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Abstract. Thin walled and open section beams are extensively used as structural components 
in different structures in Civil, Aeronautical and Mechanical Engineering fields. Free 
vibrations of doubly symmetrical beams or beams with one axis of symmetry are widely 
studied, in general by using Bernoulli-Navier theory. However, results about doubly 
unsymmetrical beams are rather limited. In this case, triple coupled flexural-torsional 
vibrations are observed. 
In this paper, a numerical-experimental comparison is presented about natural frequencies of 
doubly unsymmetrical thin-walled and open cross-section beams. The equations of motion are 
based on Vlasov's theory of thin-walled beams, which is modified to include the effects of 
shear flexibility, rotatory inertia in the stress resultants and variable cross-sectional 
properties. The formulation is also applicable to solid beams, constituting therefore a general 
theory of coupled flexure and torsion of straight beams. The differential equations are shown 
to be particularly suitable for analysis in the frequency domain using a state variables 
approach. A discussion related to vibration of unsymmetrical channel cross-section beams is 
presented. In this sense, relevant topics discussed in recent works are pointed out and 
clarified. Experimental tests about these unsymmetrical beams are presented which allow 
verify the theory presented in this paper and provide good quality data that can be used for 
checking the accuracy and reliability of different theories 
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1 INTRODUCTION 

Thin walled and open section beams are extensively used as structural components in 
different structures in Civil, Aeronautical and Mechanical Engineering fields. Free vibrations 
of doubly symmetrical beams or beams with one axis of symmetry are widely studied, in 
general by using Bernoulli-Navier theory. However, results about doubly unsymmetrical 
beams are rather scarce in the literature, especially those related with experimental evidences. 
In this case, triple coupled flexural-torsional vibrations are observed. 

The determination of natural frequencies and modes of vibration of undamped continuous 
beams and shafts is discussed in detail in Pestel and Leckie1 who also describe the calculation 
of dynamic response to harmonic excitation. Ebner and Billington2 employed numerical 
integration to study steady state vibrations of damped Timoshenko beams. Numerous other 
applications can be found in the literature concerning straight and curved beams, as well as 
arch and shell structures. On the other hand, the theory formulated by Vlasov3 has been 
extensively used in the dynamic analysis of thin-walled, open section beams, as exemplified 
by the studies of Christiano and Culver4 and Yoo and Fehrenbach5, in which theoretical 
predictions of natural frequencies and displacements induced in curved and straight beams by 
travelling loads, closely match experimentally determined values. In slender beams, 
modelling the structure with a large number of finite shell elements or other more refined 
approaches does not lead to any improvement in the correlation with experimental results, 
because the differences between the theoretical models are usually smaller than the 
experimental errors. 

Nevertheless, although Vlasov's theory for open section beams is already firmly 
established, it presents some limitations, namely: a) as in the common Bernoulli theory for 
flexure, it is assumed that shear strains do not contribute to the beam flexibility. 
Consequently, important errors should be expected in the analysis of deep beams or in the 
dynamic response associated to higher vibrations modes, even in the case of slender beams 
(Timoshenko and Young6). b) The influence of rotatory inertia in the stress resultants is also 
neglected and c) Vlasov's fourth-order equations are valid only for beams with uniform cross-
section. In previous papers7, 8, the author proposed a modified theory, which is based on 
Vlasov's formulation, but it accounts the effects mentioned above. This formulation, using the 
so-called state variables approach in the frequency domain, lends itself to efficient numerical 
treatment, which on account of generality and precision can be very useful in a variety of 
applications. 

Other theories that also account for coupling between bending and torsion in beams are 
presented in Gere and Lin9 that derive a simplified equation for uniform open section beams 
and Muller10 that formulates a general theory that include all coupling effects between the 
equations of motions, but it is not easy to handle in applications. Most other contributions in 
the field are restricted to particular cases. For example, Aggarwal and Cranch11 and Yaman12 
deal with channel-section beams and Ali Hasan and Barr13 with equal angle-sections. 

More recently Tanaka and Bercin14 extend the approach of Bishop et al.15 to study triply 
coupling of uniform beams using Mathematica. The governing differential equations 
presented by the mentioned authors14 exhibit a confusion of co-ordinate system that was 
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clarified by Arpaci and Bozdag16. However, the equations presented in the last paper16 
correcting those presented in14 are verified comparing results with a case that neglects the 
same terms of Tanaka and Bercin14 making it impossible to verify the accuracy of the both 
theories. In this paper, a numerical study based on the equations developed in previous 
papers7,8 is presented and the results of Arpaci and Bozdag16 are discussed. Moreover, the 
field matrix of the state variables approach is presented for the case in which the warping is 
neglected. These equations lead to a more simple theory that is used for comparison purposes 
in this paper. 

The above discussion demonstrates that it is essential to compare with experimental results 
in order to obtain reliable conclusions about the accuracy and applicability of different 
theories. For these reasons, a set of experimental test were conducted and the results are 
presented in this paper because it is the way in which the results obtained by different theories 
should be verified. These experimental results can be used for checking the accuracy and 
reliability of calculation methods and procedures. 

2 THEORY 

2.1 Equations of motion 

Following Vlasov's convention, the left-handed rectangular global coordinates system (x, 
y, z) shown in Figure 1 was adopted. The associated displacements are designated ξ, η, and ζ. 
The basic concepts needed to introduce the effects of shear strains, rotatory inertia and 
variable cross-sectional properties within the framework of Vlasov's theory are described by 
the author in previous papers7,8, in which a complete derivation of the equations of motion for 
free and forced vibrations may be found, as well as comparisons with other continuum 
formulations and a thorough discussion of the definition of shear coefficients. The present 
paper is more oriented to practical applications and only the derivation of the differential 
equations for free vibrations in the state variables method is given. 

In Figure 1, A represents the centroid and O the shear center. For the case of free 
vibrations, the physical model is formed by the following three fourth order partial 
differential equations in the generalised displacements ξ, η, and θ: 
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In these equations, FT is the cross-sectional area, Jx and Jy are the second moments of area 
of the cross-section in relation to the centroidal principal axes, Jϕ the sectorial second moment 
of area, Jd the torsion modulus, ax and ay the coordinates of the shear centre. ρ denotes the 
mass density of the beam material. E and G are the Young's and the shear modulus 
respectively. Finally, γmx and γmy represent the mean values of shear strains over a cross-
section z = constant and 

 r a a
J J

Fx y
x y

T

2 2 2= + +
+

 (2) 

 
Figure 1: Definition of terms 

The system (1) represents a general model of non-uniform beams that take into account 
triply coupled flexural-torsional vibrations. It must be pointed out that the longitudinal 
vibration equation related to the generalised displacement ζ (Figure 1) is non-coupled with 
the rest of the system (1) and it was not taken in consideration in the analysis. In the case that 
the longitudinal vibrations are of interest, this equation can be treated independently 
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2.2 State variables approach 

Using the Fourier transform, an equivalent system with twelve first order partial 
differential equations with twelve unknowns, in the frequency domain, is obtained. The 
scheme described above is known in the literature as 'state variables approach'. Six geometric 
and six static unknown quantities are selected as components of the state vector v: The 
displacements ξ and η, the bending rotations φx and φy, the normal shear stress resultants Qx 
and Qy, the bending moments Mx and My, the torsional rotation θ and its spatial derivative θ´, 
the total torsional moment MT and the bimoment B. 

 v(z,ω) = {η, φy, Qy, Mx, ξ, φx, Qx, My, θ, θ’, MT, B}T (3) 

 MT = Hϕ + Hk (4) 

with Hk  = GJdθ’ = Saint Venant torsion moment. The system is: 

 Avv
=

z∂
∂  (5) 

In which A is the system matrix given by:  
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in which xk ′  and yk ′  denote the Cowper’s shear coefficients and: 
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 Bθ’ = ρJϕω2 - GJd (7) 

The components of the 12-dimensional state vector v are designated “state variables”. In 
the frequency domain, the state variables depend on the frequency ω and the longitudinal 
coordinate z. For simplicity, the same notation is being used for the state variables and their 
Fourier transforms, since the domain can usually be identified by the indication of the 
function arguments. For example, η(z, t) and η(z, ω) refer to the y-displacement in the time 
domain and to its Fourier transform, respectively. It is important to note that the present 
formulation constitutes a general theory of beams applicable to solid as well as thin-walled 
beams. 

2.3 Numerical procedure and boundary conditions 

The system (5) may be easily integrated using standard numerical procedures, such as the 
fourth order Runge-Kutta method, the predictor-corrector algorithm or other approaches. In 
order to solve the two-point value problem encountered both in the determination of natural 
frequencies and in dynamic response calculations, the latter must be transformed to an initial 
value problem as shown, for example, by Ebner and Billington2. The procedure is normally 
applied in the transfer matrix method (Pestel and Leckie1). Natural frequencies are determined 
by means of the well-known Thomson’s method. 

The classical boundary conditions are considered in this paper: clamped, free or simply 
supported. 

Clamped Boundary 

 ξ = η = 0, φx = φy = θ = 0, θ´ = 0 (8) 

Free Boundary 

 Qy = Qx = 0, Mx = My = MT = 0, B = 0 (9) 

Hinged Boundary 

 ξ = η = 0, Mx = My = 0, θ = 0, B = 0 (10) 

 

3 DYNAMIC TESTS 

3.1 Case study 

Sometimes to compare numerical results obtained with different theories leads to an 
undefined problem and another point of view is necessary in order to solve differences and 
show the accuracy of these theories. As it was pointed out in the point 1, experimental 
evidences about doubly unsymmetrical beams are rather scarce in the literature. Moreover, 
taking into account the controversial point discussed in this paper, series of free vibration test 
were carried out about doubly unsymmetrical aluminum beams. 

Aluminum beams with cross sections shown in Figure 2 were tested. Two different lengths 

MECOM 2005 – VIII Congreso Argentino de Mecánica Computacional

676



 

were applied: 2m (Beams 1 and 2) and 1.5m (Beams 3 and 4). Moreover, two support 
conditions were used: Free-fixed and fixed-fixed. 

40 mm

20 mm

100 mm

e = 2 mm

 
a) Beams 1 and 3 

76 mm

10 mm

25 mm

10 mm
e = 1.6 mm

 
b) Beams 2 and 4 

Figure 2. Cross-section of the beams tested 

3.2 Experimental set-up and instrumentation 

Three accelerometers KYOWA AS-GB were used to measure the dynamic response of the 
beams. A dynamic strain amplifier KYOWA DPM-612B amplified the signal generated by 
the accelerometers. Moreover, the amplifier have a low-pass filter applied to avoid aliasing. A 
data acquisition board Computerboards PCM-DAS16D/16 of 16 bit of resolution and a 
maximum conversion time of 10 µs (100 KHz) was mounted on a notebook computer in order 
to record and process the signals by means of the program HP VEE 5.017. A global view of 
one test is presented in Figure 3. The beams were excited with a hammer blow in different 
points in order to excite different modes (see Figure 4).  

The signals were sampled, for both beams, with the following parameters: N = 2500 (total 
number of points for each channel), n = 500 (sampling rate or number of points per second),  
T = 5 s (total time of the sample), ∆t = 0.002 s, (time interval), ∆f = 0.2 Hz (frequency 
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interval), fmáx = 250 Hz (maximum frequency). 
An algorithm to obtain and process the data was programmed in the environment 

HPVEE17. After applying the Fast Fourier Transform, the spectrum was calculated using the 
Welch method (Peeters18). 

 
Figure 3: Experimental set-up and instrumentation 

 
Figure 4: Impulse loading 
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3.3 Dynamic response and experimental results 

In order to carry out the system identification and determination of natural frequencies, the 
peak-picking method was used19. This method has enough accuracy for this type of elements. 
Procedures and filters to avoid aliasing and leakage were applied19. As an example, 
accelerations registered by a transducer and the corresponding frequency spectrum are 
presented in Figure 5 for the case of Beam 1 fixed-fixed. 

 
a) Waveform (Time) 

 
b) Magnitude spectrum 

Figure 5: Dynamic response measured 
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Then, the geometric and measured mechanical properties used in order to apply the theory 
presented in this paper are: 
 l = 2.00 m FT = 3.2 10-4 m2 
 Jx = 3.024 10-8 m4 Jy = 4.595 10-7 m4 
 Jxy = 0 
 Jϕ = 2.838 10-11 m6 Jd = 4.270 10-10 m4 
 ax = 2.67 10-2 m ay = -1.30 10-2 m 
 E = 4.50 1010 N/m2 ρ = 2650 kg/m3 

 ν = 0.25 
The experimental results are showed in Table 1. In order of take into account the random 

errors characterized were calculated the estimators of the mean value µ , the standard 
deviation σ  and the coefficient of variation CV. 

Table 1: Experimental Results. Frequency (Hz). 

Clamped-Free Clamped-Clamped  
f1 f2 f3 f4 f5 f1 f2 f3 f4 f5 

 
BEAM 1 

 

 
5.2 

 
12.6 

 
25.8 

 
28.4 

 
69.4 

 
24.5 

 
49.1 

 
63.5 

 
122.5 

 
196.4 

 
BEAM 2 

 

 
3.8 

 
11.2 

 
20.2 

 
43.2 

 
69.2 

 
16.1 

 
32.1 

 
39.1 

 
70.4 

 
111.3 

 
BEAM 3 

 

 
8.8 

 
17.8 

 
45.8 

 
108.2 

 
- 

 
39.0 

 
78.0 

 
104.4 

 
116.8 

 
142.8 

 
BEAM 4 

 

 
6.2 

 
18.0 

 
29.2 

 
59.2 

 
116.8 

 
24.0 

 
59.0 

 
100.7 

 
124.6 

 
- 

4 NUMERICAL RESULTS 

4.1 Numerical model 

A numerical tool was developed using the program with the equations and theory 
presented in point 2 (Program DYBEAM7,8). For the case studied, the definition of axes and 
shear centre coordinates is given in Figure 6. 

Then, the geometric and mechanical properties used in order to apply the theory presented 
in this paper are: 

a) Beams 1 and 3. 
 l = 2.00 m (Beam 1) l = 1.50 m (Beam 3) 
 FT = 3.2 10-4 m2 
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 Jx = 3.024 10-8 m4 Jy = 4.595 10-7 m4 
 Jϕ = 2.838 10-11 m6 Jd = 4.270 10-10 m4 
 ax = 2.67 10-2 m ay = -1.30 10-2 m 
 E = 4.50 1010 N/m2 ρ = 2650 kg/m3 

 ν = 0.25 

 

b) Beams 2 and 4. 
 l = 2.00 m (Beam 2) l = 1.50 m (Beam 4) 
 FT = 1.891 10-4 m2 
 Jx = 9.19 10-9 m4 Jy = 1.42 10-7 m4 
 Jϕ = 2.522 10-12 m6 Jd = 1.610 10-10 m4 
 ax = -2.77 10-2 m ay = -0.74 10-2 m 
 E = 4.20 1010 N/m2 ρ = 2650 kg/m3 

 ν = 0.25 

α0

 y

  x

η

ξ

O

A

 ax

 ay

 
Figure 6: Principal axes of channel unnsymetrical beams. 

4.2 Finite element model 

In order to have an additional comparison of the theory proposed in this paper, for the case 
of doubly unsymmetrical thin walled beams, the results for the cantilever beam are compared 
with a finite element solution. The finite element software SAP2000N20 was used in this 
comparison, modeling the beam by means of 20 rectangular Shell elements of four nodes. The 
same mechanical properties were used in this case. For comparison purposes, in Figure 7, a 
particular mode shape obtained is presented. 
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Figure 7: Mode 2. Beam 1. Clamped-Free. Software SAP2000. 

4.3 Numerical-experimental comparison 

In this section a comparative study of the results obtained in the experimental and 
numerical analysis will be presented. Due to the cross section of all beams are doubly 
asymmetrical, all vibration modes are flexural-torsional coupled modes. However, at this 
section, the modes are identified by the predominant motion. 

a) Beam 1: Results are presented in Tables 2 and 3. 

Table 2: Numerical-experimental comparison. Beam 1 clamped-free. 

DYBEAM7,8 SAP200020  
Frequency 

 

 
Mode 

 
Test 
Hz 

Freq. 
Hz 

Diff. 
% 

Freq. 
Hz 

Diff. 
% 

1 1 Vertical 
flexural (Y) 

5.2 5.3 1.9 5.15 -1.0 

2 1 Torsional 12.6 12.0 4.8 9.9 21.4 
3 1 Lateral 

flexural (X) 
25.8 23.4 9.3 22.4 13.2 

4 2 Vertical 
flexural (Y) 

28.4 28.5 -0.4 26.5 6.7 

5 2 Torsional - 50.9 - 41.9 - 
6 3 Vertical 

flexural (Y) 
69.4 67.3 3.0 59.1 14.8 
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Table 3: Numerical-experimental comparison. Beam 1 clamped-clamped. 

DYBEAM7,8 SAP200020  
Frequency 

 

 
Mode 

 
Test 
Hz 

Freq. 
Hz 

Diff. 
% 

Freq. 
Hz 

Diff. 
% 

1 1 Vertical 
flexural (Y) 

24.5 24.8 -1.2 22.2 9.4 

2 1 Lateral 
flexural(X) 

49.1 47.9 2.4 40.5 17.5 

3 2 Vertical 
flexural (Y) 

63.5 63.4 0.2 55.2 13.1 

4 3 Vertical 
flexural (Y) 

122.5 119.1 2.8 102.8 16.1 

It can be noted that DYBEAM gives a mean difference of 1.6% in flexural vertical modes, 
meanwhile SAP2000 gives a mean difference of 10.2% for the same modes. In connection 
with lateral flexural modes, DYBEAM gives a mean difference of 5.5% and SAP2000 gives a 
mean difference of 17.4%. Moreover, it can be observed the difficulties of experimental tests 
to capture the coupled lateral flexural-torsional modes. 

 

b) Beam 2: Results are presented in Tables 4 and 5. 

Table 4: Numerical-experimental comparison. Beam 2 clamped-free. 

DYBEAM7,8 SAP200020  
Frequency 

 

 
Mode 

 
Test 
Hz 

Freq. 
Hz 

Diff. 
% 

Freq. 
Hz 

Diff. 
% 

1 1 Vertical 
flexural (Y) 

3.8 3.7 2.6 3.8 0.0 

2 1 Torsional 11.2 11.1 0.9 8.7 22.3 
3 1 Lateral 

flexural (X) 
 16.1  16.6  

4 2 Vertical 
flexural (Y) 

20.2 20.3 -0.5 19.6 3.0 

5 3 Vertical 
flexural (Y) 

69.2 70.4 1.7 64.5 4.7 
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Table 5: Numerical-experimental comparison. Beam 2 clamped-clamped. 

DYBEAM7,8 SAP200020  
Frequency 

 

 
Mode 

 
Test 
Hz 

Freq. 
Hz 

Diff. 
% 

Freq. 
Hz 

Diff. 
% 

1 1 Vertical 
flexural (Y) 

16.1 16.15 -0.3 15.2 5.6 

2 1 Lateral 
flexural (X) 

32.1 37.9 -18.1 33.4 -4.0 

3 2 Vertical 
flexural (Y) 

39.1 39.4 -0.8 35.0 10.5 

4 3 Vertical 
flexural (Y) 

70.4 66.5 5.5 61.2 13.1 

5 4 Vertical 
flexural (Y) 

111.3 104.5 6.1 95.15 14.5 

It can be noted that DYBEAM gives a mean difference of 2.5% in flexural vertical modes, 
meanwhile SAP2000 gives a mean difference of 7.3% for the same modes. In connection with 
lateral flexural modes, DYBEAM gives a mean difference of 9.5% and SAP2000 gives a 
mean difference of 13.2%. 

 
c) Beam 3: Results are presented in Tables 6 and 7. 

Table 6: Numerical-experimental comparison. Beam 3 clamped-free. 

DYBEAM7,8 SAP200020  
Frequency 

 

 
Mode 

 
Test 
Hz 

Freq. 
Hz 

Diff. 
% 

Freq. 
Hz 

Diff. 
% 

1 1 Vertical 
flexural (Y) 

8.8 8.8 0.0 8.8 0.0 

2 1 Torsional 17.8 17.5 1.7 14.7 17.4 
3 1 Vertical 

flexural (X) 
- 39.8 - 39.5 - 

4 2 Vertical 
flexural (Y) 

45.8 44.8 2.2 42.0 8.3 

5 2 Torsional - 82.7 - 71.2 - 
6 3 Vertical 

flexural (Y) 
108.2 108.6 -0.6 96.6 10.7 
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Table 7: Numerical-experimental comparison. Beam 3 clamped-clamped. 

DYBEAM7,8 SAP200020  
Frequency 

 

 
Mode 

 
Test 
Hz 

Freq. 
Hz 

Diff. 
% 

Freq. 
Hz 

Diff. 
% 

1 1 Vertical 
flexural (Y) 

39.0 40.0 -2.6 36.2 7.2 

2 1 Lateral 
flexural (X) 

78.0 80.4 -3.1 71.0 9.0 

3 2 Vertical 
flexural (Y) 

104.4 104.5 -0.1 93.4 10.5 

It can be noted that DYBEAM gives a mean difference of 1.1% in flexural vertical modes, 
meanwhile SAP2000 gives a mean difference of 7.3% for the same modes. In connection with 
lateral flexural modes, DYBEAM gives a mean difference of 2.4% and SAP2000 gives a 
mean difference of 13.2%. 

 
d) Beam 4: Results are presented in Tables 8 and 9. 

Table 8: Numerical-experimental comparison. Beam 4 clamped-free. 

DYBEAM7,8 SAP200020  
Frequency 

 

 
Mode 

 
Test 
Hz 

Freq. 
Hz 

Diff. 
% 

Freq. 
Hz 

Diff. 
% 

1 1 Vertical 
flexural (Y) 

6.2 6.3 -1.6 6.4 -3.2 

2 1 Torsional 18.0 16.4 8.9 12.8 28.9 
3 1 Lateral 

flexural (X) 
- 28.1 - 28.5 - 

4 2 Vertical 
flexural (Y) 

29.2 32.0 -9.6 30.6 -3.3 

5 3 Vertical 
flexural (Y) 

59.2 62.9 -6.2 56.3 4.9 

6 2 Torsional - 75.7 - 63.9 - 
7 4 Vertical 

flexural (Y) 
116.8 113.6 2.7 103.5 11.4 
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Table 9: Numerical-experimental comparison. Beam 4 clamped-clamped. 

DYBEAM7,8 SAP200020  
Frequency 

 

 
Mode 

 
Test 
Hz 

Freq. 
Hz 

Diff. 
% 

Freq. 
Hz 

Diff. 
% 

1 1 Vertical 
flexural (Y) 

24.0 24.5 -2.1 23.3 2.9 

2 2 Vertical 
flexural (Y) 

59.0 58.8 0.3 55.6 5.8 

3 1 Lateral 
flexural (X) 

- 65.4 - 58.0 - 

4 3 Vertical 
flexural (Y) 

100.7 105.9 -5.2 101.1 -0.4 

It can be noted that DYBEAM gives a mean difference of 4.0% in flexural vertical modes, 
meanwhile SAP2000 gives a mean difference of 4.6% for the same modes. In connection with 
lateral flexural modes, DYBEAM gives a mean difference of 8.9% and SAP2000 gives a 
mean difference of 28.9%. 

5 CONCLUSIONS 

In this paper, the equations of motion for thin-walled, variable open cross-section beams 
have been presented within the so-called state variables approach in the frequency domain. 
The equations take into account the influence of shear flexibility and rotatory inertias which 
are neglected in the original Vlasov's theory. The equations enable the analysis of practical 
problems using direct numerical integration in conjunction with techniques routinely applied 
in transfer matrix analyses. In addition, they may be resorted to in order to numerically 
evaluate transfer matrices or stiffness matrices for open section beam elements. Moreover, the 
proposed theory can also be used for solid beams in which coupling between bending and 
torsion occurs. 

A numerical-experimental comparison was presented for natural frequencies of doubly 
unsymmetrical thin walled beams. This comparison is useful in order to obtain guides to the 
numerical modelling and analysis of this phenomenon. Moreover, the experimental could be 
used for checking the accuracy of a variety of calculation methods and theories developed for 
other authors. 

Experimental studies show very good agreement between the results obtained with the 
theory presented in this paper and those obtained in the tests. Moreover, it is contended that 
the accuracy of this theory is comparable to shell FEM solutions. Finally is observed that, the 
theory presented in this paper maintain the accuracy for higher modes, which do not happen 
with the FEM model. 
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