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Abstract. The prediction of failure processes in composite, heterogeneous materials require multiscale

analysis to account for the complex mechanisms and features taking place. Between the different mul-

tiscale schemes the more commonly used are those based on homogenization procedures, due to their

versatility. In this work a thermodynamically consistent homogenisation based multiscale approach is

formulated for modelling thermo-plastic materials. The proposal is valid for arbitrary multiscale pro-

cedures, including local or nonlocal methods, and continuum or discontinuum methods in either scale.

The necessary and sufficient conditions for fulfilling the thermodynamic consistency are defined. It is

demonstrated that the Hill-Mandel variational criterion for homogenization scheme is a necessary, but

not a sufficient condition when dissipative material responses are involved at any scale. On this point, the

additional condition that needs to be fulfilled is established. The general case of temperature-dependent,

higher order elastoplasticity is considered as theoretical framework to account for the material dissipation

at micro and macro scales of observation. Additionally, it is shown that the thermodynamic consistency

enforces the homogenization of the nonlocal terms of the micro scale’s free energy density; however,

this does not necessarily lead to nonlocal effects on the macro scale. Finally, the particular cases of

local isothermal elastoplasticity and continuum damage are considered for the purpose of the proposed

approach for multiscale homogenizations.
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1 INTRODUCTION

Despite the advances made in the theoretical frameworks of homogenisation procedures,

an unified and systematic procedure for thermodynamically consistent homogenisations is still

needed. This formulation must allow straightforward extensions for any kind of dissipative con-

stituents, under any condition. In order to have a consistent framework, multiscale approaches

must consider the thermodynamic consistency regarding all different scales involved. Con-

current multiscale procedures take into account the thermodynamic consistency in a direct way,

due to the strong coupling between scales. However, weak interface multiscale models demands

special considerations for fulfilling the thermodynamic consistency between the involved scales.

This topic has, so far, not been explored in a detailed and systematical way. Particularly when

dissipative materials are involved.

This work is aimed at formulating this unified and systematic procedure for thermodynami-

cally consistent multiscale homogenisations related to dissipative materials. Both, elastoplastic

and continue damage-based material theories are considered under isothermal and temperature

dependent conditions. After summarizing the thermodynamic principles for general gradient

thermo-elastoplastic materials, the necessary and sufficient conditions for fulfilling the thermo-

dynamic consistency of multiscale approaches based on weak interface conditions are deduced

and systematically formulated. The thermodynamically consistent homogenisation procedure

in this work is valid for any type of homogenisation based multiscale scheme. It is deduced and

demonstrated that the Hill-Mandel criterion for homogenisation is only a necessary condition

for the multiscale thermodynamic consistency when dissipative material responses are involved

at the fine scale.

The work is organized as follows: A thermodynamic background for thermo-plastic mate-

rials is described in Section 2, detailing the energetically complementary variables involved in

the problem, the derivation of Coleman’s equations and the dissipation of each physical process.

A semi-concurrent multiscale setting introducing a new concept for the energetic consistency

between the scales using a thermodynamically consistent framework, is proposed in Section

3. The dissipation consistency between the scales is studied in Section 4. The proposed the-

oretical framework is particularized in Section 5. The necessary conditions for satisfying the

thermodynamic consistency are discussed in Section 6. Finally, some conclusions are compiled

in Section 7.

2 THERMODYNAMICS OF DISSIPATIVE MEDIA

Thermodynamically consistent formulations of constitutive equations for dissipative mate-

rials departure from the fundamental laws of thermodynamics. This leads to the well-known

Clausius-Duhem inequality which establishes the positiveness of the dissipations. In this sec-

tion, the thermodynamic framework of the constitutive equations under non-isothermal condi-

tions are summarized. The particular case of small kinematics (strains and displacements) and

neglectable inertial forces is considered.

2.1 First law of thermodynamics

The first law of thermodynamics for general thermomechanical systems states

Ė + K̇ = P +Q (1)

with: E, K, P , and Q, the internal energy, kinematic energy, mechanical source, and thermal

source respectively.
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Considering the conservation of mass, and not taking into account inertia forces, it can be

re-written as

ρė = σ : ∇s
u̇+ ρr −∇ · h (2)

being ρ the density of the solid, e the internal energy density, σ the Cauchy stress tensor, u the

displacement field, r the energy source, h the heat flux vector, and ε the strain tensor.

2.2 Second law of thermodynamics

The entropy inequality of a thermodynamic system can be expressed as

Ṡ −Qθ ≥ 0 or ρṡθ − ρr + ∇ · h−
h ·∇θ

θ
≥ 0 (3)

with S and Qθ the entropy and entropy flux respectively; and s the entropy density, θ the abso-

lute temperature, and sfl the entropy density of the fluid.

2.3 Clausius-Duhem inequality

Combining Eqs. (2) and (3), and introducing the Helmholtz’s free energy density ψ = e−sθ,

the Clausius-Duhem inequality can be deduced

−ρψ̇ − ρsθ̇ + σ : ε̇−
h ·∇θ

θ
≥ 0 (4)

2.4 Coleman’s equations

Assuming that arbitrary thermodynamic states of non-isothermal processes are completely

determined by the elastic strain εe, the temperature, and the internal variable κ, the Helmholtz’s

free energy density can then be expressed as ψ = ψ(εe, θ, κ). In this work it is assumed that the

free energy of the whole system can be additively decomposed into an elastic free energy, and

a plastic free energy.

ψ = ψe + ψp (5)

Moreover, if the general framework of the flow theory of plasticity is assumed, the rates of

the total strain tensor and of the total entropy can be additively decomposed into their elastic

and plastic components.

Coleman’s equations can be deduced stating that Eq. (4) must be null for elastic cycles

s = −
∂ψ

∂θ
, σ = ρ

∂ψ

∂εe
(6)

2.5 Dissipation

By making use of Coleman’s equation the dissipation can be expressed as

D = σ : ε̇p −
h ·∇θ

θ
− ρ

∂ψ

∂κ
κ̇ ≥ 0 (7)

and it can be decoupled into

Intrinsic Dissipation: Ds = σ : ε̇p − ρ
∂ψ

∂κ
κ̇ ≥ 0 (8)

Heat transport Dissipation: Dth = −
h ·∇θ

θ
≥ 0
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Using Eqs. (7) and (4), Helmholtz’s free energy density can be re-written as

ρψ̇ = σ : ε̇e + ρ
∂ψ

∂κ
κ̇− ρsθ̇ (9)

Additionally, the eventual dissipation in discrete cracks must be taken into account. Being

ψc = ψc(ue, κf ) the cohesive free energy density, from Coleman and Noll’s method, the traction

vector at the interface must be

t =
∂ψc

∂ue
(10)

And, analogously, the energy dissipated due to crack opening is

Df = t · u̇f −
∂ψc

∂κf
κ̇f ≥ 0 (11)

being u̇f = u̇f (κ̇f ) = u̇ − u̇e the crack opening rate in terms of the rate of the corresponding

state variable and Qf = −
∂ψc

∂κf
the dissipative force due to the crack opening.

2.6 Extension to non-local thermodynamics

As can be seen in Nguyen and Andrieux (2005), due to the introduction of the gradient

terms of independent variables as state variables there is need of an extended thermodynamic

framework. If the free energy does not only depend on θ but also on ∇θ then

ψ = e− sθ − s
′ ·∇θ (12)

Where the entropy definition remains unchanged

(
s = −

∂ψ

∂θ

)
. The vector s′, called the

entropy vector, can be deduced from analogous Coleman’s equations and is defined as

s
′ = −

∂ψ

∂∇θ
(13)

Concerning the involved dissipations, these are not modified by this enhancement.

As explained in Blanco and Giusti (2014) this modification is needed because if the macro-

scopic temperature gradient is a variable in the microscopic temperature field problem, the

microscopic stress field and the macroscopic stress field also depends on the macroscopic tem-

perature gradient. Hence, the macroscopic stress itself depends on the macroscopic temperature

gradient, which under a classic thermodynamic framework cannot occur.

3 THERMODYNAMICALLY CONSISTENT MULTISCALE HOMOGENIZATION METHOD

In this section, the work done in Lopez Rivarola et al. (2017) will be generalized and restruc-

tured. The proposed framework in based on the fundamental idea of stating the consistency

between the Helmholtz’s free energy densities of the involved scales, which implies not only

the elastic energy density, but also the dissipations associated to all inelastic mechanisms. Ad-

ditionally, an assumption regarding the primal variables insertion from the macroscale to the

microscale is stated. The dual variables, as well as the material operatros, are then deduced as

a thermodynamic consequence.

Using sub-index (•)M for the properties of the coarse scale, and sub-index (•)µ for the fine

scale. The multiscale procedure will be:
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- 1) Propose an energy consistency between scales. A Helmholtz free energy density con-

sistency is chosen for the microscale, and the macroscopic relations will be deduced from the

framework.

- 2) Propose a homogenization procedure for the primal variables. In this work the primal

variables are the displacement, and the temperature. The microscopic variables can then be

additively decomposed in the classical sense into three parts: a constant value (equal to the

macroscale value), a linear function (related to the macroscale value’s gradient), and a fluctu-

ation. The gradient operator is not the same for all scales, as it’s calculated using a different

coordinate system (∇M 6= ∇µ). In order to simplify the nomenclature, ∇M(•)M = [∇(•)]M
and ∇µ(•)µ = [∇(•)]µ.

- 3) Deduce the dual variables homogenization from the thermodynamic relations. Given the

energetic consistency between the scales and Coleman’s equations, the homogenization of the

dual variables can be deduced. In this work these variables are: stress, entropy, and entropy

vector.

- 4) Deduce the macroscopic operators from the thermodynamic relations. Using the differ-

ential equations that relates the free energy with the utilized variables the homogenization of

the operators can be deduced.

3.1 Axiom 1 - Energy consistency

The energetic consistency is enforced by means of the homogenization of microscopic Helmholtz

free energy density. In multiphysics and multiscale problems the formulation of a virtual power

principle is not a trivial fact. This proposal aims to formulate a rational procedure for general

multiscale homogenizations.

The consistency is then postulated through the volume average

ψM =
1

V

∫

V

ψµ dV (14)

In this work the following expression for the elastic Helmholtz free energy density is adopted

ψe
µ =

1

2
ε
e
µ : Ee

µ : εeµ −
1

2

Cµ

T0
θ2µ − θµAµ : εeµ (15)

being: C the volumetric heat capacity; T0 the reference temperature; A = E : Iα, with α the

thermal dilation coefficient, Ee the elastic constitutive tensor, and I the second order identity

tensor.

With respect to the plastic behavior, the following expression of Helmholtz free energy den-

sity is adopted

ψp
µ =

1

2
κµHµκµ (16)

being H the plastic hardening-softening modulus. Considering a decoupled behavior of the

elastic and plastic energy, ψp
µ is independent of the elastic variables εeµ, and θµ.

So, from Coleman’s equations, i.e. Eq. (6)

σµ =
∂ψµ

∂εeµ
= E

e
µ : εeµ − θµAµ (17)

sµ = −
∂ψµ

∂θµ
= Aµ : εeµ +

Cµ

T0
θµ (18)

(19)
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3.2 Axiom 2 - Physical primal variables

Displacement and strain homogenization

Without loss of generality the microscale’s displacement rate u̇ can be decomposed into

an average displacement rate (which is equal to the macrocale’s displacement rate), a linear

function of x (associated to the macroscale’s displacement rate gradient) and a displacement

fluctuation rate

u̇µ(x) = u̇M + [∇u̇]M · (x− x0) + ˜̇uµ (20)

being x0 =
1

V

∫
V
x dV . It is assumed that

u̇M =
1

V

∫

V

u̇µ(x) dV and, hence 0 =
1

V

∫

V

˜̇uµ dV (21)

As a consequence

[∇u̇]µ = [∇u̇]M + [∇˜̇u]µ or ε̇µ = ε̇M + ˜̇εµ (22)

so

ε̇M =
1

V

∫

V

ε̇µ dV and 0 =
1

V

∫

V

˜̇εµ dV (23)

It is important to remark that this Axiom is postulated for total strains, and is not valid for

elastic and plastic strains individually as can be seen in Maugin (1992). Under general models

ε̇
e
M 6=

1

V

∫

V

ε̇
e
µ dV and ε̇

p
M 6=

1

V

∫

V

ε̇
p
µ dV (24)

Temperature and temperature gradient homogenization

Proceeding analogously

θ̇µ(x) = θ̇M +
[
∇θ̇
]
M

· (x− x0) + ˜̇
θµ (25)

Assuming

θ̇M =
1

V

∫

V

θ̇µ(x) dV and, hence 0 =
1

V

∫

V

˜̇
θµ dV (26)

Then, as a consequence [
∇θ̇
]
µ
=
[
∇θ̇
]
M

+
[
∇
˜̇
θ
]
µ

(27)

and [
∇θ̇
]
M

=
1

V

∫

V

[
∇θ̇
]
µ
dV and 0 =

1

V

∫

V

[
∇
˜̇
θ
]
µ
dV (28)

3.3 Corollary 1 - Dual Variables

Macroscopic Stress Tensor: From Eqs. (6) and (14)

σM =
1

V

∫

V

∂ψµ

∂εeM
dV =

1

V

∫

V

(
σµ :

∂εeµ

∂εeM
− sµ

∂θµ

∂εeM
+ Hµκµ

∂κµ

∂εeM

)
dV (29)
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Macroscopic Entropy: From Eqs. (6) and (14)

sM =
1

V

∫

V

−
∂ψµ

∂θM
dV = −

1

V

∫

V

(
σµ :

∂εeµ

∂θM
− sµ

∂θµ

∂θM
+ Hµκµ

∂κµ

∂θM

)
dV (30)

Macroscopic Entropy vector: From Eqs. (13) and (14)

s
′ =

1

V

∫

V

−
∂ψµ

∂ [∇θ]M
dV = −

1

V

∫

V

(
σµ :

∂εeµ

∂ [∇θ]M
− sµ

∂θµ

∂ [∇θ]M
+ Hµκµ

∂κµ

∂ [∇θ]M

)
dV

(31)

It can be seen that the macroscale stress, entropy and entropy vector are not necessarily a

volume average of the microscale values.

3.4 Corollary 2 - Macroscopic operators

Proposing a macroscopic free energy function analogous to Eq. (15) and the free energy

consistency in Eq. (14) homogenization expressions for the operators are deduced.

Macroscopic tangent constitutive tensor

EM =
∂2ψM

∂εM∂ε
e
M

=
∂σM

∂εM
=

1

V

∫

V

∂2ψµ

∂εM∂ε
e
M

dV (32)

Macroscopic tensor of thermomechanical expansion

AM = −
∂2ψM

∂εeM∂θM
=
∂sM

∂εeM
= −

∂σM

∂θM
= −

1

V

∫

V

∂2ψµ

∂εeM∂θM
dV (33)

Macroscopic volume heat capacity

CM

T0
= −

∂2ψM

∂θM∂θM
=
∂sM

∂θM
= −

1

V

∫

V

∂2ψµ

∂θM∂θM
dV (34)

As the behavior of microscopic domain depends on the macroscopic temperature gradient,

the macroscopic free energy needs to be enhanced as seen in Section 2.6. This leads to the

existence of operators that do not present a counterpart in the microscale, which are

A
′

M = −
∂2ψM

∂εeM∂ [∇θ]M
=
∂s′M
∂εeM

= −
∂σM

∂ [∇θ]M
= −

1

V

∫

V

∂2ψµ

∂εeM∂ [∇θ]M
dV (35)

C
′

M = −
∂2ψM

∂θM∂ [∇θ]M
=
∂s′M
∂θM

=
∂sM

∂ [∇θ]M
= −

1

V

∫

V

∂2ψµ

∂θM∂ [∇θ]M
dV (36)

G
′

M = −
∂2ψM

∂ [∇θ]M ∂ [∇θ]M
=

∂s′M
∂ [∇θ]M

= −
1

V

∫

V

∂2ψµ

∂ [∇θ]M ∂ [∇θ]M
dV (37)
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4 ENERGY BALANCE - DISSIPATION CONSISTENCY

Besides the relations previously stated an energy balance condition is necessary. Classic

homogenization theory uses the Hill-Mandel principle to this end. In this proposal, in order

to have a fully consistent homogenization procedure, the energy balance is obtained from the

dissipation and not from arbitrary potentials. The following expressions of the macroscopic

dissipation terms can be obtained for the corresponding homogenization processes

Ds
M =

1

V

∫
Ds

µ dV , Dth
M =

1

V

∫
Dth

µ dV (38)

Hence, the energy balance formula for the heat flow is

hM [∇θ]M
θM

=
1

V

∫
hµ · [∇θ]µ

θµ
dV (39)

In regards to the intrinsic dissipation a general homogenization equation of inelastic variables

is not trivial. As it depends on the inelastic variables of every point of the RVE, the homogenisa-

tion depends on as many variables as the discretization of the RVE domain. A single dissipative

variable (damage, plastic, or other) on the microscale can originate more than one macroscopic

dissipative variable.

Thus, in the proposed approach the energy balance is naturally derived from the considered

thermodynamic framework, without the need to assume or, moreover, impose arbitrary poten-

tials.

5 REACTIVE FORCES CONSTRAINS

It is reasonable to assume that the microscopic plastic variable is independent of the macro-

scopic elastic strain. Additionally it will be assumed that the microscopic temperature does no

depend on the macroscopic elastic strain. Under these conditions only the first tem in the right

side of Eq. (29) survives, and we can rewrite the equation as

σM =
1

V

∫

V

∂ψµ

∂εeM
dV =

1

V

∫

V

(
σµ :

∂εeM
∂εeM

+ σµ :
∂ε̃eµ

∂εeM

)
dV (40)

Being ˙̃εµ =
˙̃

∇suµ, and using the divergence theorem then

∫

V

˙̃
εµ(ũµ) : σµ dV =

∫

S

˙̃uµ · t
e dS −

∫

V

˙̃uµ · b dV (41)

As it can be seen in de Souza Neto and Feijóo (2006), for Eq. (41) to be equal to zero each

integral vanish individually

0 =

∫

S

˙̃uµ · t
e dS and 0 =

∫

V

˙̃uµ · b dV (42)

and each integral is zero if the forces on the RVE are purely reactive.

In an analogous form

∫

V

σµ :
∂ε̃eµ

∂εeM
dV =

∫

S

∂ũe
µ

∂εeM
· te dS −

∫
∂ũe

µ

∂εeM
· b dV (43)
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As ũµ is equal to zero on all boundaries where te 6= 0 for any value of εeM , then the first

integral of the last equation is also equal to zero under reactive surface forces. For the body

force term, the integral vanishes only under the absence of body forces.

If Eqs. (43) and (41) are null then the homogenisation Eqs. (40) can be re-written as

σM =
1

V

∫

V

σµ dV (44)

The same procedure can be used to deduce that under these conditions

E
e
M =

1

V

∫

V

E
e
µ dV +

1

V

∫

V

E
e
µ :

∂ε̃µ

∂εeM
dV (45)

E
t
M =

1

V

∫

V

E
t
µ dV +

1

V

∫

V

E
t
µ :

∂ε̃µ

∂εM
dV (46)

DM =
1

V

∫

V

Dµ dV (47)

The stress homogenisation equation, which has been derived from a thermodynamic frame-

work, is the same used in the classical homogenisation. Hence, this equation satisfies the ther-

modynamic consistency only under purely reactive forces.

In regard to the dissipation, Eq. (47), can also be found used in the literature. However, here

this equation has been deduced as a requirement for fulfilling thermodynamic consistency.

6 CONDITIONS FOR THE THERMODINAMIC CONSISTENCY OF MULTISCALE

HOMOGENISATION SCHEMES

In this section the necessary and sufficient conditions for thermodynamically consistent mul-

tiscale homogenisation procedures are established.

In order to maintain thermodynamic consistency between scales the only necessary condi-

tions is

ψM =
1

V

∫

V

ψµ dV (48)

Provided the forces on the RVE are purely reactive, the last equation leads to

DM =
1

V

∫

V

Dµ dV (49)

σM : ˙εM =
1

V

∫

V

σµ : ε̇µ dV (50)

Under reactive forces the stress homogenisation Eq. (44) automatically ensure the power

balance of Eq. (50). This equation, together with the dissipation homogenisation in Eq. (49)

ensures the free energy consistency. These are the necessary and sufficient conditions to ensure

the consistency of the free energy between scales.

Hence the Hill-Mandel principle alone is not enough to procure a thermodynamically con-

sistent homogenisation between scales. As most of the utilized multiscale theories abide this

principle, an appropriate and simple procedure to turn these multiscale procedures into ther-

modynamically consistent is to include the additional constrain of Eq. (49) representing the

dissipation homogenisation.
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7 CONCLUSIONS

The thermodynamic consistency of homogenisation base multiscale schemes was analysed

and defined in the framework of dissipative constitutive theories. It was demonstrated that

the Hill-Mandel principle is only a sufficient condition for the thermodynamic consistency of

multiscale homogenisation procedures when elastic or perfectly plastic materials theories are

considered. However, when any dissipative material is considered, an additional condition to

the Hill-Mandel Principle is required. This condition is the homogenisation of the dissipation

which establishes that the macroscale’s dissipation is the RVE volume average of that of the fine

scale. The conditions for thermodynamically consistent multiscale homogenisations were de-

veloped for general inelastic constitutive theories. All together, the results and demonstrations

in this work clearly establish the substantial differences between classical and thermodynami-

cally consistent homogenisation schemes of multiscales material theories.
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