González de Paz et al. (2016) (as a random variable and as a random

field through the Non Gaussian Karhunen-Loève Expansion). Results are numerically approx-

imated by the Finite Element Method (FEM). Statistics of the response are obtained by means

of Monte Carlo Simulations (MCS) with a previous convergence study carried out in order to

determine the acceptable number of realizations. The model is discretized using the Finite Ele-

ment Method (FEM). Also, confidence bands (CB) of the fragility curves are obtained for 95%

of confidence. A confidence region is used in statistical analysis to represent the uncertainty in

an estimate of a curve or function based on limited or noisy data. In Shinozuka et al. (2000),

CB for fragility curves of damaged by earthquakes bridges are developed.
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2 MODEL DESCRIPTION

2.1 Stochastic wind load

In order to calculate the dynamic stochastic wind load in the time domain, it is necessary to

recreate a temporal record. This record is composed of two contributions: one is a fluctuating

random variable with the position and time and other is a deterministic mean value with position

variation.

The fluctuating wind velocity is obtained by the application of Spectral Representation

Method (SRM) proposed by Shinozuka and Deodatis (1991). The method starts from a Power

Spectral Density Function (PSDF) and a coherence function, to be chosen in accordance with

the type of problem to be simulated. Then, the random signals are created as a superposition

of harmonic functions with a random phase angle, weighed by coefficients that represent the

importance of the value of frequency within the spectrum and the spatial correlation. Following

the methodology developed in the reference work, a set of m gaussian stationary random pro-

cesses f 0
j (t), j = 1, 2, ...m, with zero mean, E[f 0

j (t)] = 0, with a given cross spectral density

matrix S0(ω) where S0
jk(ω) = F [Rjk(τ)0 ] are considered. F [ ] represents the Fourier Transform

operator and R0
jk(τ) is the cross-correlation function (j 6= k) or the autocorrelation function

(j = k). This matrix verifies R0
jk(τ) = R0

jk(−τ) and then, S0(ω) is a Hermitian and defi-

nite positive matrix. If the lower triangular matrix H(ω) is defined as a matrix whose Fourier

transform exists, the relationship is

S0(ω) = H(ω)H̄T (ω) (1)

where the bar stands for complex conjugate and the superscript T its transpose. The F 0
j (t)

process can be simulated by the following series:

fj(t) =
3

∑

k=1

N
∑

n=1

|Hjk(ωn) |
√
2∆ω cos[ω̂nt+ θkj(ωn) + Φkn] (2)

where ∆ω is the frequency interval with which the PSDF is discretized, ωn = ∆ω(n−1), ω̂n =
ωn + ψkn∆ω, ψkn is a random value uniformly distributed between 0 and 1, N is the amount

of frequency ranges and, Φkn are the random independent phase angles uniformly distributed

between 0 and 2π. If the values Sjk are all real, then the Θjk(ωn) are equal to zero. The

decomposition represented by Eq.1 will be found by means of the Cholesky Decomposition of

the spectral density matrix. The SRM requires of the implementation of different steps. The

first one is the adoption of a Power Spectral Density Function (PSDF) and a coherence function.

In this case, the PSDF suggested by Davenport is used (Dyrbye and Hansen (1996)):

RN(z, ω) =
ωS(z, ω)

σ2(z)
=

2

3

f 2
L

(1 + f 2
L)

4/3
(3)

where ω is the frequency in Hz, σ is the standard deviation and fL is the non-dimensional

frequency:

fL = ω
Lu

U(z)
(4)

Lu is the length scale of turbulence (1200 m in Davenport’s PSDF) and U(z) is the wind mean

velocity at height z. The expression for U(z) correspond to the potential law adopted by the

Argentinian stardard CIRSOC 102 (2005)

U(z) = 2.01V (z/zg)
2/α (5)
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where V is the nominal wind velocity which, together with zg and α, are values given by the

standard code depending on the characteristics of the structure location.

Then, the assumed coherence function is

Coh(zi, zj, ω) = exp

{

−2ω
Cz | zi − zj |
U(zi) + U(zj)

}

(6)

where zi and zj are the heights of two given points of the pole. Then, each Sij of the S(ω)
matrix, for a given value of frequency can be calculated as

Sij(zi, zj, ω) =
√

S(zi, ω)S(zj, ω) Coh(zi, zj, ω) (7)

Following this procedure, each value Sij(zi, zj, ω) will be calculated, and then, for each fre-

quency ω, H(ω) matrices will be found. Finally, it is possible to construct the temporal series

given by

u(zj, t) =
m
∑

k=1

N
∑

n=1

Hjk(ωn)
√
2∆ω cos[2πω̂nt+ Φkn]. (8)

Table 1: Adopted values employed in the calculation of the time dependent velocity field.

Coefficients σ2 Lu Cz ωc ∆ω t ∆t N m

Value 38.77 1200 m 11.5 2.5Hz 0.004 Hz 300 s 0.3 s 625 10

Once the fluctuating component of the wind speed has been determined, the Argentinean

Standard CIRSOC 102 (2005), with some modifications carried out in order to take into account

the dynamics of the wind, is employed in the calculation of the wind load. This standard defines

the transversal wind force F as:

F = qz GCfAf (9)

where G is the gust-effect factor, Cf is the force coefficient which includes the effect of the

shape of the structure, Af is the projected area normal to the wind. qz is the dynamic velocity

pressure evaluated at height z of the structure:

qz = 0.613 kz kzt kd V
2I (10)

where kz is the dynamic pressure exposure coefficient, kzt is the topographic factor, kd is the

wind directionality factor, V is the basic wind speed and I is the importance factor. kz is a

function of the elevation z and the exposure category that described the ground surface rough-

ness using information about the natural topography, vegetation and constructed facilities in the

vicinity of the structure of interest.

For the determination of the fluctuating component of the wind velocity, the expression

kz V = U(z) was used. Then, Eq. 10 becomes

q̄z = 0.613 kzt kd(U(z) + u(z))V I (11)

and Eq. 9 results:

F = q̄z GCfAf (12)

Table 2 shows the adopted values for the mentioned coefficients.
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Table 2: Coefficients employed in the determination of the wind load according to CIRSOC 102 (2005).

Coefficients G Cf I kd kzt α zg
Value 0.85 2.0 1 0.85 1 9.5 274 m

2.2 Structural model

The structure under study is a Eucalyptus grandis pole which is modeled as a vertical column

which diameter varies linearly, and embedded in the soil (Figure 1). The ground line distance

from the base is equal to 1.8 m. The structural model is a beam clamped at the ground line

subjected to wind load. The wind action is found using the method explained before, and the

wood properties parameters and the geometric quantities (height and base and top diameters)

were obtained from Torrán et al. (2009). The geometric quantities are depicted in Table 3.

Table 3: Geometric Data Torrán et al. (2009)

Height GL-T distance ground line diameter top diameter

11.975 m 10.175 m 0.262 m 0.191 m

Damping in timber material is considered random with a uniform distribution, assuming

values between 1% to 3% of the critical damping cc. The mass is considered as a deterministic

value equal to 707 kg/m3, corresponding to the mean value reported by Torrán et al. (2009) for

a mean moisture content of 45%.

The lengthwise variability of both the MOE and the second area moment of the pole cross

section are simulated as stochastic processes, through the WZ model taking into account the

knots presence. Then, this model results are compared with other MOE models previously

developed in González de Paz et al. (2016).

Figure 1: Structural scheme of pole and wind load.

2.2.1 Weak-zone model

In the weak-zone model, the structural timber component is modeled as a composite of short

weak-zones connected by longer sections of clear wood. The length of the weak-zones are
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proportional to five times the knot dimension. This feature was observed in the visual survey of

the timber knots and the surrounding fibers. The MOE in each of these zones is constant and

randomly assigned.

Reference values concerning the knots size in Eucalyptus grandis poles are presented in

Torrán et al. (2009). From this work, the mean value of this random variable and their interval

are known. The application of the PME under the mentioned constrains leads to the truncated

exponential PDF.

According to Torrán et al. (2009), the knots dimension in the lower segment of the pole has

the following values: minimum 13 mm, mean 40 mm and maximum 100 mm. In the upper

segment of the pole, the knots dimension has the following values: minimum 13 mm, mean 58

mm and maximum 100 mm. For the separation between knots, the PMF presented in García

et al. (2016) is employed. This random variable has a mean value µ = 288.62 mm and standard

deviation σ= 175.52 mm. The sample space ranges from 15 mm to 1040 mm.

The MOE values in this model are assigned randomly through their marginal PDF in function

of the knot ratio (K) of each pole section, Table 4. The details may be found in García et al.

(2016).

Table 4: Parameters of the gamma marginal PDF of the MOE for each value of K.

Parameters K = 0 0 < K≤ 1/3 1/3 < K≤ 2/3 2/3 < K

µ (GPa) 13.744 11.667 11.130 10.060

σ (GPa) 1.922 1.344 1.395 1.264

2.3 Confidence Bands

A Confidence Band (CB) is used in statistical analysis to represent the uncertainty in an

estimate of a curve or function based on limited or noisy data. Confidence regions are closely

related to Confidence Intervals (CI), which represent the uncertainly in an estimate of a single

numerical value. While a CI only refers to a single point, a CB refers simultaneously to many

points. The confidence level might be interpreted as the probability to find a CI that contain the

real value of corresponding parameter (Neyman, 1937). The CB with 95% of confidence level

is developed for each FC. The fragility curve line represents average value between the times

the structure fails and total number of simulations for each value of wind velocity. The space

between the upper and lower curves around the FC represents the CB, and the real FC would be

there with a 95% of confidence level.

For the construction of CB, a CI for each point of wind velocity is found. A CI with a

confidence level C is calculated as follow: The first step is to identify the mean value. Since

the standard deviation is unknown, then the Student’s t distribution is used as the critical value.

The degree of freedom is found by subtracting one from the number of observations, N − 1.

The critical value is found from the t-distribution table. In this table, the critical value is written

as tα(r), where r is the degree of freedom and α = (1− C)/2. Finally, the found values are:

CI =

(

x̄− tα ∗ s√
n
, x̄+ tα ∗ s√

n

)

(13)

3 STUDY CASES

In order to perform the uncertainty quantification due to the stochastic modeling of the wind

load and the MOE, the MOE lengthwise variability and of the second moment of the pole cross
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section are simulated as stochastic processes, through the weak zone model taking into account

the knots presence. To study the influence of the second area moment variation due to the

presence of knots, this model is separated in two sub-models:

• M1 or WZE-model: the MOE lengthwise variability is simulated through the weak zone

model taking into account the knots presence, but without considered their influence in

the second area moment of the pole cross section.

• M2 or WZEI-model: the MOE lengthwise variability and of the second area moment,

again as a stochastic process, through the weak zone model taking into account the knots

presence, considering their influence in the second area moment of the pole cross section.

Results are compared with previous models (González de Paz et al., 2016):

• M3 or Det-model: the value of the MOE for the whole pole is considered deterministic

and equal to the mean value presented in Torrán et al. (2009).

• M4 or Unif-model: the value of the MOE for the whole pole is simulated as a random

variable through a gamma PDF, i.e. a uniform stochastic value.

• M5 or KL-model: the lengthwise variability of the MOE is represented with a random

field through a Non Gaussian Karhunen-Loève Expansion with an exponential correlation

function and a gamma marginal PDF.

A Monte Carlo method is used to perform the realizations within the Matlab environment with

a number of realizations N= 1000 for each case. In all cases, the failure of the pole is assumed

when the demand (displacement at the pole top) S is larger or equal to a given limit (maximum

displacement allowed for this structural type) R, i.e. the probability of failure is written as

pf = P [G(R, S) ≤ 0] (14)

where G(·) is known as the ’limit state function’ and the probability of failure is identical with

the limit state violation. In the this study, the limit is set when the displacement at the top of the

pole (demand S) is equal or larger to a maximum displacement allowed for this structural type

of R = H/100 (CIRSOC 601, 2011).

4 RESULTS

The structural deterministic problem governed by the Bernoulli-Euler beam equation is solved

with a finite element discretization through FlexPDE, PDE (2017) software. A Monte Carlo

method is used to perform the realizations within the Matlab environment with a number of

1000 simulations for each case.

Figure 2 shows the results of the analysis made for each study case. In Figure 2(a), the

fragility curves (FCs) obtained for each case are presented. All FCs show their failure velocity

range around a mean value where the curves intersected. The FCs derived for M1 and M2

models are equally widespread, but more widespread than M3 or deterministic model. M3

model curve is between M1 and M2 models. The M2 curve is on the left of M3 model. Its

range of failure begins at a lower velocity than the other. This might be due to the fact that, the

influence of the knots in the second moment of area is accounted for, and consequently these

sections have the lowest stiffness in the pole.
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Figure 2: Top displacement of the pole. Three study cases. a) Fragility Curves; b) PDF for a wind velocity V = 20

m/s; c) PDF for a wind velocity V = 21 m/s; d) PDF for a wind velocity V = 22 m/s.

Figures 2(b-d) depict the PDF of the displacements at the pole top for the following wind

velocities: 20 m/s (at the left of the intersection zone of Figure 2(a)), 21 m/s (within the inter-

section zone) and 22 m/s (at the right of the intersection zone). The displacement value adopted

as "limit state" is indicated with a dashed line. The mode for almost all models is around the

same value, but for M2 model, the mode is larger, showing that the M2 model is weakest model.

Figures 3 (a) and (b) depict the mean values and Standard Deviations (SD) of the top displace-

ments as functions of the wind velocity. Again, for M2 model, the mean values and the SD of

displacements are larger than the other models. The first plot shows that M2 is weaker and the

second plot shows that this model presents greater uncertainty.

Figure 4 shows the Confidence Bands (CB) of fragility curves obtained from the WZ models

(M1 and M2) and the deterministic model (M3), with 95% of confidence level and the difference

between the main curve and the upper and lower limit curves for each case. The maximum value

of the difference is in each case at the inflection zone and has almost the same value between

one case and another. Likewise, when analyzing the normal standard deviation for the inflection
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Figure 3: Top displacement of the pole.a) Mean displacements; b) SD displacements.
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Figure 4: Confidence bands of fragility curves for 95% of confidence level. a) WZ model taking account only MOE

variation (M1); b) WZ model taking account MOE and second moment area variation (M2); c) Deterministic model

(M3).

point of each curve, a similar value is obtained. This maximum value that denotes the width of

the CB depends on the size of the sample, being greater if the sample size is lower.
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5 CONCLUSIONS

The structural behavior of wood utility poles under stochastic wind load and uncertain mate-

rial properties was studied. The material uncertainty is represented with the Weak Zone model,

a stochastic field simulation which takes into account the knots presence, in two variants: WZE-

model without regard to the influence of knots in the second moment of area, but considering the

MOE lengthwise variability (M1); WZEI-model in which the influence of knots is accounted

for in the second area moment as well as in the MOE lengthwise variability (M2). Results of

these models are compared with outcomes of previously developed material models: MOE as

a deterministic mean value (M3), MOE as a random variable through a gamma PDF (M4) and

MOE as a random field represented by a Non Gaussian Karhunen-Loève Expansion (M5).

All FCs show the failure wind velocity range around a mean value between M1-model and

M2-model curves.

The range of failure of M2 curve begins at a lower wind velocity than in the rest of the

models. The influence of knots in the MOE variability and in the second area moment are

accounted for, and consequently, its global strength is lower. Also, the M2 model displacements

results at the top show more dispersion than the other models. The results from the M2-model

are rather different from the rest of the models, as was shown in the FCs, and in the analysis of

displacements (mean value and standard deviation).

The maximum value in the confidence bands for all models is similar and is located at the

inflection point in each FC. For the FCs, each iteration results in "fail" or "no fail", leading to

a Bernoulli distribution. In this probability distribution, the SD is greater if the mean value is

closer to 0.5. The inflection points in the FCs are around this value, then the SD and the CI will

be greater. The width of the confidence bands depend on the size of the samples.

It would be necessary further analysis considering the influence of the random field of the

second moment of area, leaving fixed the rest of the parameters in order to understand the results

found with the stochastic material model M2.

REFERENCES

Ballaben J.S. and Rosales M.B. Parametric study of the dynamic along-wind response of a

guyed tower. In Proceedings of Segundo Congreso Latinoamericano de Ingeniería del Viento

(CLIV2), La Plata, Argentina. 2012.

Castro H., De Bortoli M., Paz R., and Marighetti J. Una metodología de cálculo para la de-

terminación de la respuesta dinámica longitudinal de estructuras altas bajo la acción del

viento. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería,

31(4):235–245, 2015.

CIRSOC 102. Reglamento Argentino de Acción del Viento sobre las Construcciones. CIRSOC,

2005.

CIRSOC 601. Proyecto de Reglamento Argentino de Estructuras de Madera CIRSOC 601.

INTI-CIRSOC, 2011.

Dyrbye C. and Hansen S.O. Wind loads on structures. John Wiley & Sons, 1996.

FlexPDE, PDE. Solutions inc. http://www. pdesolutions. com, 2017.

García D.A., Sampaio R., and Rosales M.B. Vibrational problems of timber beams with knots

considering uncertainties. Journal of the Brazilian Society of Mechanical Sciences and En-

gineering, pages 1–13, 2015.

García D.A., Sampaio R., and Rosales M.B. Vibrational problems of timber beams with knots

considering uncertainties. Journal of the Brazilian Society of Mechanical Sciences and En-

L.V. GONZALEZ DE PAZ, D.A. GARCIA, M.B. ROSALES1240

Copyright © 2017 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



gineering, 38(8):2661–2673, 2016.

González de Paz L.V., A G.D., and Rosales M.B. Fragility curves of wood utility poles under

stochastic wind load with material uncertain properties. In Mecánica Computacional Vol

XXXIV, Cordoba, Argentina, pages 151–161. 2016.

Neyman J. Outline of a theory of statistical estimation based on the classical theory of prob-

ability. Philosophical Transactions of the Royal Society of London. Series A, Mathematical

and Physical Sciences, 236(767):333–380, 1937.

Palencia A.J.G., Saffar A., and Godoy L.A. Curvas de fragilidad debidas a viento para edifi-

caciones industriales metalicas. Revista Internacional de Desastres Naturales, Accidentes e

Infraestructura Civil, 8(2), 2008.

Piter J., Zerbino R., and Blaß H. Visual strength grading of argentinean eucalyptus grandis.

Holz als Roh-und Werkstoff, 62(1):1–8, 2004.

Shafieezadeh A., Onyewuchi U.P., Begovic M.M., and DesRoches R. Age-dependent fragility

models of utility wood poles in power distribution networks against extreme wind hazards.

IEEE Transactions on Power Delivery, 29(1):131–139, 2014.

Shinozuka M. and Deodatis G. Simulation of stochastic processes by spectral representation.

Applied Mechanics Reviews, 44(4):191–204, 1991.

Shinozuka M., Feng M.Q., Lee J., and Naganuma T. Statistical analysis of fragility curves.

Journal of engineering mechanics, 126(12):1224–1231, 2000.

Torrán E., Zitto S., Cotrina A., and Piter J.C. Bending strength and stiffness of poles of argen-

tinean eucalyptus grandis. Maderas. Ciencia y tecnología, 11(1):71–84, 2009.

Mecánica Computacional Vol XXXV, págs. 1231-1241 (2017) 1241

Copyright © 2017 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar


	Introduction
	Model description
	Stochastic wind load
	Structural model
	Weak-zone model

	Confidence Bands

	Study cases
	Results
	Conclusions

