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Abstract. The influence of dynamic (inertial) effects on fatigue crack growth is studied in this paper. 

The crack growth zone is modeled by cohesive interfaces whose separation process is described by a 

fatigue cohesive zone model. Two different loading types are considered: one in which the loading 

increases to a maximum value in a certain time interval and the other one where loading is cyclic. 

Quasi-static and dynamic solutions are compared to establish the conditions in which the dynamic 

effects become important in the analysis. It is discussed how loading speed and frequency can modify 

crack growth characteristics such as, growth rate, crack extension and time for the beginning of the 

growth process. It is observed that high loading speeds may even change the failure mode of cracked 

structures from crack propagation to uniform debonding. Similarly, high loading frequencies may lead 

to the formation of micro cracks ahead of the crack tip. Stress distribution and crack evolution through 

time are also investigated. 
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1 INTRODUCTION 

The need to evaluate the safety of cracked structures motivated the development of the 

fatigue and fracture mechanics fields. Crack growth may occur due to static or dynamic 

loading, either in one or multiple load cycles. Although the static failure mechanisms of 

cracked structures are well established, dynamic fatigue fracture is not yet fully understood.  

Material inertia can influence crack growth when the loading is applied sufficiently fast, 

when the crack growth is rapid or when the material properties are strain rate dependent. If 

loading rate is sufficiently slow the crack tip fields will be those of static analyses and crack 

growth will not be affected by inertia. However if loading rate is fast, the crack tip fields and 

crack growth change. Additionally, material inertia will act alongside material stiffness to 

describe the body’s motion. On the other hand rapid dynamic loading and rapid crack growth 

also generate stress waves because of inertial effects. This stress waves affect the near crack 

tip stress field and consequently, the crack growth. The influence of dynamic effects on crack 

propagation also depends on material properties, loading conditions and the geometry of the 

body. 

The influence of these factors was investigated by different studies in the past. Based on 

energy concepts it was found that the theoretical limiting speed for a mode I crack on an 

elastic material is the Rayleigh wave speed (Freund, 1990). Also based on energy concepts it 

was established that inertial effects may not be important in determining the crack tip field as 

long as the crack speed is less than about one third of the elastic wave speed (Freund, 1990). 

The cohesive zone model (CZM) also has been used in the study of dynamic crack growth. Xu 

and Needleman (1994) evaluated the effects of high impact speeds on crack growth rates and 

crack branching. Needleman (1997) implemented the CZM to assess dynamic impact loading 

on elastic and viscoplastic materials. Siegmund and Needleman (1997) used the CZM to 

assess the effect of strain rate hardening on the near tip fields and on crack growth and arrest 

under dynamic impact loading. Zhou et al. (2005) successfully modeled high speed crack 

growth in Polymethyl Methacrylate using a rate dependent CZM. Wang and Siegmund (2006) 

studied size effects on fatigue crack growth for quasi-static applications by using the CZM. 

Thus the present work aims to assess dynamic effects on crack propagation on an interface. 

A finite element analysis was conducted with the crack growth zone modeled by cohesive 

interfaces. Both impact and fatigue loading are studied. 

2 MODEL DESCRIPTION 

2.1 Cohesive zone formulation 

The irreversible CZM used in this paper has been developed by Roe and Siegmund (2003) 

based on the cohesive model presented by Needleman (1992) and is briefly summarized in 

this section. 

The cohesive law relates the normal and shear components of material separation, Δ𝑢𝑛 and 

Δ𝑢t, with normal and shear cohesive tractions Tn and Tt. The cohesive tractions are 

implemented within the finite element method (FEM) model through the principle of virtual 

work. The implemented model is capable of analyzing both normal and shear cohesive 

tractions but only normal cohesive tractions will be described here since this paper is focused 

on mode I loading. Therefore the traction-separation law is given by Eq. (1).  
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The material parameters in Eq. (1) are the initial cohesive strength, σmax,0, and the cohesive 

length, δ0. The parameter q is the ratio between the normal and shear cohesive surface 

energies ϕn,0 and ϕt,0 given by Eq. (2). For mode I material separation, Δ𝑢t =0 and the second 

term inside the braces in Eq. (1) disappear. In the absence of fatigue, cohesive elements will 

fail when the cohesive energy is entirely consumed which is assumed to occur for Δ𝑢𝑛 = 5δ0. 
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In order to simulate fatigue effects, a cyclic damage variable Dc is introduced. This variable 

describes the reduction in cohesive strength due to fatigue. The current cohesive strength is 

then given by Eq. (3).  

 0max,max )1(  cD . (3) 

The evolution of the damage variable is described by Eq. (4) where damage accumulation 

only occurs if Tn / σmax > σf / σmax,0.  
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Where H is the Heaviside function. The variable u  is the total crack opening rate which 

is calculated from u , the total crack opening. For mode I material separation, u = Δ𝑢𝑛 and 

Eq. (5) defines u . 

 )()( ttutuu   . (5) 

On Eq. (4) new cohesive zone parameters are introduced: 𝛿Σ is the accumulated cohesive 

length, which scales the normalized increment of the effective material separation, and σf is 

the infinite life endurance limit.  

Unloading and reloading follow Eq. (6) where 𝑇𝑛,𝑚𝑎𝑥 is the maximum traction 

corresponding to the maximum separation Δ𝑢𝑛,max of the previous loading/unloading cycle.  
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During unloading, contact between cohesive interfaces occur when Δ𝑢𝑛<0. If the cohesive 

interface is not broken (Dc<1) the cohesive zone behaviour under compression is given by Eq. 

(7) where A is taken as 30. 
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After the cohesive interface fails (Dc=1), cohesive tensions cease to exist. In this case 

contact is calculated by Eq. (8) where B is taken as 10. 
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2.2 Finite element model 

Equilibrium can be represented through the principle of virtual work by Eq. (9).  
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Where Ω is the body’s volume, Γ is the body’s external surface; ΓC
 is the cohesive zone 

surface, σ is the Cauchy stress, U is the displacement vector, ρ is the specific mass of the 
material, TCZ are the cohesive surface tractions, Δ is the crack opening, B are the volume 

forces, F are the external forces and δ is an arbitrary virtual variation. This equation can then 

be transformed in an ordinary differential equation by eliminating the virtual nodal 

displacements (Eq. (10)).  

 0int  FFUM  . (10) 

 Where M is the mass matrix and Fint are the internal forces including the cohesive 

tractions. The analyzed problem is depicted in Figure 1.  

 

Figure 1: Model geometry. 

 The implemented finite element mesh is composed by 4488 4-node plane strain elements 

plus 141 cohesive elements inserted ahead of the crack tip. The crack is assumed to propagate 

along its initial direction. A highly refined mesh is placed in front of the initial crack tip with 

square elements of length 0.517 mm. For symmetry reasons only the top half of the specimen 

is modeled. 

Computations were carried out for specimen’s length L=0.374m and height hs= 0.075m. 

The initial crack length is one third of the specimen’s length. A prescribed uniform 

displacement u2(t) is applied on the top and bottom edges of the specimen. The material is 

assumed to be homogenous isotropic elastic with Young’s modulus E= 10
11

 Pa, Poisson’s 
coefficient ν= 0.34 and specific mass ρ= 3000 Kg/m

3
. Cohesive parameters are δ0= 10

-4 
m, 

σmax,0= 10
9
 Pa, 𝛿Σ/ δ0= 4, σf/σmax,0= 0.25. There is no concern in modeling any specific type of 

material. 

Dynamic equations of motion were solved using an implicit time integration scheme. A 

consistent mass matrix was used. Time increments were chosen to accurately represent the 

loading frequencies and at least the first three vibration modes of the structure. Modal analysis 

of the specimen revealed that the fundamental frequencies for the undamaged and fully 

damaged (all cohesive elements failed) conditions are 2400 Hz and 1200 Hz, respectively. 
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3 RESULTS 

3.1 Impact loading 

In this first example the prescribed displacement u2(t) increases linearly from zero to a 

maximum value u2,max in a certain time interval Δt. The adopted maximum displacement value 

u2,max = 3.64x10
-4

 m is the displacement for which the J-integral energy for the problem equals 

the normal cohesive energy. Dynamic simulations were conducted for different values of Δt 

and a quasi-static simulation was conducted for Δt = 20s. 

Contour plots of the vertical component of Cauchy stress σ22 for different total times are 

shown in Figures 2 and 3 for Δt = 10
-4s and Δt = 10

-5
s respectively. For time intervals Δt equal 

or greater than 10
-4

 s the crack tip stress fields were found to be similar to the quasi-static 

case. Stress concentration near the crack tip occurs and the failure mode for these cases is 

crack growth. However for Δt = 10
-5

 s the stress fields are completely different. Figure 3 

clearly shows that there is a time gap in which a stress wave propagates from the loaded edges 

to the center of the specimen. The stress wave reaches the crack at time t = 1.04x10
-5

 s which 

is the exact time a stress wave would take to propagate trough hs= 0.075m moving at the 

material’s dilatational wave speed (Eq. (11)).  

 

Figure 2: Vertical component of Cauchy stress σ22 for Δt = 10
-4

 s. a) t=0.54x10
-4

s. b) t=0.82x10
-4

s.                      

c)  t=1.1x10
-4

s. 
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Figure 3 shows that decohesion occur uniformly along the cohesive surface when the stress 

wave effectively reaches the crack tip. This occurs because the magnitude of the stress carried 
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by the wave is greater than the maximum cohesive strength of the material. In reality, the 

speed of crack propagation is proportional to the magnitude of the stress wave. When the 

magnitude of the stress wave exceeds the cohesive strength of the material, the apparent speed 

of propagation is infinite and the material suddenly fails. This effect was also observed by Xu 

and Needleman (1994).  

 

Figure 3: Vertical component of Cauchy stress σ22 for Δt = 10
-5

 s. a) t=0.64x10
-5

s. b) t=0.96x10
-5

s.                      

c)  t=1.28x10
-5

s. d) t=1.44x10
-5

s. 

Normalized crack extension Δa/δ0 as a function of the normalized time t/Δt is shown in 

Figure 4. Dynamic effects have a negligible influence on crack growth for time intervals Δt 

equal or greater than 10
-3

s (which corresponds to an average loading speed of 0.36 m/s). For 

time intervals Δt less than 10
-3

s it is immediately observed that crack extension is greater 

compared to the quasi-static simulation. A larger relative time gap between loading and crack 

growth due to inertial effects is also noticed. Additionally, a slight increase in the crack 

growth rate occurs with the decrease of Δt. For Δt =10
-4s and Δt =5x10

-5
s and after a brief 

acceleration phase crack tip speeds have approximately constant values of 2365 m/s and 2413 

m/s respectively. These speeds are both smaller than the Rayleigh wave speed (cr=3289 m/s) 

and larger than one third of the uniaxial elastic wave speed (1/3cl=1925 m/s) which is 

consistent with energy based predictions (Freund, 1990). The increase in the crack growth rate 

with the decrease of Δt occurs until Δt reaches a limiting value where the failure mode shifts 

from crack propagation to uniform debonding as seen in Figure 3. The large time gap between 
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loading and the beginning of the growth process for Δt =1x10
-5

s is due to the time the stress 

wave takes to propagate through the specimen. During this time no crack growth occurs. After 

the stress wave finally reaches the crack there is a brief crack growth stage followed by the 

sudden failure of the remaining cohesive elements. 

 

Figure 4: Normalized crack extension Δa/δ0 as a function of the normalized time t/Δt. 

3.2 Cyclic loading 

In this example the prescribed displacement u2(t) is a sinusoidal function of time that varies 

from zero to a maximum value u2,max. The adopted maximum displacement value u2,max = 

1.63x10
-4

 m is the displacement for which the J-integral energy for the problem equals 20% of 

the normal cohesive energy. Figure 5 depicts normalized crack extension Δa/δ0 as a function 

of the number of loading cycles N. Dynamic simulations were conducted for different values 

of loading frequency f and a quasi-static simulation was conducted for f= 0.05 Hz.  

 

Figure 5: Normalized crack extension Δa/δ0 as a function of the number of cycles N. 
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The predicted crack growth behavior for the quasi-static simulation is very similar to that 

obtained by Wang and Siegmund (2006) for the same conditions. Dynamic simulations for 

high frequency loading showed that the incubation period that precedes crack growth is 

smaller compared to the quasi-static simulation. For this reason crack extension is always 

larger when dynamic effects are considered. Besides that, crack growth rate tends to increase 

with crack extension in the dynamic simulations while in quasi-static simulations it remains 

constant. This effect was more severe for frequencies between 800 and 1200 Hz and 

practically non-existent for other values of frequency. Considering that the fundamental 

frequency of the specimen varies from 2400 Hz to 1200 Hz, it is possible that the acceleration 

in crack growth is a result of a resonating frequency. For f= 10 kHz, a different process takes 

place: the crack growth rate increases abruptly and the cohesive elements fail in a smaller 

number of cycles. The rupture process for this frequency is explained in the following 

paragraphs. 

Figure 6 depicts normalized crack opening Δ𝑢𝑛/δ0 as a function of normalized position 

x/δ0 for different loading frequencies and number of cycles. The position x is defined by the 

coordinated axis in Figure 1. For N=20.5 cycles, all the opening profiles have the same shape. 

For N=29.5 cycles, the opening profile remains the same for the smaller frequencies, only the 

opening values increase. However for f= 10 kHz the profile is clearly different, having larger 

values of crack opening further away from the initial crack tip. Figure 7 depicts the damage 

distribution along the cohesive elements for the same number of cycles of Figure 6. Again it 

can be seen that for N=20.5 cycles the damage distribution is similar for all the frequencies. 

Nevertheless for N=29.5 cycles and f= 10 kHz the damage variable doesn’t decrease sharply 
for greater values of x/δ0 as it happens for the other frequencies. Instead the damage 

distribution has peak values at certain distances from the crack tip. These peak values 

eventually grow to a unitary value and the cohesive elements fail. This process creates a micro 

crack ahead of the actual crack tip and increases substantially the crack extension in a very 

short time interval.  

 

Figure 6: Crack opening profiles. a)N=20.5 b)N=29.5 
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Figure 7: Damage distribution. a)N=20.5 b)N=29.5 

  Figure 8 is a contour plot of the vertical component of Cauchy stress σ22 for f= 10 kHz 

that illustrates the formation of the micro crack ahead of the actual crack tip. At N=20.5 cycles 

the stress field around the crack tip is very similar to that of Figure 2 which indicates a steady 

crack growth. At N=29.5 cycles the crack tip is located approximately 0.16m away from the 

left edge of the specimen but there is a stress concentration located 0.015m to the right of this 

position. At this stress concentration, σ22 surpasses the value of σmax that is smaller than σmax,0 

due to cyclic damage. This accelerates the process of damage accumulation and quickly makes 

the cohesive elements fail creating a micro crack. The original crack then quickly grows 

through the weakened strip of cohesive elements and merges with the micro crack. Hence 

crack growth rate increases sharply.  

 

Figure 8: Vertical component of Cauchy stress σ22 for f= 10 kHz. a) N=20.5 b) N=29.5 
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4 CONCLUSIONS 

The present computational study demonstrates that the type of failure in cracked structures 

may be dependent on dynamic effects. It was found that for large impact times dynamic 

effects were negligible. For intermediate values of impact time crack extension and speed 

increase but the failure mode is still crack propagation. However for small impact times the 

failure mode shifts from crack propagation to uniform debonding. 

For cyclic loading computations revealed that the loading frequency affects crack growth. 

Resonating loading frequencies can dramatically accelerate crack growth while other 

frequencies have less pronounced influence. For very high frequencies results suggest that 

micro cracks may appear ahead of the crack tip sharply accelerating crack growth. 
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