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Abstract. This paper discusses a constitutive model for large strain viscoplasticity implemented in a
model based on hyperelasticity. Viscoplasticity is derived in the context of Perzyna model, based on an
extended yield criteria proposed originally by Ponthot. Inthe paper details of large strain viscoplastic
model based on hypoelasticity, implemented in the code Metafor, are presented for comparison purposes.
The hyperelastic large strain model extended to viscoplasticity has been implemented in Sogde following
a previous work of the authors. Numerical problems in small strain case as well as large strain conditions
have been tested. Viscoplastic solutions recover limitelastic and elastoplastic cases with both codes.
The results obtained with both codes are practically identical for the small strain problem tested. For the
large strain case both codes agrees well for limiting cases,but some differences in the load level attained
for intermediate values of viscosity are found.
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1 INTRODUCTION

In this paper the derivation of a large strain viscoplastic model based on hyperelasticity,
based on a previous work of the authors (Ponthot et al., 2005) is discussed. The large strain
model structure is taken from previous work ofGarcı́a-Garino(1993); Garino and Oliver(1995,
1996), derived in the context of the ideas ofSimó(1988a,b); Simó and Ortiz(1985) for the rate
independent case. A viscoplastic Perzyna type model is implemented following a work of
Ponthot(2002) where a unified algorithm for elasto/viscoplastic problems has been proposed.

The kinematics of the resultant constitutive model is basedon the multiplicative decompo-
sition of deformation gradient tensor (Lee, 1969). Stresses can be derived from a hyperelastic
potential and the model is written in the framework of internal variables theory and thermody-
namics of irreversible solids (Lubliner, 1990). The stress update algorithm proposed by Pon-
thot treats the elasto/viscoplastic problem in a unified way. For a J2-flow material model, it
is a simple generalization to rate-dependent problems of the radial return algorithm for rate-
independent plasticity, including a generalized consistency condition. The resultant numerical
model has been implemented and tested in the code Sogde.

In the paper the main ideas of a similar constitutive model proposed byPonthot(2002) are
discussed in order to provide a framework for the discussionof results obtained with Sogde and
Metafor, a code where a model due to Ponthot has been implemented.

The classicalelastic predictor -plastic corrector split problem is used in the numerical
scheme of both codes tested. In this way a fully implicit algorithm is designed. The resultant
update algorithm is written in terms of kinematics quantities instead of the usual one defined
for the stress tensor. In the work it is shown that the unified elasto/viscoplastic stress update
proposed byPonthot(2002) is naturally included in the (previous) numerical structure of rate
independent case, as regards the update be rewritten in terms of kinematic variables.

In a previous work of the authors (Ponthot et al., 2005) a list of references were suggested
in order to review the state of the art of the problem. A comprehensive account of the problem
can be found in the textbooks ofLubliner(1990), for the fundamentals, andOttosen and Ristin-
maa(2005) both for theory and numerical discussion. In the works ofPerzyna(1966, 1971)
distinctive features of so called Perzyna models of viscoplasticity can be found.

An overview of numerical algorithms proposed for viscoplasticty can be seen in the work of
Ponthot(2002) and references therein. Many different algorithms have been developed in order
to integrate elastic-viscoplastic equations, and a valuable discussion can be found inGolinval
(1988). In general the models proposed in the literature, see for instanceHughes and Taylor
(1978), Suliciu (1998), Pan(1997), Rubin (1996), Bruhns and Rott(1994) among others, in
general don’t exhibitthe same level of performance as the radial return algorithm for plasticity.

Rather few works for rate dependent Perzyna models are discussed in the framework of
large strain models. Wang and Sluys(2000) have proposed an incremental model for the elastic
problem and the integration of the problem is carried out using a midpoint rule.Ponthot(2002)
has proposed model based on hypoelasticty for the elastic problem and viscoplastic effects
are integrated with a unified (plastic/viscoplastic) stress update procedure.Simo and Hughes
(1998) have discussed the problem for a Duvaut-Lyons model type.Carosio et al.(2000);
Carosio(2001) proposed a unified analysis for the problem, denoting the model of Ponthot
(2002) as continuum viscoplasticty and the one due toWang and Sluys(2000) as consistent
viscoplasticity. However the comparison of this model has been formulated only for small strain
problems.Alfano et al.(2001) presented general solución procededures in elasto/viscoplasticity 
for the small strain case too.
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In section 2 of the work some results of the large strain kinematics are provided in order to
provide some tools for the derivation of theoretical models, carried out in section 3 for large
strain elasticity and in section 4 for viscoplasticity. Then numerical algorithms are discussed in
section 5 and the results obtained with the two codes tested are discussed in section 6, in order
to provide conclusions of the work.

2 KINEMATICS

In order to describe the kinematics of a solid under large deformation two configurations of
a body are considered. The first one, usually konwn as reference configuration (not necessarily
the initial configuration) at a certain timet0 is denoted asoΩ, where the position of a material
particle at this time is denoted by its position vectorX. The second configuration considered
is the current or deformed configuration, at timet, denoted astΩ, where the position of the
same material particle isx. In figure1 both configurations are shown. There exists an equation
that relates the position of material particle in both configurationsX andx respectively, of the
form:

x = x(X, t) (1)

The velocity of the reference pointX is the material time derivative of the position vector
and is defined by

v = ẋ =
∂ x(X, t)

∂ t
(2)

The deformation gradient of the motion atX is the second-rank two-point tensorF such
that

F =
∂ x

∂X
with J = det F > 0 (3)

By the polar decomposition, we can uniquely decomposeF as

F = RU with RT R = I and U = U T (4)

The correspondingspatial gradient of velocity is given by

l =
∂ v

∂ x
= Ḟ F−1 (5)

It can be decomposed into a symmetric and antisymmetric part, l = d + w with

d = 1

2
(l + lT ) the rate of deformation (6)

w = 1

2
(l − lT ) the spin tensor (7)

The Almansi strain tensor, that is a useful measure for largestrain problems, is defined in the
current configurationtΩ as:

e =
1

2
(g − b−1) (8)

whereg is the spatial metric tensor, andb−1 = F−T F−1 is the Finger tensor.
For the elastoplastic continuum the kinematics of the problem can be extended on the basis

of the very well known multiplicative decomposition of deformation gradient tensorF in its
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Figure 1: Kinematics of large strain elastoplastic solid: configurations

elastic and plastic components (Lee, 1969), as is it shown in equation (9) and illustrated in
figure1.

F = F e F p (9)

From equation (9) can be derived additive decompositions for Almansi straintensor and rate
of deformation tensor as can be seen in eq. (10) and (11) respectively.

e = ee + ep (10)

d = de + dp (11)

whereee andep tensors are defined as the Almansi strain tensore, but replacingF for F e and
F p respectively. From the literature can be recognized that eq. (11) is the Lie derivativeLv

(Marsden and Hughes, 1983) of eq. (10).

3 LARGE STRAIN ELASTIC CONSTITUTIVE MODELS

In this section hyperelastic and hypoelastic models are introduced. The hypoelastic models
were during many years the classical option in computational mechanics literature but since the
late years of the eighties hyperelastic models become a valuable alternative.

3.1 Hypoelastic Constitutive Models

A Hypoelastic Constitutive model can be defined as linear relation between an objective
derivative of Cauchy stress tensorσ and the rate of deformation tensord, by mean of fourth
order constant tensorD(Truesdell and Noll, 1965).

▽

σij= Dijkldkl or
▽

σ= D : d (12)

whereD is the Hooke stress-strain tensor given by

Dijkl = K δijδkl + 2G (δikδjl −
1

3
δijδkl) (13)

In the case of an elastoplastic material the stress depends on the elastic componentde of rate of
deformation tensor.

One of the major challenges while integrating the rate equation (12) in large-deformation
analysis is to achieve incremental objectivity i.e. to maintain correct rotational transformation
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properties all along a finite time step. However, standard time-discretization procedures, when
applied to objective rate constitutive equations, typically only achieve objectivity in the limit
of vanishingly small time steps. In order to overcome that problem, a procedure that has now
become very popular, is to rewrite the equations in a corotational moving frame.

For a given group of rotationsρ , it is possible to generate a change of frame from the fixed
Cartesian reference axes to the corresponding rotating axes (corotational axes). In these axes,
when transformed byρ, the Cauchy stressσ becomes

σc = ρT σρ (14)

and upon time differentiation of this expression results:

σ̇c = ρT (σ̇ − ωσ + σω)ρ = ρT ▽c
σ ρ (15)

where
▽c
σ is a corotational objective stress rate e.g.

▽c
σ is Jaumann rate ifω = W
▽c
σ is Green-Naghdi rate ifω = ṘRT

Expression (15) indicates that, a somewhat complicated expression as an objective derivative
becomes a rather simple time derivative under the appropriate change of coordinates. This
suggests that the entire theory and implementation will take on canonically simpler forms if
transformed to theρ − system. For more details on this change of coordinate, seePonthot
(1995) andHughes(1983). In the new reference frame, the evolution equation take the simpler
form:

σ̇c = Dc : dc (16)

3.2 Hyperelastic Constitutive Models

These models are defined from a free energy functionψ that plays the role of an elastic
potential. The Cauchy stresses can be derived as shown in eq.(17).

σ =
∂ψ

∂e
(17)

In practice, it is possible for metals to write free energy function as a quadratic function of
Almansi strain tensore and material constantsλ andµ as it is shown in equation (18).

ψe =

[

1

2
λ tr(e)2 + µ (e : e)

]

(18)

From equation (17) the Cauchy stress tensor results:

σ = λ tr(e) 1 + 2 µ e (19)

This model has been used previously byGarcı́a-Garino(1993); Garino and Oliver(1995, 1996)
as an alternative to the neohookean models proposed by another authors (Simó, 1988a,b; Simó
and Ortiz, 1985). The fourth order tensorD defined in eq. (13) can be recovered in this case as
∂σ

∂e
.
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3.3 Comparison of Hypoelastic and Hyperelastic Models

For large strain regimen the hyperelastic and hypoelastic constitutive models, given in equa-
tions (12) and (19) respectively, define different materials if the same fourth order constitutive
tensor is used in both models. In order to ilustrate this point, the analytical response of both
models under a uniaxial extension are given in equations (20) and (21), respectively (seeGarcı́a-
Garino(1993), appendix 1, AnI.6.1). For both models material constantsλ = 1 andµ = 1 are
considered.

σ(t) =
1

2
(λ+ 2µ)

(1 + t2) − 1

(1 + t)2
(20)

σ(t) = (λ+ 2µ)t (21)

The response of both model is compared in Figure2 for a large extension (left) and small
strain case (right).
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Figure 2:Large strain models comparison

REMARKS

1. For large displacements but small deformations problems, like elastic buckling and
other applications usually found in structural analysis, both model show the same
response.

2. In presence of large deformation but small elastic strains, like in metal forming ap-
plications, practially the same results are obtained with the discussed models. See
(Garcı́a-Garino, 1993) and (Ponthot, 1995) for available comparisons.

3. Different responses can be expected when elastic deformations are large or moderate.

4 LARGE STRAIN VISCOPLASTIC MODEL

In this section viscoplastic problem is presented and the distinctive features (Perzyna, 1966,
1971) are briefly introduced. The main results of J2 rate independent case are first presented in
order to provide a framework for the discussion of viscoplasticity.
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4.1 Rate Independent J2 model

Plasticity is taken into account by means of an associative flow rule f = g, wheref andg
accounts for the yield and plastic potential functions respectively. The yield function is the very
well known Von Mises or J2 model given in equation (22).

f(σ, σy) = σ̄ − σy = 0 (22)

whereσ̄ =
√

3

2
s : s denotes equivalent stress,s is the deviatoric stress tensor andσy is the

current yield stress.
Flow rule can be written now in terms of yield criteriaf as:

dp = γ̇ n where nij =
sij√
sklskl

(23)

n denotes the unit outward normal to the yield function (n : n = 1) to the yield surface andγ
is the plastic multiplier.

The plastic multiplierγ can be computed from the consistency condition, obtained after time
differentation of the yield functionf .

ḟ(σ, σy) = 0 (24)

The loading/unloading conditions can be obtained from the Kuhn-Tucker inequalities:

γf = 0, γ ≥ 0, f ≤ 0 (25)

The hardening law that brings the evolution law of yield stressσy is written in terms of proper
internal variables. In this work only linear isotropic hardening is considered.

σ̇y = h ˙̄ǫp (26)

whereh is a material parameter that corresponds to the slope of the effective stress vs. effective
plastic strain curve under uniaxial loading conditions, also known as hardening module in the
case linear hardening. The effective plastic strain˙̄ǫp can be computed from the plastic flow as:

˙̄ǫp =

√

2

3
dp : dp =

√

2

3
γ̇ (27)

4.2 Perzyna J2 viscoplastic model

The kinematics of the problem can be generalised for the viscoplastic problem as shown in
equations (28) and (29).

e = ee + evp (28)

d = de + dvp (29)

whereevp anddvp are viscous counterpart of plastic components of Almansi strain tensorep

and rate of deformation tensordp respectively.
Contrary to the case of rate independent plasticity, the effective stress̄σ is no longer con-

strained to remain less or equal to the yield stress but one can haveσ̄ ≥ σy . Therefore the
overstressd is defined as:

d = 〈σ̄ − σy〉 (30)
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where〈x〉 denotes the Mac Auley brackets defined by〈x〉 = 1/2(x+ |x|). Clearly, an inelastic
process can only take place if, and only if, the overstressd is positive, consequentlyf ≥ 0.

For this problemPerzyna(1966, 1971) proposed the following flow rule:

dvp = 〈φ(d, η)〉n (31)

whereη is the viscosity of the material. Many alternatives has beenproposed in practice in
order to generalize the functionφ(d, η).

The structure of viscoplastic flow given in equation (31) suggests that functionφ plays the
role of aviscoplastic parameterγvp. In this sense this kind of models can be considered as
penalty regularization of rate-independent plasticity where the consistency parameter has been
replaced by an increasing function of the overstress like the one proposed byPonthot(2002):

γ̇vp =

√

3

2

〈

σ̄ − σy

η(ǭvp)1/n

〉m

(32)

wheren is a hardening exponent,m is a rate sensitivity parameter andǭvp is the equivalent
viscoplastic flow. Taking into account equations (31) and (32) the viscoplastic flow can be
expressed in a similar way to the rate independent problem as:

dvp = γ̇vpn (33)

the equivalent equivalent viscoplastic flow̄ǫvp can be computed from (27) replacingdp for dvp.

ǭvp =

√

2

3
dvp : dvp =

√

2

3
γ̇ (34)

In this problem the hardening law given in (26) is valid providingǭvp be the internal variable.
From equations (34) and (32) results:

ǭvp =

√

2

3
γ̇vp =

〈

σ̄ − σy

η(ǭvp)1/n

〉m

(35)

so that, in the viscoplastic range, a new constraint is defined (Ponthot, 2002).

f̄ = σ̄ − σy − η(ǭvp)1/n( ˙̄ǫvp)1/m = 0 (36)

This criterion is ageneralization of the classical von-Mises criterionf = 0 for rate-dependent
materials. The latter can simply be recovered by imposingη = 0 (no viscosity effect). On
the other hand if a large enough value is adopted forη the elastic response is recovered. Kuhn
Tucker conditions can be written in a similar way to the rate independent case (seePonthot
(2002) for details).

γ̇vpf̄ = 0, γ̇vp ≥ 0, f̄ ≤ 0 (37)

5 NUMERICAL SCHEME

In this section the numerical scheme necessary to implementthe discussed theoretical model
in a finite element code is introduced. This scheme is based ona predictor (elastic)-corrector
elasto/viscoplastictechnique. The predictor scheme is discussed in subsection5.1, where the
case of Metafor (Hypoelasticity) is discussed in paragraph5.1.1, and the predictor problem for
for Sogde (Hyperelasticity) can be seen in paragraph5.1.2. The viscoplastic corrector is written
in terms of stress in Metafor and in function of strains in Sogde. However after a previous work
of the authors (Ponthot et al., 2005) the problem can be presented in a unified format.

C.G. GARINO et.al.1934
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5.1 Elastic Problem

5.1.1 Predictor for the hypoelastic model

In this section the numerical scheme in order to compute the trial stress are briefly reviewed
following the ideas ofPonthot(2002), where a detailed derivation of the scheme can be found.

In the corotational frame, the equation to integrate simplyreduces to

σ̇c = D : dc (38)

In order to compute the trial stress tensor in corotational configuration the stress tensortσ in
the cartensian frame can be rewritten as:

tσc = tρT tσ tρ (39)

so that the trial elastic stress is given by :

t+∆tσctr

= tσc +

∫ t+∆t

t

D : dc dt (40)

or, in the Cartesian frame, for a constant elastic tensorD, results :

t+∆tσtr = t+∆tρ t+∆tσctr t+∆tρT = t+∆tρ

[

tρT tσ tρ + D :

∫ t+∆t

t

D : dc dt

]

t+∆tρT (41)

that can be understand, from a rather engineering point of view, like a three steps operation. If
new operatorsρ∗ andρ∗ are introduced, that loosely accounts forrotationalpull back and push
forwards respectively, the algorithm can be expressed in compact form as can be seen in BOX
1.

BOX 1: Summary of predictor problem for hypoelastic model

For a given increment of time∆t that maps configurationtΩ in t+∆tΩ, tensorsρ anddc

computed from such mapping, andtσ stored in data base of the problem, compute:

1. tσc = tρT tσ tρ, in compact form:tσc = tρ∗ tσ

2. t+∆tσctr

= tσc +
∫ t+∆t

t
D : dc dt

3. t+∆tσtr = t+∆tρ t+∆tσctr t+∆tρT , in compact form:t+∆tσtr = ρ∗
t+∆tσctr

In summary the trial stress in the final configuration can be written in compact form as:

t+∆tσtr = ρ∗

[

ρ∗ tσ +

∫ t+∆t

t

D : dc dt

]

(42)

In order to simplify eq. (42) Ponthot(2002) suggested the following simplifficative assump-
tions:

1. The unrotated configuration is chosen astΩ, thentρ = I
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2. ρ(t) = R

3. dc = C̄

∆t
, that comes from an exponential map forU̇(t)

the incremental naturalstrain tensor̄C is defined as:

C̄ = ln U =
1

2
ln U 2 =

1

2
ln(F T F ) (43)

Then the trial elastic stress can easily be computed as:

t+∆tσtr = t+∆tR
[

tσ + D : C̄
]

t+∆tRT = t+∆tR
[

tσ + D : ln(U)
]

t+∆tRT (44)

5.1.2 Predictor for the hyperelastic model

In this problem the plastic quantities remain frozen:(t+∆tF pTR = tF p). The trial (elastic)
component of the deformation gradient tensor results:

t+∆tF eTR = t+∆tF (t+∆tF pTR)−1 = f tF (tF p)−1 = f tF e (45)

wheref is the incremental deformation gradient tensor. The predictor value of the elastic Finger
tensort+∆tbe−1TR

is:

t+∆tbe−1TR
=

(

t+∆tF e−T t+∆tF e−1
)TR

= f−T tbe−1 f−1 (46)

Finally, the trial stressesσTR are computed from eqn (46) in terms of the predictor value of
elastic Almansi straint+∆teeTR = 1

2
(t+∆tg − t+∆tbe−1TR

).
It is important to note that the elastic problem is reduced tothe computation of a closed

expression.

5.2 Viscoplastic Problem

In this case the geometry of body remains fixed and stress tensor and internal variables must
be updated. The plastic corrector is derived first for the hyperelastic model following the ideas
of a previous work of the authors (Ponthot et al., 2005). The flow rule given in eq. (31), can be
written in the material configurationoΩ in terms of the viscoplastic component of Right Cauchy
Green tensorCvp and viscoplastic multiplierλvp as:

Ċ
vp

= 2 φ∗dp = 2 λ̇vp φ∗n = 2 λ̇N (47)

equation (47) is integrated using a Backward-Euler scheme:

t+∆tCCCp − tCCCp = 2 λvp t+∆tNNN (48)

Following the same steps of the elastoplastic counterpart of this modelGarcı́a-Garino(1993);
Garino and Oliver(1996) the updated Finger tensor results (Ponthot et al., 2005):

t+∆tbe−1 = t+∆tbe−1TR
+ 2 λvp t+∆tn (49)

it is important to note that Finger tensor, and consequentlystress tensor can be updated, once
λvp is computed. From definition of elastic component of Almansistrain tensor, see eq. (10),
and eq. (49) results:

t+∆tee =
1

2
(g − t+∆tbe−1) =

1

2
(g − t+∆tbe−1TR − 2 λvp t+∆tn) = t+∆teeTR − λvp t+∆tn

(50)
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Introducing the viscoplastic correction of elastic component of Almansi strain tensor given
in equation (50) in the constitutive equation (19), the corrector problem can be written in terms
of stresses as:

t+∆tσ = t+∆tσTR − 2 λvp µ t+∆tn (51)

that is the result shown in equation (51), section 6.3 in the work of Ponthot(2002), after in-
tegration over the time interval[t, t + ∆t], with initial conditions given bytσ, tǭvp and tσy.
This result, found in a previous work of the authors (Ponthot et al.(2005)), shows that the
hyperelastic model originally derived for elastoplastic problems naturally includes the viscous
counterpart.

In order to compute the viscoplastic multiplierλvp an integration procedure very similar to
the radial return method of plasticity, proposed byPonthot(2002) is used. The tensort+∆tn is
approximated by:

t+∆tn =
t+∆tsTR

√
t+∆tsTR : t+∆tsTR

(52)

so that the final values are given by

t+∆tǭvp = tǭvp +

√

2

3
λvp (53)

˙̄ǫvp =
t+∆tǭvp − tǭvp

∆t
(54)

where the (unknown) scalar parameterλvp stands for

λvp =

∫ t+∆t

t

λ̇ dt (55)

REMARK: It is important to point out that the first order approximation introduced in eq.
(54) is fully consistent with the approximation introduced in eq. (48).

Theλvp parameter is simply determined by the enforcement of thegeneralized consistency
condition, f̄ = 0, at timet = t+ ∆t, i.e.

f̄(λvp) =

√

3

2
[sTR − 2µλvp n] : [sTR − 2µλvp n] − t+∆tσy(λ

vp)

− η (ǭvp
0 +

√

2

3
λvp)

1

n (

√

2

3

λvp

∆t
)

1

m = 0 (56)

wheret+∆tσy is a given function of̄ǫvp and consequently a given function ofλvp.
The scalar equation (56) is a nonlinear expression where the only unknown parameterisλvp.

It can be easily solved by a local Newton-Raphson iteration.In the particular case wheren = ∞
(no multiplicative hardening),m = 1 (linear dependence between overstress and viscoplastic
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rate of deformation), andh = constant (linear hardening) a closed form solution of this equation
is given by

λvp =
1

2µ

√
sTR : sTR −

√

2

3

tσy

1 + 1

3µ
(h + η

∆t
)

(57)

so that it is now obvious that the present algorithm is a generalization to the rate-dependent
case of the classical radial return algorithm. This one is exactly recovered (with no numerical
difficulty) by settingη = 0 (no viscosity effect). In the viscous case, one can see that the rate-
dependent solution (57) is equivalent to rate-independent solution with a fictitious hardening
given byh∗ = h+ η/∆t.

6 NUMERICAL SIMULATIONS

In this section numerical problems are simulated in order tocompare the response of the
two discussed models on one hand and to verify if the limit cases are numerically recovered.
First a problem for small strain regimen is studied, in orderto avoid the (possible) influence of
non linear geometric effects in the obtained results. In a second case a problem nonlinear and
material nonlinearities is carried out. In all cases Q1/P0 element is used.

6.1 Numerical simulation of a plane strain plate under smallstrain regime

In this problem, proposed byAlfano et al.(2001) a plane strain plate, with a central circular
hole is studied. The dimensions of the plate are 18 x 10 m, R = 5 m. Material constants
considered are:E = 2.1 105 Mpa; ν = 0.3; σy = 240 Mpa; H = 0. A linear Perzyna
viscoplastic model withm = 1 andn = ∞ is considered. Different viscosity values ofη
parameter are taken studied:102, 1012 and1015. In figure3, the finite element mesh used is
displayed. Imposed displacements (at y=18m) are applied until a final displacement of 50 mm
is reached in 25 equals time steps.

In figure4 load-displacements curves obtained with both codes can be seen. From the figure
can be observed:

1. The elastic limit case is recoverd with both codes for a viscosity parameterη = 1015.

2. The elastoplastic limitcase is recovered with both codes forη = 102

3. Practically the same response is obtained with both codes for intermediate value ofη, 1012.

From the results obtained can be said that both codes compares very well and the algorithm
implemented represents properly the limit cases discussedin section5.2.

It is worthwhile to note that both codes recover naturally small strain case, even when the
respective models are derived for large strains situations. For the complete range of values ofη
tested no difficulties for convergence were found.

6.2 Large strain simulation of a plane strain viscoplastic plate

The problem discussed in the previous section is studied again, but taking into account large
strain regimen in this case. In order to reach large strains,a final displacement of 2000 mm is
imposed. Metafor uses an automatic time step procedure thatadjusts time step size based on
the rate of convergence of previous iterations. In Sogde 400equals time steps are considered in
all cases, but larger increments can be fairly applied for elastic case and simulations with large
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Figure 3:Finite element mesh used for small strain simulations
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Figure 4:Viscoplastic plane strain plate: load vs displacement history
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values of viscosity parameterη. The finite element mesh used in this case is the same to the
small strain problem shown in3.

In order to study the behaviour of both codes for limitelastoplastic case in figure5 are
shown the results obtained with Sogde and Metafor, for elastoplasticity and viscoplasticity with
low viscosity parameter (η = 102 andη = 1015), in terms of load vs displacements histories.

From the figure can be seen:

1. The elastoplastic limit case is recoverd with both codes for a viscosity parameterη = 102.

2. For a viscosity parameterη = 1010 the results tends to the elastoplastic solution. In this
case similar solutions are found with Sogde and Metafor, butload level attained with
Sogde is sligthy greater than Metafor.

It is important to point out that elastoplastic limit case isrecovered for large strain case. On
the other hand can be noted that the different elastic modelsconsidered in Metafor (hypoelas-
ticity) and Sogde (hyperelasticity) does not affect the global results because the elastic strains
remain small. This results confirm the good agreement obtained previously with this two codes
for large strain elastoplastic problems (seePonthot(1995) andGarcı́a-Garino(1993).
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Figure 5:load vs displacement histories for limiting elastoplasticcase

In all the cases tested in figure5 a global softening behaviour is found, that can be explained
from figure9, where a comparison of deformed shapes is shown. For elastoplastic solution and
viscoplastic cases with low viscosity parameters a strong reduction of the central section can be
seen. For this case the response of the problem is a likeneckingcase, and then a load reduction
is obtained after the peak load. This effect, well known evenfor hardening materials, it is even
more clear for non hardening materials like the one used in this case.

In figure 6 can be observed the results computed with Metafor and Sogde for elastic cases
and viscoplastic solutions for large viscosity parameter (η = 1.1015 andη = 1.1017). Several
considerations can be enuntiated:

C.G. GARINO et.al.1940

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



1. The elastoplastic limit case is recoverd with both codes for a viscosity parameterη =
1017.

2. For a viscosity parameterη = 1015 the results tends to the elastic solution. In this case
similar solutions are found with Sogde and Metafor, but loadlevel attained with Sogde is
sligthy smaller than Metafor.

In figure6 can be seen that the elastic response computed with Metafor is practically linear,
so agrees very well with the analytical model discussed in paragraph3.3and the curve obtained
with Sogde presents small nonlinearities. In general can besaid that both modes agree quite well
for elastic cases despite the different formulation of respective elastic models. The viscoplastic
solution for a value ofη = 1015 computed with both codes is included in figure6 as well.
Can be seen that the load level reached with the two codes is similar and the results obtained
approach the elastic solution. In this case Metafor behavesslighty more stiff than Sogde.
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Figure 6:load vs displacement histories for limiting elastoplasticcase

For the large strain studies carried out can be said that bothcodes approach rather well the
limit elastic and elastoplastic cases, and the results obtained with Metafor and Sogde show a
quite good agreement.

In order to study intermediate cases that behaves quite similar to elastoplastic solution, vis-
coplastic solution were obtained with the two codes for for arange of values of viscosity param-
eterη equal to102; 1010; 1011; 2.1011; 5.1011and1012. The obtained results are shown in figure
7 where can be seen that load-displacements histories show softening response in practically
all the cases. However the load level observed depends on theviscosity considered and for
η = 1012 the limit load reaches4500 Mpa, while for the elastoplastic solution it is about1400
Mpa. From a qualitative point of view Metafor and Sogde show similar responses, but Sogde
behaves stiffer than Metafor.
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A comparative study of viscoplastic solutions approachingthe limit elastic case can be seen
in 8, where the load-displacements histories computed with both codes can be seen. The range
of values of viscosity parameterη tested was:1017; 1015; 1014; 1013and1012. Again in this case
the behaviour of both codes is qualitative similar. For the lower values ofη, 1012and1013, the
behaviour is quite similar to theelastoplastic processesdiscussed in7. For all the other cases
global hardening behaviour is found. For the larger values of η, 1. 1015and1.1017 Metafor
behaves slighty stiffer than Sogde, however for lower values of viscosity this effect is inverse.

For the intermediate range of viscosity values tested,1010–1014 Sogde show a stiffer be-
haviour than Metafor, result that merit a further research.In the small strain case, when the
same load program was used this effect was not found. In this case different load programs
where used and perhaps velocity of load could be addressed asa possible explanation. In gen-
eral a rather qualitative agreement was found for both codesor the complete range of viscosity
values tested, in despite of numerical differences in the load level attained.

In figure 9 a comparison of deformed shapes for the different viscoplastic cases studied is
shown. Two kind of deformatios patterns can be observed. Forthe lower values ofη a necking
type deformed shape is found in presence of large deformations in the bottom elements. In this
case the marked reduction of the section near the symmetry line explains the load displacements
curve found. This case could suggest a redesign of the mesh inthe zone near the circular central
hole.

For intermediate and greater values ofη the final deformed shape is rather similar to the
elastic case and not very large strains appears to be observed. In further studies it could be
usefull to compute an appropiate norm of strains for all the cases tested. For the elastic limit case
can be seen that the originally circular hole takes an elliptic shape for the final configuration.

7 CONCLUSIONS

From the codes point of view it is worthwhile to mention that the model has been imple-
mented and tested in Sogde. In this case the structure of elastoplastic model based on hyper-
elasticity and internal variables theory is mantained and viscoplastic problem is easily taken
into account due the uncoupled structure of free energy function. Consequently the structure of
the numerical scheme is preserved, the elastic problem remains with no changes and viscoplas-
tic corrector step ecompass in the structure of plastic corrector when stress update algorithm
is recasted in terms of kinematics variables. In this way thenumerical format of the problem
naturally includes viscoplasticity.

Both codes use the same stress update procedure, that is easily solved after a local non linear
iterations at integration point level for the general case and various closed forms expresions
are derived for different particular cases. The discussed procedure recovers the results of radial
return algorithm for the inviscid case. Consequently all the advantages that can be obtained from
radial return method like simplicity, robustness and computational efficiency are mantained.

Despite the different elastic models included in Metafor and Sogde results obtained are very
similar. The viscoplastic model is quite simple to implement and has been included in the
framework of an hyperelasticity based large strain elastoplastic model available in Sogde with-
out difficulties.

For small strain case results obtained with both codes are practically identical. The limit
elastic and elastoplastic cases are recovered for low and large values of viscosity parameter
considered. No difficulties in the rate of convergence were found with any of the codes tested,
for the different values of viscosity considered.

For large strain case both codes recover very well the elastic and elastoplastic limits. For
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Figure 9:Comparison of deformed shapes for different cases tested
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this case practically no differences are found in the results obtained with Sogde and Metafor.
In the case of elastic limit both codes behave in a good agreement with the respective elastic
models included, but not very different response it is found. For intermediate values of viscosity
parameter differences are found in the load level attained with both codes. In general Sogde
show a stiffer response than Metafor. However qualitative results are similar.

For rather low values of viscosity parameter a global softening response is obtained with both
codes due to a reduction of the section in the central zone theplate. This effect can be clearly
seen for the limit elastoplastic case where large strain arefound in the final configuration of
the body, and perhaps a mesh redesign could be necessary for this problem. In general for
intermediate and larger values of viscosity considered in this work large displacements are
found, but not very large stains can be observed in the deformed shape.

The differences found in the load level attained with the twocodes for intermediate values
of viscosity deserve further study of the problem. As a preliminary cause of this results perhaps
load velocity effects can be addresed. This opinion is suggested because no differences were
found for small strain case were the same program of load was used in both codes. However for
large strain case different load programs were used.
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