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Abstract.
In this paper we analyze the impact of the cavitation model on the numerical assessment of lubricated

journal bearings. We compare results using the classical Reynolds model and the pθ model proposed
by Elrod to fix the lack of mass conservation of Reynolds’ model. Both models give quite similar
predictions of load-carrying capacity and friction torque in non-starved conditions, making the Reynolds
model to be preferred for its better numerical behavior. Here we report on numerical comparisons of both
models in the presence of micro-textured bearing surfaces. We show that in the micro-textured situation
the Reynolds model largely underestimates the cavitated area, leading to significant overestimation of
the friction torque. This dictates that only mass-conserving models should be used when dealing with
micro-textured bearings. Further, we provide numerical details on the algorithms used and apply them
to various cases of potential interest for industrial applications.
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1 INTRODUCTION

The use of artificial micro-texturing is becoming popular in oil lubricated devices such as
journal bearings because of its potential benefits in terms of friction and wear. This subject
is controversial because experimental results exhibiting reductions in the friction coefficient,
though not conclusive, contradict the perturbative analysis of (Buscaglia et al., 2005a) which
states that small-amplitude textures must increase the friction coefficient. However, the latter
theoretical results consider thrust bearings and do not take into account cavitation phenomena,
which exists in all journal bearings.

Numerical simulations can account for cavitation phenomena and thus help clarify this issue.
There exist two main techniques to model cavitation in lubricated devices: The first is due to
Reynolds and reduces to a variational inequality. The second model (Elrod and Adams, 1974)
has as main advantage that it enforces mass conservation, which is not satisfied in Reynolds’
model. In this paper we consider Elrod’s model in the pθ formulation, thoroughly analyzed
mathematically by (Bayada et al., 1998).

It is known that both cavitation models give quite similar results in many practical cases, the
two solutions differing just in their prediction of the re-formation boundary. In this article we
show that the situation is quite different in micro-textured devices. Since film re-formation oc-
curs at a great number of texture cells, significant differences in the pressure fields predicted by
both cavitation models appear. Further, we show that the conservative pθ formulation predicts
a much smaller friction coefficient in the micro-textured case than that predicted by Reynolds’
model.

For this purpose, the first part of this paper introduces a finite difference numerical scheme
for the conservation of mass equation and the iterative procedure to deal with the non-linearities
due to the presence of the cavitation phenomena. We show numerical evidence of the conver-
gence of this method, and then apply it to the comparison of cavitation models in micro-textured
journal bearings.

2 GOVERNING EQUATIONS

In this section we present the mathematical formulation for the lubrication problem. To
this end, in Fig. 1 we show an schematic view of the journal bearing indicating all the relevant
parameters and the corresponding bidimensional domain that will be used to write the governing
equations.

2.1 Conservative vs non-conservative formulations

Cavitation phenomena play an important role in many lubricated devices. It takes place
due to a divergent film geometry, at micro-textures (micro-cavitation) or even when feeding
is insufficient in the part of a decreasing gap (starvation). As previously mentioned, there are
mainly two different techniques to deal with it: the Reynolds model which does not enforce the
conservation of mass and Elrod’s model which does, the two models differing just in the bound-
ary conditions imposed on the reformation boundaries. An explanation of these two models is
presented in what follows.

Initially, in Eq. (1), we present the strong formulation for the two dimensional Reynolds
equation (non-dimensionalized and for the stationary case) considering a Newtonian lubricant:
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Figure 1: Schematic representation of the journal bearing and the corresponding two dimensional domain.

Find (p, θ) such that

∇ ·
(

h3
∇p

)

=
∂(θ h)

∂x1

p > 0 and θ = 1 in Ω0 or p = 0 and 0 < θ < 1 in Ω+

h3
∇p · n̂ = (1 − θ) h cos(n̂, î) on Σ (1)

p = 0 along Γ0 (oil outlet)
p = pa along Γa (feeding)

(2)

In Eq. (1), h represents the distance between the two lubricated surfaces. If (X, Y ) is the
position of the shaft axis, h is given by:

h(x1, x2) = 1 + X cos(x1) + Y sin(x1) + ht(x1, x2) (3)
where ht represents the contribution of a texture to the total gap, which we take here to be a
periodic function (see Fig. 1), (n̂, î) is the angle between the unit normal vector to the free
boundary Σ and the unitary vector along the x1 direction, and the sets previously introduced are
defined as follows:

Ω = (0, 2π) × (0, B)

Γ0 =
{

(x1, x2) ∈ ∂Ω/x2 = 0
}

Γa =
{

(x1, x2) ∈ ∂Ω/x2 = B
}

Ω+ =
{

(x1, x2) ∈ ∂Ω/p(x1, x2) > 0
}

Ω0 =
{

(x1, x2) ∈ ∂Ω/p(x1, x2) = 0
}

Σ = ∂Ω+
∩ Ω

• The Reynolds model

In the Reynolds model the pressure is the only variable governing the lubrication problem,
therefore, θ does not play a role and is assumed constant and equal to 1 everywhere. This leads
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to the so called Reynolds condition to be applied on any free boundary surface which separates
a full-film region from a cavitated one, be it a film ruptured boundary or a film reformation one.
The condition reads:

p =
∂p

∂n
= 0 on Σ (4)

According to (Bayada and Du Parquet, 1974), this model can be seen in various ways, for in-
stance it can be shown that it reduces to a variational inequality and it can be associated with a
well posed problem, but there is no flow in the cavitated area and the equality between output
and input flows is not preserved in the model.

• The pθ model

In this model, the pressure is not the only unknown governing the cavitation phenomenon.
The scalar field θ is used to account for this, such that the parameter changes between 0 and 1 to
separate a full film region (θ = 1, p > 0) from a cavitated region (0 < θ < 1, p = 0). It should
be noted that condition given in Eq. (4) holds on any film-rupture boundary, but this is not the
case on film-reformation boundaries, for which the appropiate condition to be considered as
indicated in Eq. (1) is h3 ∇p · n̂ = (1 − θ) h cos(n̂, î) (Bayada and Du Parquet, 1974). In this
case, by applying the mass conservation equation in the variational sense, a possible jump of
θ and ∂p/∂n through the free boundary is allowed. Besides, it allows for micro-cavitation and
starvation to take place.

Regarding the physical interpretation of this scalar field θ, it can be viewed as a satu-
ration function (Bayada and Chambat, 1986) or a fractional film content (Elrod and Adams,
1974) or the result of the homogenization of the oil fingers through the height of the gap
(Jakobson and Floberg, 1957).

3 NUMERICAL DETAILS

3.1 General setting

The first step in the numerical formulation is the spatial discretization of the equations by
means of a finite difference approach. Considering a discretization of the computational domain
Ω into I points in the x1 direction and J points in the x2 direction, the following stencil, which
involves both unknown fields p and θ, is obtained for the pθ model at the (i, j)-th node:

s
j
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j
i+1

−
(

s
j
i + s

j
i−1

)
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j
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}
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(5)
= (cj

i − c
j
i−1

) ∆x1

where

sj
i = θj

i (hj
i )

3 cj
i = θj

i hj
i q =

∆x1

∆x2

(6)

and where the following definitions for the fluxes along the x1 and x2 directions have been
assumed:
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(7)

3.2 Treatment of the non-linearities

The equations arising from the Reynolds model can be solved by using standard finite ele-
ment or finite difference methods. In this case, the boundary condition expressed by Eq. (4)
can be imposed by means of a penalization approach, in which the resulting system of equa-
tions is modified by substituting on-the-fly, zero in any negative value of the pressure as done
by Buscaglia et al. (2005b). Unfortunately, we have not been able to find a robust extension of
this penalization approach to the pθ formulation in micro-textured configurations. Notice that
the smallness of the textures requires very fine meshes, leading to huge systems of nonlinear
equations that can only be solved with very robust algorithms. The method we have chosen
deals quite well with the non-linearities present in both models. It is a Gauss-Seidel iterative
process, in which no assembly of any linear system is needed. In particular this approach is
much more convenient for the pθ model due to the stiffness of the discretized equations, and it
could be used without problems in the Reynolds model as a particular case.

To formulate the iterative algorithm, the pressure p and the θ field at each node are separately
obtained from the stencil given in Eq. (5) as functions of all the remaining quantities in it. This
is not a problem, because in the cavitated area the pressure is known (p = 0, 0 < θ < 1) while
in the non-cavitated region θ is known (θ = 1, p > 0). This leads to the following numerical
scheme:

Find (pi, θi) i = 1, 2, ..., I × J such that

(pi, θi) = lim
n→∞

(pi
n, θi

n), (pi
0, θi

0) = (pi
G, θi

G)

where (pi
G, θi

G) are initial nodal guess values and each new iterate is built according to:

pi
n = ωp P n

i + (1 − ωp) pn−1
i

θi
n = ωθ Θn

i + (1 − ωθ) θn−1
i

and where ωp and ωθ are the relaxation parameters for the pressure and the θ field respectively
and the functions P n

i+1 and Θn
i+1 are defined generically in the following way:

(

P n
i+1, Θ

n
i+1

)

=
(

f(p̃, θ̃), g(p̃, θ̃)
)

(8)

where we mean by (p̃, θ̃) all the possible variables that are present in the arguments of f and g,
including values of the pressure and θ field at iterations n and n − 1.

For the Reynolds model, the same scheme is used, with the only difference that the field θ is
taken equal to 1 everywhere and if the pressure becomes negative, this is automatically clipped,
setting it to 0 in order to impose the Reynolds condition.
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4 NUMERICAL RESULTS

The aim of this section is to present a comparison of the two models previously described.
As mentioned, the models predict quite similar results in many practical cases, but this is not the
situation when micro-textures are present, since film reformation occurs at a great number of
texture cells. The use of textures in industrial applications makes the determination of a suitable
model to correctly evaluate their performance of major importance.

4.1 Preliminary definitions

Two essential quantities of journal-bearing behavior are the load carrying capacity and the
friction torque, given by

WX =

∫

Ω

p cos(2πx1) dΩ WY =

∫

Ω

p sin(2πx1) dΩ (9)

T =

∫

Ω+

(

1

h
+ 3h

∂p

∂x1

)

dΩ (10)

As we will see, the integration over Ω+ instead of Ω in the definition of T is of fundamental
importance to understand the differences in the prediction of this quantity by the two models.
In the definitions of WX and WY this does not play a role because the integrand contains the
pressure, which is zero outside Ω+.

The friction coefficient T is evaluated at a certain equilibrium position (X, Y ) corresponding
to a given applied load Wa on the journal. This equilibrium position is found by performing a
Newton-Raphson iteration process on the following equilibrium condition:

Wa cos(φ) + WX(X, Y ) = 0 Wa sin(φ) + WY (X, Y ) = 0

where φ is the angle of the applied load as indicated in Fig. 1.

4.2 Simulations

The main interest regards the use of textures to improve the bearing performance. Experi-
mental and theoretical results in different types of lubricated devices including journal bearings
exhibit improvements in their static and dynamic characteristics, such as reductions in the fric-
tion coefficient (see for instance (Etsion and Halperin, 2002; Ryk et al., 2002; Brizmer et al.,
2003; Kovalchenko et al., 2004)) or increments in the stiffness and damping coefficients, see
for example Kato and Obara (1996). Besides, the textures have some other benefits, like the
possibility of using them as a reservoir for extra lubricant or even their ability to trap solid
particles present in it.

In this work we are interested in the effects of micro textures with a uniform distribution
troughout the domain. The aim will be in comparing the bearing performace with the two
models in various cases: First we will present typical results of the pressure and the θ field
in a journal with and without textures. Then, we will study the effect of the various texture’s
parameters, such as the the size, the texture depth , the fraction area and shape.

In Figs. 2 and 3 we show the pressure and the θ fields corresponding to a smooth jour-
nal bearing obtained by means of the pθ model. This calculation has been done with a mesh
containing 750 × 75 cells.
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Figure 2: Pressure field obtained with the pθ model for a smooth journal bearing. Minimum = 0 (light gray),
Maximum = 0.128 (dark gray).

Figure 3: θ field obtained with the pθ model for a smooth journal bearing. Minimum = 0.0 (dark gray),
Maximum = 1.0 (light gray).

In Fig. 2 the isoline corresponding to p = 0 has been indicated as well as the isoline corre-
sponding to θ = 1 in Fig. 3.

For the cases we will study, the texture will have square shape and will be defined by the
following parameters:

• Number of textures along the x1 and x2 directions → N1 and N2

• Texture Depth → ht0

• Fraction area → s

Additionally, the dimensionless bearing width B and feeding pressure pa will be taken as 0.1
and 0.0075 respectively.

In a smooth case the difference in the pressure field as predicted by the two models is not
important, but when the texture is introduced, significative differences can be observed. In
Fig. 4 we show a comparison between the two models for the one dimensional pressure field
along a cross section of constant x2 when different texture arrays are considered. As it can be
seen, while the Reynolds model predicts a pressure different than zero at the locations of the
individual textures, the pθ model predicts a pressure exactly equal to zero at those regions. This
can be understood looking at the θ field obtained with the pθ model, where the value of θ at
those places lies between 0 and 1 (see Fig. 5).

Finally, we compare the bearing performance obtained with the two models by looking at
the friction torque (see Eq. (10)). On the one hand, we consider a textured bearing with an
array of N1 × N2 = 50 × 5 square textures and on the other hand, a smooth bearing. For these
simulations a mesh containing 750×75 discretization cells is used which leads to a significative
computational effort.

First, in Fig. 6 we show the friction torque as a function of the applied load for different
values of the texture depth ht0 and a fixed value of 20% for the fraction area s. The results for
the pθ model are shown on the left and on the right the results corresponding to the Reynolds
model.

Then, in Fig. 7 we show the comparison when the texture depth ht0 is kept constant in 0.45
and the fraction area s is changed.

As it can be seen, both models give similar results for the smooth bearing, however, there is
a significative difference between them for the textured cases. In Fig. 8, we can appreciate this
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Figure 4: Comparison between the two models of the one dimensional pressure profile along a cross section of
constant x2. (a) Smooth case (Mesh: 500 × 50), (b) Array 50 × 5 (Mesh: 750 × 75), (c) Array 100 × 10 (Mesh:
1250× 125), (d) Array 200× 20 (Mesh: 2500× 250).

Figure 5: θ field obtained with the pθ model for different arrays of textures considered in Fig. 4. Top: Array 50×5,
Middle: Array 100× 10, Bottom: Array 200× 20. Minimum = 0.0 (dark gray), Maximum = 1.0 (light gray).
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Figure 6: Friction force T as a function of the applied load Wa for different values of the texture depth ht0. Fraction
area s = 20%. Left: pθ model, Right: Reynolds model.
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depth ht0 = 0.45. Left: pθ model, Right: Reynolds model.
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when ploting the friction torque as a function of the texture depth when the parameter s = 20%.
As we can see for all these cases, the impact on the friction torque due to the presence of the
texture is much more important as predicted by the Reynolds model.
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Figure 8: Friction force T as a function of the texture depth ht0 for different values of the applied load Wa. Fraction
area s = 20%. Left: pθ model, Right: Reynolds model.

Similar results to those presented have been obtained for other types of textures. As an
example, in Table 1 we compare the friction torque in different cases including square, circular
and rectangular textures in a periodic array of N1×N2 = 50×5 (see Fig. 1). In all the cases the
texture depth as well as the fraction area are kept constant in 0.3 and 20% respectively. The two
different terms known as the Couette and Poiseuille components that define the friction torque
(see Eq. (10)) as well as the number of discretization cells used for the simulations in each case
are also included.

Table 1: Friction force T and its components corresponding to the different types of textures presented in Fig. 1.
For all the cases the texture depth is taken as ht = 0.3 and the fraction area s = 20%.

Texture type Overall Friction Couette (= 1/h) Poiseuille (= 3h∂p/∂x1) Mesh
Smooth 1.201 1.131 0.070 500 × 50

Square 1.223 1.101 0.122 750 × 75

Circular 1.235 1.094 0.141 1500 × 150

Rectangular 1.244 1.117 0.127 1250 × 125

In principle, taking pure hidrodynamic arguments into account, the utilization of textures
seems like an attractive idea, because it tends to decrease the first term of the friction torque (the
Couette component) which is proportional to 1

h
. However, due to the presence of the texture the

system assumes a new equilibrium position corresponding to the given applied load and besides,
the second term of the friction torque (the Poiseuille component) is one proportional to h and
the pressure gradient along the x1 direction.

Finally, it should be noted, the significantly lower value for the friction force predicted by
the pθ model compared to the Reynolds model. This situation, come out from the fact that film
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reformation occurs at a great number of texture cells and while Reynolds formulation predicts
small values (different than zero) for the pressure in some of these texture cells, the pθ model
predicts values for θ that are smaller than one at those regions, and as a consequence a pressure
exactly equal to zero. This is clearly shown in Fig. 4.

5 CONCLUSIONS

In this paper we analize the use of two different cavitation models for the numerical evalua-
tion of micro-textured journal bearings: the Reynolds model and the pθ model, the two models
differing in the boundary condition which is imposed on the reformation boundaries. A numer-
ical algorithm based on a Gauss-Seidel iterative process has been developed to deal with the
non-linear character of the resulting discretized equations in both models.

Various cases have been studied considering different values for the texture size, depth, frac-
tion area and shape and it has been seen that the Reynolds model largely overestimates the
friction torque as compared to the pθ formulation. It has been seen that this is due to an under-
estimation of the cavitation area. These observations show that a mass-conservative formulation
is needed in order to correctly evaluate the journal bearing performance when micro-textured
surfaces are present.

Future work includes a more extensive analysis on the range of applied loads, since evidence
of friction torque improvements due to the micro-textures has been observed for very low values
of the applied load. Further, the analysis of journal bearings under dynamic loading in cases
with micro-textured moving surfaces is under current development.
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