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Abstract. This paper introduces a finite element model for the inverse design of pieces with large dis-
placements in the elastic range. The problem consists in determining the initial shape of the piece, such
that it attains the designed shape under the effect of service loads. The model is particularly focused on
the design of pieces with a markedly anisotropic behavior, like laminated turbine blades. The formulation
expresses equilibrium on the distorted configuration. However, it uses the standard constitutive equation
library, which is usually expressed for measures attached to the undistorted configuration. Modifications
in standard finite elements codes are then restricted to the routines for the computation of the finite ele-
ment internal forces and tangent matrix. Two application examples are given, the first one for validation
purposes, while the second application has industrial interest for the design of turbine blades.
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1 INTRODUCTION

A central aspect when we design a piece to have a certain shape after severe deformation,
is to know the undistorted shape of this piece. In this analysis, the final (desired) configuration
is supposed to be that of the piece subjected to service loads once the steady state has been
attained, neglecting any transient effect.

The classical (direct) problem in nonlinear elasticity consists in determining the distorted
shape knowing the loads applied to the piece in a given reference configuration. The subject
of this study is the inverse problem that consists in determining the undistorted configuration
knowing the final configuration and service loads. Strictly speaking, it is an inverse “design”
problem (Beck and Woodbury, 1998), in contrast to classical inverse “measurement” problems
(often called simply “inverse problems”), consisting in determining the material data knowing
both the distorted and undistorted configurations, as well as the service loads.

Some pieces (like turbine blades) that are designed to be cyclically used, must recover the
original shape after each service cycle. This constraints the material of these pieces to lie
into the elastic range all along the deformation process. Moreover, sometimes they are made of
laminates, with a markedly orthotropic behavior. Therefore, with the restriction of being limited
to small strains but large deformations, we will use an anisotropic hyperelastic material law. We
remark that in the isotropic case, some simplifications could be introduced that allow extending
the formulation to finite hyperelasticity.

Previous numerical models for the inverse design analysis of hyperelastic bodies subjected
to large deformations have been proposed byGovindjee and Mihalic(1996, 1998) andYamada
(1997). Both models use the finite element method in order to discretize the inverse defor-
mation. They differ in the fact that Govindjee and Mihalic’s model is Eulerian, because the
equilibrium equation is formulated in terms of variables attached to the (known) distorted con-
figuration, while Yamada’s model is Arbitrary-Lagrangean-Eulerian (ALE), i.e., the problem
is expressed on a reference configuration which is different from the undistorted and distorted
ones.

The additional complexity involved by the third configuration inherent to the ALE model,
makes the Eulerian model better suited for current applications. Indeed, we began by following
Govindjee and Mihalic(1998) until some practical constraints in the modelling of anisotropic
media motivated the current development. First,Govindjee and Mihalic(1998) write not only
the equilibrium equations but also the constitutive equations in terms of Eulerian variables,
which complicates the description of orthotropic materials whose preferred directions are usu-
ally defined in the unknown undistorted configuration. As it will be shown in Section3.1, this
gives rise to an additional source of nonlinearity that has not been considered up-to-date.

An effort has been made in order to use the available material library from our nonlinear finite
elements code Mecano (Samtech, 2005), in which constitutive equations are written in terms of
Lagrangean variables. Then, the modifications made into the code in order to implement the
current model are restricted to the routines for computing the residual vector and tangent matrix
for the inverse finite element method, preserving the material library.

The other important contribution is the treatment of body forces, not included in the previous
works. In fact, in the problems addressed by the previous inverse design models (Govindjee and
Mihalic, 1996, 1998; Yamada, 1997), the body forces were not relevant. However, this is not
the case when modelling turbine blades, where centrifugal body forces are significant. External
forces (including body and surface forces) usually depend on deformation, with the consequent
contribution to the finite element tangent matrix.
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Figure 1:Distorted configurationB, domain of inverse analysis, and undistorted configurationB0 sought as solu-
tion.

Two examples of application of the model are given. First, we consider the simple case of
bending of a laminated beam, for which the determination of its distorted shape is an easy task
for any available code for large deformation analysis. Once the distorted shape is known, we
evaluate the ability of the present model to recover the initial shape. The second case is an
industrial application to the determination of the initial shape that a laminated turbine blade
should have in order to attain the desired designed shape under pressure and centrifugal loads.

2 KINEMATIC DESCRIPTION

Let B0 be the undistorted reference configuration of a continuum body, andB the objective
(final) configuration. The positionx ∈ B of any particleP with positionX ∈ B0 is determined
by the deformationx = φ(X). The deformation gradient relative to the reference configuration
is :

F = Grad φ, (1)

where Grad denotes gradient with respect toX ∈ B0.
In the problem we are interested in, we know the final configuration and we want to deter-

mine the inverse deformationX = ψ(x) giving the positionX ∈ B0 of every particle whose
final position isx ∈ B. The inverse deformation gradient is defined as

f = grad ψ = F−1, (2)

where grad denotes gradient with respect tox ∈ B.

3 MATERIAL DESCRIPTION

The constitutive law for a general hyperelastic material can be written as follows (Ogden,
1997)

S =
∂w

∂E
= S(E), (3)

wherew is the strain-energy density function,S is the second Piola-Kirchhoff stress tensor, and
E is the Green-Lagrange strain tensor defined as

E =
1

2

(
F T F − 1

)
, (4)

1 denoting the second-order identity tensor.
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3.1 Accounting for anisotropy in inverse modelling

The constitutive equation (3) is formulated in terms ofS andE, that are Lagrangean tensors,
i.e. tensors related to the reference configuration. Consequently, the material properties must
be attached to this configuration which is unknown. This hinders the definition of preferred
material directions, and hence the modelling of anisotropic materials.

Fortunately, in the case of laminated bodies like turbine blades, although we may have very
large rotations, strains remain small. Then, it is possible to estimate accurately the preferred
directions in the distorted configuration by writing the constitutive equation (3) in Eulerian
form by simple rotation of the material axes. Therefore, we rotate the Green-Lagrange strain
tensor and the second Piola-Kirchhoff stress tensor to the spatial axes as follows :

E∗ = RERT =
1

2

(
FF T − 1

)
=

1

2

(
V 2 − 1

)
, (5)

S∗ = RSRT . (6)

V is the symmetric positive-definite left-stretch tensor, andR is the proper orthogonal rotation
tensor, both arising from the polar decomposition of the deformation gradient :

F = V R. (7)

Now, the chain rule together with equation (5) yields

Sij =
∂w

∂Eij

=
∂w

∂E∗
kl

∂E∗
kl

∂Eij

= RkiRlj
∂w

∂E∗
kl

, or S = RT ∂w

∂E∗R, (8)

from which we deduce the desired constitutive law in Eulerian form :

S∗ =
∂w

∂E∗ = S∗(E∗). (9)

In such a way, we are able to define the material properties with respect to a system of axes
linked to the known distorted configuration.

4 FINITE ELEMENT FORMULATION

The inverse design problem consists in finding the functionψ that satisfies the equilibrium
equations, taken here in the weak form :

∫

B
tr

[
σT grad (η)

]
dv −

∫

B
b · η dv −

∫

∂Bt

t · η ds = 0 (10)

for every admissible variationη, whereσ is the Cauchy stress tensor,b is the given body force
per unit distorted volume,t is the traction prescribed on the portion∂Bt of the boundary∂B of
the distorted domainB (hence,t is a force per unit distorted area).

Using the finite element method, the position of particles in the undistorted configuration is
approximated inside a typical finite elementΩe with nodes1, 2, . . . , N as follows

X ≈
N∑

I=1

NI(x)XI , (11)

whereNI(x) is the shape function associated to the nodeI, andXI is the unknown position of
this node in the undistorted configuration.
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Introducing this approximation, and taking variations with respect to the positions in the
undistorted configuration (that is, the standard Galerkin formulation), we get the discrete equa-
tion

R = F int − F ext = 0, (12)

whereF int andF ext are respectively the internal and external force vectors, given by

F int =

∫

B
BT σ̄ dv, (13)

F ext =

∫

B
NT b dv +

∫

∂Bt

NT t ds, (14)

B being the well-known gradient matrix, and̄σ the vector containing the independent compo-
nents of the symmetric Cauchy stress tensorσ, given as follows1

σ̄ = [σ11 σ22 σ33 σ12 σ23 σ31]
T .

The computation ofσ is detailed in the next section.
Concerning external forces in turbine blades modelling, they mainly consist of the centrifugal

and pressure forces. The former are represented by the first term of the r.h.s. of equation (14)
with b defined as

b = ρacentr, (15)

beingρ the density in the distorted configuration, andacentr the centrifugal acceleration, defined
as

acentr(x) = ω × [ω × (x− o)] , (16)

whereω is the angular velocity vector ando the position of an arbitrary point on the rotation
axis.

On the other hand, the second term of the r.h.s. of equation (14) represents the pressure force
by defining

t = −pn (17)

wherep is the pressure andn the outer normal to the portion∂Bt of the surface of the body in
the distorted configuration.

4.1 Computation of strains and stresses in finite elements

By using equation (11), the inverse deformation gradient is approximated in terms of deriva-
tives of the interpolation functions as :

f =
∂X

∂x
≈ ∂NI

∂x
XI . (18)

1From now on, in order to perform the matrix operations involved in the finite element formulation, every
symmetric stress tensor will be mapped into a vector in the same way asσ. Further, the strain tensorE (and any
other symmetric strain tensor) will be mapped into the vector

Ē = [E11 E22 E33 2E12 2E23 2E31]T .
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Oncef is known, we can compute the (direct) deformation gradientF = f−1, and then the
Green-Lagrange strainE using equation (4) as well as its rotated counterpartE∗ given by
equation (5).

EnteringE∗ in the constitutive law (9), we determine the rotated second Piola-Kirchhoff
stressS∗. Then, we are able to compute the Cauchy stress by means of the relationship

σ = jFSF T = jV S∗V T , (19)

or, given in Cartesian components :

σkl = jVkmS∗mnVln = jIV
klmnS∗mn, (20)

wherej = det f is the Jacobian of the inverse deformationX = ψ(x), and

IV
klmn =

1

2
(VkmVln + VknVlm) = IV

klnm = IV
lkmn, (21)

are the components of the fourth-order tensorIV , which verifies the stated relations of symme-
try.

From equation (20), the following algorithmic matrix expression for the Cauchy stress is
derived :

σ̄ = jĪV S̄∗, (22)

whereS̄∗ is the vector of independent components of the symmetric stress tensorS∗, andĪV

takes the form

ĪV =




IV
1111 IV

1122 IV
1133 2IV

1112 2IV
1123 2IV

1131

IV
2211 IV

2222 IV
2233 2IV

2212 2IV
2223 2IV

2231

IV
3311 IV

3322 IV
3333 2IV

3312 2IV
3323 2IV

3331

IV
1211 IV

1222 IV
1233 2IV

1212 2IV
1223 2IV

1231

IV
2311 IV

2322 IV
2333 2IV

2312 2IV
2323 2IV

2331

IV
3111 IV

3122 IV
3133 2IV

3112 2IV
3123 2IV

3131




. (23)

Finally, the internal forces vector for the inverse finite element model can be written as

F int =

∫

B
jBT ĪV S̄∗ dv. (24)

4.2 Solution of the nonlinear equilibrium equation

The nonlinear equation (12) is solved iteratively using the Newton-Raphson method (see
Zienkiewicz and Taylor(2000) for details on the implementation of this method in the finite
element context). At each iterationk we have to solve the following linear equation for the
increment∆q :

R(qk+1) = R(qk) + K(qk)∆q, (25)

whereK denotes the tangent matrix, given by :

K =
∂R

∂q
=

∂F int

∂q
+

∂F ext

∂q
= K int + Kext. (26)

and whereq is the vector of unknown nodal parameters, which in this case are the positionsXI

of nodes at the initial configuration.
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Concerning external forces, we note that there is no contribution to the tangent matrix from
the pressure forces in inverse modelling. In fact, contrary to what happens in direct modelling,
the normaln to the external surface in the distorted configuration is known and fixed. On the
other hand, there would be no contribution from the centrifugal force vector ifρ were known in
the distorted configuration. However, the value of the density we usually know is that related to
the undistorted configuration, sayρ0. Then,ρ is computed from the local mass balance equation

ρ = jρ0. (27)

Nevertheless, if we remain within the domain of small strains, just a slight variation of the
density is expected, soρ ≈ ρ0 and the contribution of the centrifugal forces to the tangent
matrix can be neglected.

Therefore, the tangent matrix reduces to the expression

K ≈ K int =

∫

B
BT ∂σ̄

∂q
dv. (28)

The computation of∂σ̄/∂q in an exact analytical way is described in the next section.

4.3 Computation of the stress derivatives

In a typical finite element, after computing the internal forces vector as described above, we
know the inverse deformation gradientf , the deformation gradientF , the left-stretch tensorV
and the fourth-order tensorIV (which is a function ofV squared), the rotated Green-Lagrange
strainE∗, the rotated Piola-Kirchhoff stressS∗ and the Cauchy stressσ. In order to compute the
tangent stiffness matrix for inverse analysis, we need to compute the derivatives of the Cauchy
stress, given in vector form by equation (22), with respect to the nodal parameters of the inverse
motion. For this purpose, we will compute first the corresponding variations :

∆σ = ∆(jIV
klmnS∗mn) =

1

j
σ∆j + jIV ∆S∗ + j∆IV S∗. (29)

This can be written in the matrix form

∆σ̄ = ∆̄(1) + ∆̄(2) + ∆̄(3), (30)

where∆̄(i) is the algorithmic counterpart of thei-th term of equation (29). For clarity, the
computation of each term will be treated separately.

4.3.1 Computation of∆̄(1).

The differentiation rule for the determinant of a second order tensor yields

∆j = j tr (F T ∆f) = j F̄ T ∆f̄ . (31)

with

F̄ T = [F11 F12 F13 F21 F22 F23 F31 F32 F33] (32)
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and

∆f̄ =




∆f11

∆f21

∆f31

∆f12

∆f22

∆f32

∆f13

∆f23

∆f33




. (33)

Further, after differentiating equation (18), we get

∆f =
∂NI

∂x
∆XI , (34)

which can be written in the matrix form

∆f̄ =




∂N1

∂x
0 0 ∂N2

∂x
0 0 · · ·

0 ∂N1

∂x
0 0 ∂N2

∂x
0 · · ·

0 0 ∂N1

∂x
0 0 ∂N2

∂x
· · ·

∂N1

∂y
0 0 ∂N2

∂y
0 0 · · ·

0 ∂N1

∂y
0 0 ∂N2

∂y
0 · · ·

0 0 ∂N1

∂y
0 0 ∂N2

∂y
· · ·

∂N1

∂z
0 0 ∂N2

∂z
0 0 · · ·

0 ∂N1

∂z
0 0 ∂N2

∂z
0 · · ·

0 0 ∂N1

∂z
0 0 ∂N2

∂z
· · ·







∆X1x

∆X1y

∆X1z

∆X2x

∆X2y

∆X2z

∆X3x

∆X3y
...




= N,x∆q. (35)

So, the variation ofj takes the form

∆j = jF̄ T ∆f̄ = jF̄ T N,x∆q, (36)

Then, the first term in the r.h.s. of equation (29) can be expressed in the matrix form

∆̄(1) =
1

j
σ̄∆j = σ̄F̄ T N,x∆q. (37)

4.3.2 Computation of∆̄(2).

First, we need to determine

∆S∗ =
∂S∗

∂E∗∆E∗ = D∗∆E∗. (38)

The componentsD∗
mnkl of the fourth-order tensorD of tangent moduli, together with the rotated

second Piola-Kirchhoff stress tensorS∗, are computed in the constitutive-equation software
module as a function of the rotated Green-Lagrange strainE∗. The tensorD∗ verifies the
following symmetries :

D∗
mnkl = D∗

nmkl = D∗
mnlk, (39)
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and can be mapped into a symmetric matrix in the following way :

D̄∗ =




D∗
1111 D∗

1122 D∗
1133 D∗

1112 D∗
1123 D∗

1131

D∗
2222 D∗

2233 D∗
2212 D∗

2223 D∗
2231

D∗
3333 D∗

3312 D∗
3323 D∗

3331

D∗
1212 D∗

1223 D∗
1231

symmetric D∗
2323 D∗

2331

D∗
3131




. (40)

On the other hand, the variation ofE∗ is

∆E∗
ij =

1

2
∆(FikFjk) =

1

2
(∆FikFjk + Fik∆Fjk) . (41)

Using the differentiation rule for the inverse of a second order tensor, we obtain :

∆Fkm = −Fkp∆fpqFqm. (42)

Introducing the latter equation into (41), it takes the form

∆E∗
ij = −1

2
(Fil∆flmFmkFjk + FikFjl∆flmFmk)

= −IF
ijkl∆flmFmk = −IF

ijkl

∆flmFmk + ∆fkmFml

2
, (43)

with

IF
ijkl =

1

2
(FilFjk + FikFjl) . (44)

In matrix form, the variation of the rotated Green-Lagrange strain tensor then results :

∆Ē∗ =




∆E∗
11

∆E∗
22

∆E∗
33

2∆E∗
12

2∆E∗
23

2∆E∗
31




= −




IF
1111 IF

1122 IF
1133 IF

1112 IF
1123 IF

1131

IF
2211 IF

2222 IF
2233 IF

2212 IF
2223 IF

2231

IF
3311 IF

3322 IF
3333 IF

3312 IF
3323 IF

3331

2IF
1211 2IF

1222 2IF
1233 2IF

1212 2IF
1223 2IF

1231

2IF
2311 2IF

2322 2IF
2333 2IF

2312 2IF
2323 2IF

2331

2IF
3111 2IF

3122 2IF
3133 2IF

3112 2IF
3123 2IF

3131







Fm1∆f1m

Fm2∆f2m

Fm3∆f3m

Fm1∆f2m + Fm2∆f1m

Fm2∆f3m + Fm3∆f2m

Fm3∆f1m + Fm1∆f3m




= −ĪF ∆a, (45)

with

∆a =




F11 0 0 F21 0 0 F31 0 0
0 F12 0 0 F22 0 0 F32 0
0 0 F13 0 0 F23 0 0 F33

F12 F11 0 F22 F21 0 F32 F31 0
0 F13 F12 0 F23 F22 0 F32 F32

F13 0 F11 F23 0 F21 F33 0 F31







∆f11

∆f21

∆f31

∆f12

∆f22

∆f32

∆f13

∆f23

∆f33




= F ∗∆f̄ = F ∗N,x∆q.(46)
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Therefore, the variation ofE∗ takes the form

∆Ē∗ = −ĪF F ∗N,x∆q. (47)

and the second term in the r.h.s. of equation (29) can be expressed in the matrix form

∆̄(2) = jĪV ∆S̄∗ = −jĪV D̄∗ĪF F ∗N,x∆q. (48)

4.3.3 Computation of∆̄(3).

First, let us rewrite the third term of the r.h.s. of equation (29) as follows :

∆
(3)
kl = j∆IV

klmnS
∗
mn = jHklpq∆Vpq, (49)

where

Hklpq = (IkmpqVln + IlmpqVkn) S∗mn, (50)

with the fourth-order identity tensor

Ikmpq =
1

2
(δkpδmq + δkqδmp) (51)

andδkp denoting the Kronecker delta.
The algorithmic matrix form of this term is then :

∆̄(3) =




j∆IV
11mnS∗mn

j∆IV
22mnS∗mn

j∆IV
33mnS∗mn

j∆IV
12mnS∗mn

j∆IV
23mnS∗mn

j∆IV
31mnS∗mn




= j




H1111 H1122 H1133 H1112 H1123 H1131

H2211 H2222 H2233 H2212 H2223 H2231

H3311 H3322 H3333 H3312 H3323 H3331

H1211 H1222 H1233 H1212 H1223 H1231

H2311 H2322 H2333 H2312 H2323 H2331

H3111 H3122 H3133 H3112 H3123 H3131







∆V11

∆V22

∆V33

∆V12

∆V23

∆V31




= j H̄∆V̄ . (52)

Now, it is only missing to compute∆V . To this end, we begin by computing∆V 2 :

∆(VikVkj) = ∆VikVkj + Vik∆Vkj = Aijkm∆Vkm, (53)

where

Aijkm =
1

2
(δikVjm + δjkVim + δimVjk + δjmVik) = Aijmk = Ajikm. (54)

In matrix form, equation (53) takes the form :

∆V̄ 2 =




∆V 2
11

∆V 2
22

∆V 2
33

2∆V 2
12

2∆V 2
23

2∆V 2
31




=




A1111 A1122 A1133 2A1112 2A1123 2A1131

A2211 A2222 A2233 2A2212 2A2223 2A2231

A3311 A3322 A3333 2A3312 2A3323 2A3331

2A1211 2A1222 2A1233 4A1212 4A1223 4A1231

2A2311 2A2322 2A2333 4A2312 4A2323 4A2331

2A3111 2A3122 2A3133 4A3112 4A3123 4A3131







∆V11

∆V22

∆V33

∆V12

∆V23

∆V31




= Ā∆V̄ . (55)
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On the other hand, sinceV 2 = 2E∗ − 1, its variation can also be computed as

∆V̄ 2 = 2∆Ē∗ = −2ĪF F ∗N,x∆q. (56)

By making (55) and (56) equal, we obtain

∆V̄ = Ā−1∆V̄ 2 = −2Ā−1ĪF F ∗N,x∆q. (57)

Finally, the third term of the r.h.s. of equation (29) takes the matrix form :

∆̄(3) = −2jH̄Ā−1ĪF F ∗N,x∆q. (58)

4.3.4 Final form of ∂σ̄/∂q

The form given to the terms̄∆(i) of the variation ofσ̄ allows the immediate determination
of the derivative of̄σ with respect to the nodal unknownsq :

∂σ̄

∂q
= σ̄F̄ T N,x − jĪV D̄∗ĪF F ∗N,x − 2jH̄Ā−1ĪF F ∗N,x. (59)

Therefore, the tangent stiffness matrix results

K =

∫

B
BT

(
σ̄F̄ T − jĪV D̄∗ĪF F ∗ − 2jH̄Ā−1ĪF F ∗) N,x dv. (60)

Note thatK is non-symmetric, as it was already the case in references (Govindjee and Mihalic,
1996, 1998).

We remark that although not detailed in this work, the formulation can be easily extended to
account also for thermal loads.

5 APPLICATION

5.1 Validation test

Let us consider the simple problem of bending a beam under plane strain conditions. First,
we solve the direct problem, i.e., given the undistorted configurationB0 as well as the kinematic
boundary conditions and the applied forces, we determine the distorted configurationB. The
problem is schematized in Figure2. The domain is discretized using trilinear hexahedral finite
elements. Even if it is essentially a 2D problem, 3D elements are used for the sake of generality.
In order to represent the plane strain state, a one-element-wide mesh is used, and the faces
normal to thek-axis are constrained to move in the their planes.

Table 1:Material data for the beam bending problem.

E1 = 500 N/cm2 ν12 = 0.3 G12 = 192.31 N/cm2

E2 = 1000 N/cm2 ν23 = 0.2 G23 = 312.50 N/cm2

E3 = 750 N/cm2 ν13 = 0.25 G13 = 288.46 N/cm2

The bar is made of horizontal laminates with fibers disposed in thei-direction. The mate-
rial has an orthotropic behavior, characterized by the Young moduliE1, E2, E3, Poisson ratii
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(solution of direct analysis)

(domain of direct analysis)

Figure 2:Direct problem.

µ12, µ23, µ13, and shear ratiiG12, G23, G13 with respect to the orthotropy orthogonal axes
{u(1),u(2),u(3)}. Table1 lists the values we assumed for these properties. Further, we adopt
the hyperelastic constitutive law :

S̄ = D̄Ē, (61)

where

D̄ =




1−ν23ν32

αE2E3

ν12+ν32ν13

αE1E3

ν13+ν12ν23

αE1E2
0 0 0

1−ν13ν31

αE3E3

ν23+ν21ν13

αE1E2
0 0 0

1−ν12ν21

αE1E2
0 0 0

G12 0 0
symmetric G23 0

G13




, (62)

with

ν21 =
E2

E1

ν12, ν31 =
E3

E1

ν13, ν32 =
E3

E2

ν23,

α =
1− ν12ν21 − ν23ν32 − ν13ν31 − 2ν12ν32ν13

E1E2E3

. (63)

Here, the orthotropy axes{u(1),u(2), u(3)} coincide with the Lagrangean principal axes, which
are also coincident with the Cartesian coordinate basis{i, j, k}.

The distorted configurationB computed as solution of the direct analysis and shown in Figure
2 becomes the domain of the inverse design analysis. The inverse problem is schematized in
Figure3. The objective of the computation is to verify if we are able to recover the original
undistorted configuration as solution.

Regarding material properties, the orthotropy axes coincide now with the Eulerian principal
axesv(i) = Ru(i), whereR is the rotational part of the deformation gradientF and varies
throughout the domain. Although in this case the position of these axes can be exactly deter-
mined from the previous direct analysis, it could also be estimated from the distorted geometry
taking into account the laminated nature of the body.
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Figure 4:Displacement modulus from the inverse analysis.

The Eulerian counterpart of the constitutive equation (61) takes the form

S̄∗ = D̄∗Ē∗, (64)

whereD̄∗ is the matrix of elastic moduli given in preferred directions coincident with the Eu-
lerian or spatial axes, whose form is given by equation (62) and it is identical toD̄.

Figure 4 shows a plot of the inverse solution, displaying a map of the magnitude of the
displacementsu = x−ψ(x).

The error of the inverse model is defined as the distance between the nodes of the mesh
used for the direct analysis and those of the undistorted mesh obtained as solution of the in-
verse analysis. After solving the equilibrium equation (12) with a very small residue norm
‖R‖ < 1.6 × 10−11 (the L2-norm of the residue vectorR), we obtained a maximum error of
26.6 µm at the nodes where the concentrated forces are applied. By comparing this value with
the magnitude of the displacement at these nodes (23.01 cm), we note that the relative error
is less than 0.01%, which demonstrates the excellent accuracy of the inverse model. Figure5
shows the evolution of‖R‖ along the iterative solution of the nonlinear equation (12). We note
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Figure 5:Evolution of the residue norm during the inverse analysis.

that after the 5th iteration, when the trial solution entered into the convergence radius of the
solution, an optimal (quadratic) convergence rate is observed validating the computation of the
tangent matrixK.

5.2 Industrial application

The inverse model is applied now to a real case : the design of a laminated turbine blade,
subjected to pressure and centrifugal forces. The blade has a complex shape determined by
the fluid mechanics design for the loaded configuration. The objective of the computation is to
determine the initial unloaded shape so that the blade shape in operation matches that imposed
by the fluid mechanics design.

The material behavior is described using an hyperelastic constitutive law. The piece given in
its desired distorted configuration is discretized using 40993 trilinear hexahedral finite elements,
resulting a mesh of 52030 nodes. Figure6 offers three views of the distorted blade geometry.

In Figure7, the undistorted shape obtained from the inverse analysis is superposed to the
distorted mesh. Let us note that geometrical and deformation scale are coincident in Figure7,
so that it gives an idea of the large magnitude of the deformations involved by the problem.

In order to solve the nonlinear equation (12), it was necessary to increase gradually the
loading in four steps (the final step corresponding to the whole pressure and centrifugal loading
applied to the blade), the solution of each step taken as initial guess for the following step. The
inverse analysis has converged with an average of 3.5 iterations per step.

6 CONCLUSIONS

The present work introduces a finite element model for the inverse design analysis of three-
dimensional geometrically nonlinear statics problems with hyperelastic materials.

Anisotropic materials can be treated without modifying the constitutive-equation software
module developed for the classical (direct) large deformation elastic analysis.

The exact computation of the tangent matrix makes possible to obtain an optimum conver-
gence rate.

An example showed the excellent accuracy of the model, measured by its ability to recover
the original mesh of the corresponding direct analysis. Also, an example of application to the
computation of the initial shape of a turbine blade subjected to pressure and centrifugal loads
has been shown.

V.D. FACHINOTTI, A. CARDONA, P. JETTEUR1282

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



100 mm

100 mm

x

rotation axis z

y

100 mm

100 mm

x

z

y

y

z

100 mm

x

1
0

0
 m

m

100 mm

Figure 6:Inverse analysis of the turbine blade. Distorted shape from different points of view.

213.6

150

100

50

0

Undeformed configuration
(solution of inverse analysis)

Deformed configuration
(domain of inverse analysis)Displacement

modulus
[mm]

Figure 7:Inverse analysis of the turbine blade. Distorted vs. undistorted shapes and displacement modulus.

Mecánica Computacional Vol XXV, pp. 1269-1284 (2006) 1283

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



7 ACKNOWLEDGEMENTS

Financial support from European Community, contract AST4-CT-2005-516183 and from
Consejo Nacional de Investigaciones Cientı́ficas y T́ecnicas (CONICET, Argentina), grant PIP
5271 is gratefully acknowledged.

REFERENCES

J. V. Beck and K. A. Woodbury. Inverse problems and parameter estimation: integration of
measurements and analysis.Meas. Sci. Technol., 9:839–847, 1998.

S. Govindjee and P. A. Mihalic. Computational methods for inverse finite elastostatics.Comput.
Methods Appl. Mech. Engrg., 136:47–57, 1996.

S. Govindjee and P. A. Mihalic. Computational methods for inverse deformations in quasi-
incompressible finite elasticity.Int. J. Numer. Meth. Engng., 43:821–838, 1998.

R. W. Ogden.Non-Linear Elastic Deformations. Dover Publications, Inc., 1997.
Samtech.Samcef / Mecano v11 User Manual, 2005.
T. Yamada. Finite element procedure of initial shape determination for hyperelasticity.Struc-

tural Engineering and Mechanics, 6(2):173–183, 1997.
O. C. Zienkiewicz and R. L. Taylor.The Finite Element Method, volume 2: Solid and Structural

Mechanics. Butterworth-Heinemann, 5th edition, 2000.

V.D. FACHINOTTI, A. CARDONA, P. JETTEUR1284

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar


