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Abstract. A computational approach for the evaluation of the electro-mechanical response of 
levitation based vibration energy harvesters is presented in this paper. The key aspects of the 
design of levitation based energy harvesters, such as the existence of the resonance phenomenon, 
the influence of damping in the system response, the magnetic force nonlinearity and the 
calculation of the magnetic flux derivative for multi-magnet configurations are addressed. The 
evolution in time of the electromechanical variables is investigated through a hybrid numerical-
analytical approach. The evaluation of the levitational force and the magnetic flux derivative is 
done through a nonlinear model based on the finite element method. A performance assessment 
is done by comparing the results obtained with the present formulation against measurements; a 
physical prototype of a multi-pole-multi-coil harvester is built ad hoc. An excellent agreement 
between the mathematical model and the experiments was found. 
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1 INTRODUCTION 

Levitation based electromagnetic energy harvesters are an interesting alternative for 
scavenging energy from vibration sources, especially for low frequency applications; the 
simplicity of its construction together with its low maintenance are points that justify this 
fact. Investigations about levitation based harvesters are not abundant; a few works can 
be found in the literature (Mann and Sims, 2009; Zhu and Zu, 2012; De Pasquale, Iamoni 
and Somà, 2013; Apo and Priya, 2014; Palagummi, Zou and Yuan, 2015; Soares Dos 
Santos et al., 2016). Most of this works are based on an analytical formulation for the 
magnetic field, which implies that the magnet geometry must be simplified. Several 
important aspects such as the optimal design of multipole configuration, the accurate 
modeling of the levitation force, the analysis of the nonlinear response, etc. have still not 
been addressed.  

Zhu and Zu (Zhu and Zu, 2012) presented the simulation of a vibration-based energy 
harvester that uses a magneto-electric laminate composite to harvest energy from the 
nonlinear vibrations of a levitating magnet. A cubic law was used to model the levitation 
force and an average axial flux analytical formula was used to calculate the axial magnetic 
flux. Abed et al. (Abed et al., 2015) studied the non-linear dynamics of a two degrees of 
freedom levitation based harvester. The magnetic forces were calculated with simplified 
analytical expressions; the bandwidth enhancement possibilities of the 2 DOF system was 
studied. It is not stated in the paper how the magnetic flux was obtained.  Mann and Sims 
(Mann and Sims, 2009) have investigated the design and analysis of a novel energy 
harvesting device that operates as a tunable oscillator. The researchers proposed a cubic 
polynomial law for modeling the magnetic force, the coefficients of the polynomial were 
obtained experimentally. The electromechanical coupling was modeled through a 
damping coefficient, also obtained experimentally. The response of the system for 
harmonic excitation was obtained analytically through the method of multiple scales; the 
dynamics of the system was compared with experiments. No information about the 
magnetic field distribution and power curves was presented. 

 Soares dos Santos et al. (Soares Dos Santos et al., 2016) have reported a levitation 
based harvester with a single Neodymium moving magnet. The authors developed a semi-
analytical approach based on a surface current model for calculating the magnetic flux 
distribution; the equation of motion were integrated numerically. The force between the 
magnets was obtained through derivative of their interaction energy; this requires the 
assumption that the magnets are coaxial. Friction between the magnet and the cylinder 
was considered through a Karnopp model. Some sort of finite rotation framework in terms 
of Euler angles was presented to account for container arbitrary dynamics; although, the 
non-commutativity of rotations was not addressed. Lee et al. (Lee et al., 2010) also 
presented a levitation based harvester composed of a single magnet moving inside a coil. 
Both cubic and quintic polynomials were used to model the magnetic force between the 
moving magnet and the end magnets. The coefficients of the polynomial were obtained 
experimentally. The electromechanical coupling was also obtained through experiments. 
The magnetic flux was assumed to be uniform and constant in time; thus the variation of 
the magnetic field with the displacement of the moving magnet was not considered. 
Munaz et al. (Munaz, Lee and Chung, 2013) studied different design architectures of an 
electromagnetic harvester. The magnetic flux density was modeled with analytical 
functions; the superposition principle was recalled when multipole magnets were studied. 
A finite element analysis was conducted to find the optimal magnetic flux distribution 
according to the number of poles of the moving magnet. Experimental analyses were 
conducted and compared against the power calculated assuming that the magnet moves 
according a sinusoidal law; so, the dynamic of the system was imposed and the 
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electromechanical coupling was neglected. The coil configuration used to avoid 
cancellation in the multipole configuration was not informed.  

Apo and Priya (Apo and Priya, 2014) studied the effect of multipole configurations 
for the moving magnet of a levitation based harvester. The levitating force equation was 
found to be a cubic polynomial. Finite element analysis was conducted to find optimal 
magnet configuration. No details about the solution of the equations of motion were 
given.  Dallago et al. (Dallago, Marchesi and Venchi, 2010) developed an analytical 
model for considering the nonlinear stiffness effect on levitation based harvesters. A cubic 
law for the magnetic force was used; the polynomial coefficients were found through 
FEM. Avila Bernal and García (Avila Bernal and Linares García, 2012) presented a 
mathematical derivation for modeling the dynamics of mono-pole electromagnetic energy 
harvesters. Analytical models for the magnetic field distribution and magnetic force were 
presented. The analytical results were compared against FEM.  

A different class of levitation based harvesters are diamagnetic levitation harvesters; 
these devices completely avoid the use of containers and therefore friction is eliminated 
from the problem. In this direction, Wang et al. (Wang et al., 2013) and Palagummi et al. 
(Palagummi, Zou and Yuan, 2015) have developed a harvester with dual diamagnetic 
plates and a cylindrical levitating magnet. Some important conclusions can be made 
analyzing the cited works; the magnetic flux was modeled with analytical expressions or 
even not modeled at all. This is a important fact since the correct modeling of the magnetic 
flux density is crucial to obtain an accurate prediction of the generated power and also of 
the levitation force. Some works claim the analytical modeling of the magnetic flux is 
superior to numerical modeling in terms of accuracy and computational cost (Soares Dos 
Santos et al., 2016). Although it could be possible to justify the contrary, it suffices to say 
that analytical approaches only can deal with very simplified geometries. Note that still 
the involved formulations used by Santos et. al (Soares Dos Santos et al., 2016) and Avila 
Bernal and García (Avila Bernal and Linares García, 2012) to model the axial magnetic 
flux distribution cannot account for the effect of the flux interference caused by the end 
magnets nor the effect of spacers in multipole magnets. Accurate analytical modeling of 
the magnetic flux distribution for levitating harvesters is possible only for simple magnet 
geometries. 

This work presents a general mixed formulation for modeling linear electromagnetic 
energy harvesters. The work is focused on the development of a computational procedure 
to predict the time variation of the induced voltage in a complex energy harvester. The 
approach is based on a hybrid formulation that is capable of dealing the most general case 
of linear harvester configuration. The evolution of the mechanical variables is obtained 
through an analytical model while the magnetic variables are obtained through the finite 
element method. Both models are linked through a series of computational routines that 
involve: polynomial fitting, numerical integration and data lookup algorithms. 

The magnetic flux density is calculated using finite elements; a computational 
algorithm extracts the average flux as a function of the axial coordinate and calculates its 
derivative via a central difference scheme. The levitation force at discrete locations is also 
obtained with the same finite element data, thus avoiding the use of analytical expressions 
which are limited to single-pole magnets. This also avoids the use of experimentation to 
obtain the force law. A polynomial fitting technique is used to finally obtain an analytical 
force-displacement function. The equations of motion of the electromechanical system 
are written as a function of the average flux derivative; then they are transformed to the 
state space in order to be solved through a numerical integration algorithm.The approach 
is capable of modeling devices with arbitrary magnet geometry, arbitrary magnet pole 
and coil counts, and random mechanical excitations. Several nonlinear affects, such as: 
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frictional, viscous and electromagnetic damping are naturally included in the model. The 
proposed approach has great flexibility and generality of a full tridimensional coupled 
electromechanical simulation and still retains the simplicity of one dimensional 
approaches. The validation of the formulation is done through a detailed comparison 
against experimental data obtained from physical testing of a prototype multi-pole multi-
coil harvester built ad hoc. Also, some key aspects of levitation based harvesters, such as 
the jump phenomenon and its sensitivity to the system friction and load amplitude are 
briefly addressed.  

2 DESIGN GENERALITIES 

All Levitation Based Vibrational Energy Harvesters (LBVHs) have a similar 
architecture; a magnet or stack of magnets moves inside a cylinder that is surrounded by 
a coil. The motion of the magnet is limited by a repulsive force exerted by the opposing 
magnetic field of auxiliary magnets placed in the cylinder ends. In this work, we propose 
a multi-coil-multi-magnet-multi-spacer configuration of a LBVEH, see Figure 1. The 
objective of this design is to generate a complex voltage-time signal and then test the 
proposed approach in this complex scenario. In order to simplify the language, the central 
magnet assembly of magnets and spacers will be called “stack”. The design of the 
harvester starts with the study of the behavior of the dynamical system; this requires to 
find the equations that describe the force interaction between the components. The 
repulsive force exerted by the auxiliary end magnets is nonlinear with the distance 
between them and the moving magnet; thus, they play the role of a nonlinear stiffness. 
The magnets repulsive force law can be reasonably approximated with a polynomial 
(Dallago, Marchesi and Venchi, 2010; Zhu and Zu, 2012; Pasquale, Somà and 
Fraccarollo, 2013; Apo and Priya, 2014); since it is the responsible of the stability of the 
dynamical system, odd power functions are required. 

A LBVEH is designed to recover energy from vibration sources, the nature of the 
source constraints the harvester tuning. There is a common misinterpretation in most 
research works, the harvester is said to be designed to have a resonant frequency that is 
coincident with the predominant frequency of the source (Saha et al., 2008; Dallago, 
Marchesi and Venchi, 2010; Zhu and Zu, 2012; Munaz, Lee and Chung, 2013; Apo and 
Priya, 2014). This is not strictly correct since an LBVEH do not have a resonant 
frequency; it is known the fact that an oscillator with nonlinear stiffness can be modeled 
by the Duffing’s equation, which do not exhibit resonance (Griffiths and Inglefield, 
2005). 

  
Figure 1 - Levitation-based harvester architecture 
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2.1 Electro-mechanics 

As the stack of magnets move inside the cylinder, the magnetic flux through the coils 
changes with time; inducing an electric field in the coil. This electric field generates an 
electro-motive force ℰ; which is equal to: 

 ℰ = ∮𝑬 ⋅ ݀𝒍 
𝐶 = − ݐ݀݀ ∫𝑩 ⋅ 𝒏 ݀ܣ 

ௌ = −݀𝜑݀ݐ  (1) 

where 𝑬 is the electric field, 𝑩 is the magnetic flux density, ܥ is the curve described by 
the coil, ܵ  is the surface enclosed by the coil loops, 𝒏 is the surface unit normal vector 
and 𝜑௠ is the magnetic flux through ܵ. So, the total voltage induced in a coil loop is 
obtained through the integral of the electric field over the curve described by the loop; 
using Faraday’s law this results to be equal to the time derivative of the total magnetic 
flux through the surface enclosed by the loop (Griffiths, 2010). 

Since the stack is contained by the cylinder, it can only move in the axial direction x; 
the loops enclosed surfaces have a unit normal vector that is coincident with the axial 
direction. Therefore, the problem is uniaxial and the magnetic flux is only a function of 
the axial coordinate. Then the induced voltage can be written as 

 𝑉 = −݀𝜑௠݀𝑥 ݀𝑥݀ݐ = −𝜑′𝑥ሶ  (2) 

where the overdot ( ሶ) indicates time derivative and the accent superscript indicates 
derivative respect to 𝑥. 

The discrete evaluation of the magnetic flux derivative is possible, so 

 𝑉 =  ሺ𝑥𝑖ሻ′ ܤ∫∑)−
ௌ 𝑖௡௖ܣ݀

𝑖=ଵ )𝑥ሶ = −∑𝜑𝑖′௡௖
𝑖=ଵ 𝑥ሶ  (3) 

where ܣ𝑖 is the area of the ith coil and ܤ𝑖′ is the 𝑥 derivative of the 𝑥 component of the 
magnetic flux density and nc is the total number of coils. The last equation clearly shows 
that in order to generate maximum voltage both the magnetic flux derivative and velocity 
of the stack must be optimized.  

Now, the equations of motion of the mechanical system can be derived from Newton’s 
law, so 

 𝐹ሺ𝑥, 𝑥ሶ , 𝜑௠, ሻݐ = ݉𝑥ሷ𝑠 (4) 

where 𝐹 is the sum of all the forces acting on the stack, ݉ is the stack mass and 𝑥ሷ𝑠 is the 
stack acceleration. The forces acting on the system are: 

 𝐹 = 𝐹௞ሺ𝑥, 𝜑௠ሻ + 𝐹௖ሺ𝑥ሶ , 𝜑௠′ ሻ + 𝐹௚ (5) 

where 𝐹௞ is the levitation force, 𝐹௖ is the damping force and 𝐹௚ is the gravitational force. 

2.2 Magnetic levitation force 

The restoring forces acting on the stack are exerted by the end magnets; as the stack 
moves into the cylinder the end magnets play the role of a spring. The opposing magnetic 
fields of the end magnets and the stack generates a stabilizing force that is function of the 
distance between them. In the present work, Finite Element modeling was used to obtain 
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the force-displacement law of the harvester; the computer code FEMM was used to 
perform the simulations (Meeker, no date). We found that for the present configuration 
the magnetic force can be approximated with the following function of the stack 
displacement 

 𝐹௞ = 𝑎଴௞ݑ𝑠 + 𝑎ଷ௞ݑ𝑠ଷ + 𝑎ହ௞ݑ𝑠ହ (6) 

where 𝑎𝑖௞  are constant parameters and ݑ𝑠 is the displacement of the stack relative to 
the cylinder base. To obtain a centered function, the initial position of stack was taken at 
the middle point of the cylinder length; then, the relative displacement of the stack can be 
written as 

𝑠ݑ  = 𝑥𝑠 − 𝑥௕ − ݈𝑠௕ (7) 

where 𝑥𝑠 is the stack position, 𝑥௕ is the base position and ݈𝑠௕ is the initial magnet-base 
distance. Note this choice implies that the gravitational load must be imposed to the 
model.  

2.3 Damping forces 

There are three main sources of damping in a LBVEH: friction, air damping and 
electromagnetic damping. Air and electromagnetic damping are proportional the velocity, 
while friction damping is near constant with velocity.  

The relative velocity of the stack can be obtained by derivation of Eq. (7) as 

ሶݑ  𝑠 = 𝑥ሶ𝑠 − 𝑥ሶ௕ (8) 

The air damping is the result of the air flux through discharge holes made in the 
harvester to avoid internal air compression. The simplest, but yet effective, model that 
can be written to account for air damping is a proportional viscous model; therefore, the 
air damping force will be obtained as: 

 𝐹௖𝑠 = ܿ𝑠ݑሶ 𝑠 , (9) 

where is the viscous damping coefficient that will be obtained by identification.  
The frictional force can be obtained using a Coulomb model as 

 𝐹௖௙ = ௙ܿsignሺݑሶ 𝑠ሻ = ௙ܿ|ݑሶ 𝑠| ሶݑ 𝑠. (10) 

To derive a unique damping coefficient, it is convenient to rewrite the above equation 
as 

 𝐹௖௙ = ௙ܿ|ݑሶ 𝑠| ሶݑ 𝑠. (11) 

The induction damping force is generated when the circuit is closed with a load, and 
thus a current is created. This current creates its own magnetic field; this new magnetic 
field opposes to its cause, giving rise to a force that opposes the motion. Since this force 
is proportional to the current and thus proportional to the relative velocity of the stack, it 
is often considered as an electromagnetic damping force. So, it can be written as 

 𝐹௖௠ = ܿ௠ݑሶ 𝑠, (12) 

where c௠ is the electromagnetic damping coefficient.  
To derive the expression of the electromagnetic damping an energy balance law must 

be recalled. The electromagnetic damping force is responsible for the electric power 

M. SARAVIA, A. OBERST1476

Copyright © 2017 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



generation, so the energy conversion must be such that the mechanical power dissipated 
by the electromagnetic damping is equal to the generated electrical power, i.e.  

 𝐹௖௠ݑሶ 𝑠 = 𝑉ଶܴ௟ + ܴ௖ + ݆𝜔𝐿௖, (13) 

where 𝑉 is the induced voltage, ܴ௟ is the load resistance, ܴ௖ is the coil resistance, 𝐿௖ is 
the coil inductance and 𝐹௖௠ is the electromagnetic damping force.  

Using Eqs. (3) and (12), the above equations give the electromagnetic damping 
coefficient as 

 ܿ௠ = ሺ∑𝜑𝑖′ሻଶܴ௟ + ܴ௖ + ݆𝜔𝐿௖ (14) 

At low frequencies the coil inductance has a negligible effect compared to that of the 
resistance, so the above equation can be written as:  

 ܿ௠ = ሺ∑𝜑𝑖′ሻଶ்ܴ , (15) 

where ܴ ் is the total resistance of the circuit. 
 

2.4 Inductive performance 

The maximization of the induced voltage implies the maximization of the product of 
the velocity and the magnetic flux derivative. So, the efficiency of an electromagnetic 
harvester is governed by two factors: its dynamics and its induction capability. The latter 
is dependent on the magnetic field gradient strength of the moving magnet, the number 
of coil loops count and loops area. An analytical law is commonly used to model the 
magnetic flux distribution along the axial and radial components (Mann and Sims, 2009; 
Lee et al., 2010; Avila Bernal and Linares García, 2012; Zhu and Zu, 2012; Soares Dos 
Santos et al., 2016). Sometimes this law is used for multi-magnet stacks, assuming 
additivity, without proving its validity.  

The magnetic field gradient strength can be optimized for certain configurations of 
the stack by using ferromagnetic spacers; the geometrical design of both spacers and the 
magnets are of key importance to ensure a high flux derivative. The effect of 
ferromagnetic spacers on the magnetic flux derivative is remarkable, unfortunately it 
cannot be modeled by analytical approaches. The spacers allow the flux spatial derivative 
to grow and also change sign; it can be said that they work as backirons. The growth is 
such that if one replaces the spacers by magnets the flux derivative is considerably lower. 
The Figure 2 shows a comparison of the flux derivative for a four magnet stack and three 
spacers configuration vs. a seven magnet stack configuration. 
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Figure 2 -  Magnetic flux derivative, effect of spacers 

The accurate evaluation of the magnetic field distribution is of paramount importance 
for the prediction of the harvester performance. The Finite Element Method is probably 
the best tool for that purpose; it is simple, fast and it can handle arbitrary geometries.  

In order calculate the flux derivative at a certain location and time instant we propose 
an algorithmic approach that processes the magnetic finite element information and 
operates numerically on the result to obtain a vector of flux derivatives. This vector in 
conjunction with a 1-D interpolation algorithm to evaluate the flux derivative in every 
coil of the harvester in a certain time instant.  

The algorithm has the following procedural structure: 

I. Read the finite element results of the magnetic flux (Lua Script). 
II.  Calculate the average flux density over the coil area in the origin of the axial 

coordinate (Lua Script). 
III.  Store the coordinate and the average flux in an ASCII file (Lua Script). 
IV.  Advance a step in the coordinate and repeat I-III until the last coordinate 

length (Lua Scritp). 
V. Read the average flux file (Python). 

VI.  Derivate the average flux vector using central difference (Python). 
VII.  Smooth the derivative using a Savitzky-Golay filter (Python). 

There is an important point that must be considered for calculating the magnetic flux 
of a LBVEH; the end magnets perturb the flux in the stack. This perturbation may be not 
important if the stack is not moving significatively, but can be of importance if the stack 
moves close to the end magnets. This raises an important problem, since now the magnetic 
flux distribution is changing with the magnet displacement, and then with time. The 
Figure 3 shows how the magnetic flux derivate changes its shape as the stack moves closer 
to the end magnet.  
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Figure 3 -  Magnetic flux derivative 

The variation of the magnetic flux pattern with the magnet displacement pose a 
question about the necessity of considering this variation in the determination of the 
generated voltage. From the computational point of view, considering the flux variation 
is cumbersome; two approaches could be used to tackle the problem: a full finite element 
analysis of the coupled problem or a so-called quasi-static determination of the flux for 
different locations of the magnet with a subsequent point searching technique to 
determine the flux after the solution of the dynamic problem. Fortunately, the change in 
the flux derivative is accompanied with a reduction in velocity of the stack; which implies 
that, still when the magnetic flux distribution is perturbed by the magnets close up, the 
effect on the voltage generation may not be important. For the sake of brevity, this effects 
will be disregarded in the present paper; although, it will be treated in a future work.  

It is important to note that a multi-coil configuration requires an out of phase 
connection of the coils; otherwise the group of coils would behave as a large single coil 
and thus the term multi-coil would be incorrect. 

2.5 Power optimization 

The optimization of the harvester power generation capability implies the 
maximization of the integral of the product of the velocity and the magnetic flux 
derivative. The source vibration imposes the operating conditions of the harvester; 
therefore, its optimal design requires knowing the time and frequency characteristics of 
the source signal. The most simplified model of a LBVEH could be well represented by 
the Duffing’s equation; the dynamics of the Duffing’s equation is well known, and it 
could be well justified that, unlike linear systems, vibration amplitudes raise unlimitedly 
with frequency.  

It is commonly accepted that an effective harvester should be tuned to work in a 
resonant condition (Saha et al., 2008; Mann and Sims, 2009; Dallago, Marchesi and 
Venchi, 2010; Munaz, Lee and Chung, 2013; Apo and Priya, 2014; Abed et al., 2015; 
Palagummi, Zou and Yuan, 2015). However, magnetic harvesters do not exhibit 
resonance; this assertion will be clarified later. This misinterpretation probably appears 
because of the fact that in the presence of damping, the amplitudes jump from a large 
displacement equilibrium path to a small displacement one, thus producing a resonance 
like response. The jump frequency is sensitive not only to damping, but also to the load 
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amplitude. In virtue of that, it is very important to note that, unlike linear oscillators, the 
frequency tuning of a LBVEH is strongly dependent on the load amplitude and on the 
system damping.  

A reasonable criterion to maximize the velocity of the stack of magnets relative to the 
coil is to maximize the stack stroke; which has the natural consequence of increasing size. 
If sinusoidal excitation is assumed, the harvester vibration frequency fixed, so 
maximizing the amplitude is the next step. At this point, the geometric dimensions of the 
device define the elasticity of the system. The harvester mass is fixed by the magnetic 
induction design through the harvester power requirements.  

3 EQUATIONS OF MOTION 

3.1 Mechanical system 

The equation of motion are derived from the force balance in the stack; we will refer 
the displacements of the stack to the displacements of the cylinder; therefore, the resulting 
formulation can be considered to be relative. Note that an absolute formulation could also 
be derived, but it is clearly not advantageous in cases where base acceleration is used as 
excitation since the evaluation of the external forces is considerably more involved. In 
turn, if the base displacement is chosen as excitation, an absolute formulation is advised.  

Recalling Eqs. (4) and (5), the equations of motion can be written as 

 𝐹௞ሺ𝑥, 𝜑௠ሻ + 𝐹௖ሺ𝑥ሶ , 𝜑௠′ ሻ + 𝐹௚ = ݉𝑥ሷ𝑠, (16) 

being 𝐹௞, 𝐹௖ and 𝐹௚ the levitation, damping and gravitational forces respectively and 𝑥ሷ𝑠 
the absolute acceleration of the stack.  

Using Eqs. (6), (9), (12) and (15) the equations of motion can be expanded as 

݉𝑥ሷ𝑠 + 𝑎଴௞ݑ𝑠 + 𝑎ଷ௞ݑ𝑠ଷ + 𝑎ହ௞ݑ𝑠ହ + [ܿ𝑠 + ௙ܿ|ݑሶ 𝑠| + ሺ∑𝜑𝑖′ሻଶ்ܴ ] ሶݑ 𝑠+ ݉𝑔 = Ͳ 

(17) 

The stack acceleration can be obtained by derivation of Eq. (7), so 

 𝑥ሷ𝑠 = ሷݑ 𝑠 + 𝑥ሷ௕ (18) 

Defining the nonlinear stiffness  

 ݇ሺݑ𝑠ሻ = 𝑎଴௞ + 𝑎ଷ௞ݑ𝑠ଶ + 𝑎ହ௞ݑ𝑠ସ (19) 

And the damping coefficient 

ܿ = ܿ𝑠 + ௙ܿ|ݑሶ 𝑠| + ሺ∑𝜑𝑖′ሻଶ்ܴ  (20) 

The equations of motion can be written in the compact form ݉ݑሷ 𝑠 + ݇ሺݑ𝑠ሻݑ𝑠 + ܿሺݑሶ 𝑠, 𝜑𝑖′ሻݑሶ 𝑠 = −݉ሺ𝑥ሷ௕ + 𝑔ሻ (21) 

From the last equation, it can be clearly seen that all unknowns are relative 
magnitudes.  
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3.2 Electrical system 

As already said, the change in magnetic flux induces a voltage in the coils. When the 
circuit is closed with a load, a current flows through the circuit. The equations of the 
electrical system can be written as 

 𝐿𝐼ሶ + ்ܴ𝐼 = 𝑉 (22) 

where 𝐼 is the current flowing through the circuit, 𝐿 is the inductance of the coils, ்ܴ is 
the total resistance of the circuit and 𝑉 the induced voltage.  

Using Eq. (3), the voltage can be expressed as a function of the stack velocity, then 
the electrical system equations take the form 

 𝐿𝐼ሶ + ்ܴ𝐼 = −∑𝜑𝑖′ ሶݑ 𝑠 (23) 

As it can be seen, this is an electro-mechanical equation, coupled through the 
derivative of the magnetic flux.  

3.3 Coupled system 

The electro-mechanical system is modeled by a coupled system of nonlinear 
equations. Bringing together the mechanical and the electrical equations, Eq. (21) and Eq. 
(23) respectively, we have ݉ݑሷ 𝑠 + ݇ሺݑ𝑠ሻݑ𝑠 + ܿሺݑሶ 𝑠, 𝜑𝑖′ሻݑሶ 𝑠 = −݉ሺ𝑥ሷ௕ + 𝑔ሻ 𝐿𝐼ሶ + ்ܴ𝐼 = −𝜑𝑖′ݑሶ 𝑠 (24) 

In matrix form the above equations can be written as 

[݉ ͲͲ Ͳ] ሷݑ] 𝑠𝐼ሷ ] + [ܿ𝑠 + ௙ܿ|ݑሶ 𝑠| + 𝜑𝑖′ଶ்ܴ Ͳ𝜑𝑖′ 𝐿] ሶݑ] 𝑠𝐼ሶ ] + [݇ሺݑ𝑠ሻ ͲͲ ܴ] 𝑠𝐼ݑ] ]
= [−݉ሺ𝑥ሷ௕ + 𝑔ሻͲ ] (25) 

In order to numerically integrate these equations using the Runge-Kutta algorithm the 
system must be recast in state space form, then 

ሶݑ] 𝑠ݑሷ 𝑠𝐼ሶ ] = [  
  Ͳ ͳ Ͳ−݇ሺݑ𝑠ሻ݉ − ͳ݉ cሺuሶ s, 𝜑𝑖′ሻ ͲͲ −𝜑𝑖′𝐿 −ܴ𝐿 ]  

ሶݑ𝑠ݑ]   𝑠𝐼 ] + [ Ͳ𝑥ሷ௕ + 𝑔Ͳ ] (26) 

Now, the last form of the system of equations is ready to be implemented in the 
computational code.  

It is important to note that the RK method is particularly attractive for solving this 
class of problems since it can handle nonlinearities without requiring the linearization of 
the equations of motion. This advantage is in some way paid with the additional degree 
of freedom required to put the second order equations of motion in the equivalent first 
order state space form.   
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4 RESULTS  

In order to validate the proposed approach a physical prototype of a LBVEH was 
built. The key idea of the physical design is not to optimize the power generation but to 
obtain a dynamical behavior such that the voltage signal is composed by multiple magnet 
fluxes crossing different coils simultaneously; this choice is made to test the framework 
in the most complex scenario. The harvester was designed with a multi-pole-multi-coil 
configuration that generates a complex magnetic field distribution; thus, during operation 
the flux gradient curve crosses different coils and a complex voltage signal is generated. 
The coils were wounded with commercial wire of AWG30 gauge and connected in series. 

The stack was built by piling four neodymium magnets in repelling poles 
configurations; steel spacers were added between the magnets in order to retain the 
magnetic flux. The stack displacement is limited by the repelling force of two end 
magnets, which are identical to those that form the stack; this choice allows to generate a 
large displacement dynamics.  

4.1 Testing 

The physical prototype was excited with a electromechanical shaker a different 
frequencies and the voltage and base acceleration signals were acquired. The equipment 
used to conduct the tests was: Labworks ET-132 electrodynamic shaker, Rigol DG 4062 
function generator, home-built amplifier, PCB Accelerometer and National NI9234 data 
acquisition module.  

The harvester was excited at different discrete frequencies between 2 and 10 Hz. The 
piezoelectric accelerometer was mounted in the base of the shaker in order to use this 
signal as an excitation for the computational model.  

The formulation was implemented in a Python code written by the authors called 
PyDy, which is based on the Object Oriented Programming philosophy and a Runge-
Kutta Method solver. 

 
Figure 4 – Data acquisition hardware configuration 

4.2 Damping identification 

The present approach includes the effects of both viscous and friction damping. The 
friction damping is expected to influence the system dynamics in the low frequency range; 
viscous damping is expected to do it in the high frequency range.  
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Both damping effects are modeled through proportional models with frequency 
varying coefficients, which are a function of velocity and its determination require an 
“identification” procedure.  Especially the friction coefficient is very difficult to identify 
since the normal force is intermittent. This intermittence is very difficult to eliminate 
without closing the gap between the stack and the cylinder, which has the drawback of 
increasing the effective friction force and consequently the value of damping. In order to 
simplify the identification of the damping coefficients, we have assumed that the stack 
moves at the same frequency of the signal and then identified discrete values of damping 
for certain frequencies.  

The Figure 5 shows the simulated and measured voltage signals at an operation 
frequency of 2 Hz for different friction coefficients, the viscous damping coefficient was 
set to 0.25.  

 
Figure 5 – Effect of the frictional force 

It can clearly be seen that friction governs the intermittence of the stack motion; the 
stack moves only when the inertial force is larger than the frictional force.  

The Figure 6 shows the correlation between the experiment and the simulation for one 
period of motion setting the frictional damping coefficient at 0.33. 
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Figure 6 – Friction coefficient identification – 2.0 Hz 

As the excitation frequency increases the effect of the friction damping is less 
important and the viscous damping terms governs the damping forces. The Figure 7 shows 
the correlation of the voltage signal between the experiment and the simulation for a base 
excitation of 10.0 Hz. The optimal viscous damping coefficient is 0.4.  

 
Figure 7 – Friction coefficient identification – 10.0 Hz 

 

Note that obtaining such a good correlation of the voltage signal in the time domain 
is actually difficult since it is dictated by the product of two functions that are changing 
in space and time, the velocity and the magnetic flux derivative. 

4.3 On the existence of resonance 

Most investigations about magnetic levitation based energy harvesters (LBVEH)  
assume that the harvester must work at resonance to scavenge the maximum energy 
[6,7,8,11]. However, the harvester behaves as a Duffing oscillator, which do no exhibit 
resonance (Meirovitch, 1986). Resonance is defined as a property of the system and thus 
it must be independent of the external forces. But this is not the case of an oscillator with 
nonlinear stiffness, since the stiffness is a function of the displacement; then it could be 
said the system has a “continuously varying natural frequency”. Note that the 
displacement amplitude of an undamped LBVEH increases continuously with frequency, 
and the maximum amplitude is found when the forcing frequency is infinity.  

When the system is damped, the stack amplitude does not increase continuously with 
the frequency of the excitation; for a certain frequency, the response falls suddenly from 
a large displacement equilibrium to a small displacement equilibrium. The phenomenon 
is called “jump” and is typical of the Duffing oscillator. The frequency location of the 
maximum amplitude is not only a function of the system, but also of the load amplitude 
and the system damping. 

4.4 Generated power 

The ultimate objective of the proposed computational procedures is to obtain an 
accurate estimation of the harvested energy. The electrical power is a function of the 
induced voltage and the current flowing in the circuit; both variables are related through 
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the circuit load. In order to simulate the power consumption of a small electronic device 
we have represented the load with a resistance of 100 Ohm.  

The Figure 8, Figure 9 and Figure 10 show the correlation of the peak voltage for an 
input acceleration of 1g, the average power and the peak power between the present 
computational approach and the physical experiment. The tests were performed at 
discrete values of excitation frequencies in order to avoid transient effects; the base 
accelerations measured in the physical tests were used as input of the simulation.  

 
Figure 8 – Peak Voltage (1g) 

The peak voltage values given by the present approach correlate very well with the 
experiment, see Figure 11. It must be noted that in order to obtain accurate values of the 
peak voltage it must be ensure that the excitation of the computational model is the same 
than the excitation of the experiment; especially if the shaker dimensions are such that 
the system inertial forces affects its dynamics.  

Regarding the power values, both the peak and the average power show a good 
agreement between the experiment and the simulation. It is important to mention that the 
time signals of power are directly obtained from the voltage signal, which also shows an 
excellent correlation between the simulation and the experiment; see Figure 5, Figure 6 
and Figure 7.  
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Figure 9 – Average Power (1g) 
 

 
Figure 10 – Peak Power (1g) 

5 CONCLUSIONS 

A hybrid numerical-analytical approach for the design of levitation based vibration 
energy harvesters has been presented. The coupled equations of motion of the 2 DOF 
electromagnetic system were written in terms of an analytical function for the levitation 
force and a numerically interpolated function for the magnetic flux derivative. The 
approach can model harvesters with arbitrary magnet-coil-spacer configurations; it allows 
arbitrary excitations and arbitrary nonlinearities. 

The levitation force function was obtained via polynomial fitting of discrete force 
measurements of a finite element model. It was shown that numerical modeling of the 
levitation force and the magnetic flux can be embedded into the electromagnetic dynamic 
equations to permit modeling of any multi-pole-multi-coil configuration. Using the same 
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finite element model a numerical function of the average magnetic flux density as a 
function of the spatial coordinate was extracted. This function was derivate numerically 
and then smoothed through a Savitzky-Golay filter.  

The dynamic response of a multi-magnet-multi-coil harvester was analyzed; it was 
shown that the maximum displacement frequency is strongly dependent on damping and 
on the excitation amplitude. It was also shown that the response of the harvesters does not 
exhibit a behavior analogous to the linear oscillator resonance. 

A performance assessment by comparing the results obtained with the present 
formulation against measurements was presented; a physical prototype of a multi-pole-
multi-coil harvester is built ad hoc. It was shown that the approach gives excellent results 
in terms of: prediction of the voltage-time signal and estimation of integrated parameters 
as average power and average voltage. 
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