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Abstract. Electromechanical systems are very common. The importance of constructing the dynam-

ical equations of motors coupled with mechanical systems suggests a new strategy. In the literature,

often, the derivation of the dynamical equations is wrong. One thinks that the standard derivations of

the dynamical equations of purely mechanical systems can be mimicked to electromechanical systems.

Unfortunately, it cannot. The main reason is that in electromechanical systems one deals with the pres-

ence of electromagnetic fields, continuous entities. This fields store electrical and mechanical energies.

In purely mechanical systems the conservative mechanical energy is stored as elastic or gravitational en-

ergy, and the nonconservative terms enter the equation as nonconservative forces. This cannot be done in

electromagnetic systems. This paper shows the right way to derive the dynamical equations applying the

results for two systems. Both systems are formed by a motor, a coupling mechanism, and a mechanical

subsystem. In one case the coupling is the scotch yoke mechanism and the mechanical part is a cart. In

the other the coupling mechanism is a slider crank mechanism and the mechanical system is a pendulum.

To explain clearly the ideas, the dynamical equations are derived in a different way, putting in evidence

the common errors. The examples were taken from the recent literature, but the same mistake is found

in several places.
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1 INTRODUCTION

Modeling plays a necessary role in the design of dynamical systems. It helps to describe the

behavior of a system and to acquire a better understanding of its functionality. This paper is

about modeling electromechanical systems using Lagrangians, although it is not a new subject

(Wells, 1967) it needs to be discussed. Electromechanical systems are characterized by a mutual

influence between mechanical and electrical parts (Dantas et al., 2014, 2016) . Once dealing

with systems composed of two different natures, a new method to describe dynamical equations

has to be used. In this paper electromechanical systems are modeled by an extended Lagrangian.

Although mechanical and electrical systems when analysed separately usually show different

methods of modeling, it is possible to analyse electrical circuits with a similar approach to the

classical Lagrangian. Before introducing electromechanical systems, the objective is to discern

two classes of energy functions involved: energy and coenergy. This concepts are akin to the

several energy functions used in Thermodynamics according to the independent variables cho-

sen to characterise the systems all energy functions connected by Lagrange transformations.

The introduction of this complementary energy will help to identify terms of mutual influence

later in the discussion.

One particular aspect of systems with mutual interactions between mechanical and electrical

parts is a feature called coupling. In this case, an electromechanical coupling. A very important

tool when it comes to formulate an extended Lagrangian. Basically, this paper analyses two

electromechanical systems. Both have a DC Motor coupled to a mechanical part. They have the

same electromechanical coupling. Their difference lies in the choice of the mechanical coupling

mechanism. The mechanical coupling of the first system is made by a mechanism called scotch-

yoke. The second uses a mechanism called slider-crank. These systems have an interesting

feature: they work as a sort of master-slave condition. The motor rotates and the mechanical

part reacts. The focus is to formulate an extended Lagrangian for both systems. This paper also

points out a mistake commonly made in deriving the dynamical equations of electromechanical

systems. This procedures gives a wrong interpretation of coupled systems. It formulates a

Lagrangian only for the mechanical part, disregarding the electrical subsystem. The authors

who commit this first mistake are then led to commit a second unjustified simplification, which

has even more serious consequences. This second mistake is to say that a torque provided by

the motor to the mechanical system is a function of the generalized coordinates. But, of course,

the torque is not a function of only the coordinates, it also depends on the initial conditions.

Therefore, it must not be added as a generalized force to the description of the mechanical

system.
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2 ENERGY CONSIDERATIONS

2.1 Energy Balance Relationships

In this paper, for a better understanding, electromechanical systems are considered as lumped-

parameter systems. They are described by a finite number of mechanical and electrical vari-

ables. In these systems, interaction occurs through eletrostatic and eletromagnetic fields. These

fields are called coupling fields. They are common to electrical and mechanical parts. Both

subsystems will always interact and the interaction causes energy transfer.

Figure 1: Energy transfer in an electromechanical system.

A simplified form of an electromechanical system can be represented by figure 1. It shows

how energy transfers from one point to another. Now it is apparent how electrical and mechan-

ical parts interact in a system. Electromechanical systems are coupled systems by nature. They

interact through a coupling field. Em is the energy transferred to the coupling field by the me-

chanical subsystem, EmL the loss also associated to the mechanical part and EmS is the energy

stored in the mechanical elements. It is possible to describe the total energy supplied by the

mechanical part as EM . The same can be done for the electrical part. Ee is the energy trans-

ferred to the coupling field by the electrical part, EeL is the loss also associated to the electric

subsystem and EeS is the energy stored in electric or magnetic fields which are not coupled to

the mechanical subsystem. It is possible to describe the energy supplied by the electrical part

as EE . Analysing the directions of the arrows in figure 1, the following equations are easily

obtained.
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For the energy supplied to both parts, one has

EM = Em + EmL + EmS, (1)

EE = Ee + EeL + EeS. (2)

Now for the total energy transferred to the coupling field we must separate the energy stored

from the energy dissipated. For EfS being the total energy stored and EfL the total energy

dissipated in the coupling field, it is possible to define the total energy transferred to the coupling

field as:

EF = Ee + Em = EfS + EfL. (3)

To demonstrate the equality of the equation 3 we define EfS and EfL. Both are the difference

between the total energy supplied and the sum of the energy stored with the energy lost, for each

subsystem :

EfS = Ee − (EeL + EeS), (4)

EfL = Em − (EmL + EmS), (5)

Substituting 4 and 5 in 3 we have:

EF = (Ee − EeL − EeS) + (Em − EmL − EmS), (6)

Substituting equations 1 and 2 in 6 gives,

EF = Ee + Em. (7)

The total energy transferred to the coupling field is independent of the energy dissipated in

the mechanical or electrical part. It is also independent of the energy stored outside the coupling

terminals. Thus, if the losses of the coupling field are not taken into account, the field between

the coupling terminals is said to be conservative. It can be compared to a box that contains only

an electric or a magnetic field. The value and the energy storaged inside is affected by electrical

and mechanical variables. The energy put into the system by the mechanical and electrical pairs

is stored in the field and can be recovered completely. That is the reason an assumption of a

conservative coupling field is valid. Consider two examples of electromechanical systems. One

has a magnetic field storage between coupling terminals and the other an electric field storage.

Both fields interact with the mechanical subsystem by moving a plate. The electric subsystem is

composed by a voltage υ, a current q̇ representing the time derivative of the electric charge q, an

inductance l, a resistance r and a coupling voltage denoted by ef . The mechanical subsystem

has a plate of mass m, a spring of stiffness k, a force f externally applied, a damper with

damping coefficient b and a force of electric or magnetic origin fe. In systems a and b, x is the

displacement and x0 is the equilibrium position of the plate.
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Figure 2: (a) Electromechanical system with a magnetic coupling field (b) Electromechanical system with an

electrical coupling field

These two electromechanical systems are very simple. To obtain the equations of the dy-

namics in this case is trivial. Newton’s and Kirchhoff’s law applied to systems (a) and (b)
gives

mẍ+ bẋ+ k(x− x0)− fe = f, (8)

lq̈ + rq̇ + ef = υ, (9)

After multiplying equation 9 by the current q̇ and equation 8 by the velocity ẋ we get two

powers. Integrating both equations in time, we get two equalities of energy equations for

∫

fẋdt =

∫

mẍẋ dt+

∫

bẋ2 dt+

∫

k(x− x0)ẋ dt−

∫

feẋ dt, (10)

∫

υq̇ dt =

∫

lq̈q̇ dt+

∫

rq̇2 dt+

∫

ef q̇ dt. (11)
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Equations 10 and 11 also represent the energy supplied by the mechanical and the electrical

part. Comparing equation 1 to equation 10 leads to

EM =

∫

fẋ dt, (12)

EmS =

∫

mẍẋ dt+

∫

k(x− x0)ẋ dt, (13)

EmL =

∫

bẋ2 dt, (14)

Em = −

∫

feẋdt. (15)

Now comparing equation 2 to equation 11 we get

EE =

∫

υq̇ dt, (16)

EeS =

∫

lq̈q̇ dt, (17)

EeL =

∫

rq̇2 dt, (18)

Ee =

∫

ef q̇ dt. (19)

Substituting equations 15 and 16 in 7 gives

EF =

∫

ef q̇ dt−

∫

feẋ dt, (20)

or in differential form:

d

dt
(EF ) = ef q̇ − feẋ . (21)

The total energy transferred to the coupling field EF for systems (a) and (b) is denoted by

equation 21. The examples presented do not include all possibilities. Note that this equation

is valid only for one mechanical and one electrical terminal. Aiming to expand the equation

to other circunstances, it should not only increase the number of terminals but also include a

torque. This mechanical torque, as the mechanical force, can have a magnetic or an electric

origin. The rate of change in the angular displacement α̇ must multiply the torque τe in order to

form a power and be included in equation 21. For N electrical and M mechanical terminals:

d

dt
(EF ) =

N
∑

i=1

(ef q̇)i −

(

M
∑

i=1

(feẋ)i +
M
∑

i=1

(τeα̇)i

)

, (22)

d

dt
(EF ) =

N
∑

i=1

(ef q̇)i −

(

M
∑

i=1

(fe)i
dxi

dt
+

M
∑

i=1

(τe)i
dαi

dt

)

. (23)
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Energy generated can be stored, but power can not. Conserving power is a way to conserve

the rate at which the energy is transmitted. Equation 23 shows that the rate of the energy

transferred to the coupling field is conserved, see Woodson and Melcher (1968). In the systems

presented, the displacement x represents the influence of the mechanical part in the coupling

field. It could also be represented by an angular displacement α. These coordinates x and α
are not related through a constitutive equation. It is true that, when there is a constraint, one

can be written as a function of the other, but their relation is not always imposed. It is not

necessary. Therefore, it is possible to have one of them (x or α), or both, to represent the state

of the mechanical part. Note that for the electrical part, the choice is not so trivial. The electric

charge q and the flux linkage λ are often chosen as coordinates to represent an electrical system.

Once the electric coordinates are related through constutive equations and as the derivative of

the flux linkage (dλ/dt) equals the voltage between the terminals of the couplig field (ef ). The

constitutive equations for both possibilities are

q = c
dλ

dt
, (24)

λ = l
dq

dt
. (25)

Only one coordinate is necessary. The choice of the electrical variable must be unique for

any number of coupling terminals. Usually for systems with magnetic energy storage as (a),
the choice of λ seems to be motivated by how an increasing of the flux linkage leads to an

increasing of the energy transmitted to the system. The same approach is made for systems like

(b) with an electric energy storage, the choice of q is motivated by how incremental changes

in the coupling field influences in the energy transmission. For now, this choice is suitable to

understand the principles of the energy transfer. It is chosen λ for the system with magnetic

energy storage and q for the system with electric energy storage. Later in this paper, the choice

of only one coordinate has to be made to formulate an extended Lagrangian. It is not convenient

to work with two coordinates for a system while having a constraint, although working with two

coordinates seems to be possible, see interesting formulation of Haas et al. (2000). For now,

it is possible to write the equations for a magnetic and an electric energy storage represented

by each of its chosen coordinates. Being Tm and Ve the energy stored in a magnetic and in an

electric field, respectively.

For the energy transferred to a magnetic coupling field one has

d

dt
(Tm) =

N
∑

i=1

(q̇)i
dλi

dt
−

(

M
∑

i=1

(fe)i
dxi

dt
+

M
∑

i=1

(τe)i
dαi

dt

)

. (26)

and for the energy transferred to an electric coupling field

d

dt
(Ve) =

N
∑

i=1

(ef )i
dqi

dt
−

(

M
∑

i=1

(fe)i
dxi

dt
+

M
∑

i=1

(τe)i
dαi

dt

)

. (27)
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The left side of the equations 26 and 27 shows a term that represents the time rate of increase

in energy stored. In the right side, the difference between two other terms. The first is the power

input at the electrical terminals and the second is the power input at the mechanical terminals.

Second term has a negative sign because the force fe and the torque τe are defined as acting on

the mechanical node.

2.2 Energy and Coenergy Relations

In the study of electromechanical systems, the definition of coenergy must be presented. En-

ergy and coenergy complements one another (Jeltsema and Scherpen, 2009). Take an example

in the mechanical domain: a particle with mass m moving in the positive x direction. This

model represents a non-relativistic situation. We are able to write the kinetic energy and the

kinetic coenergy of the particle with a constitutive law. This constitutive law will relate the

momentum p with the velocity v. By substituting the constitutive law in the energy equation,

the coenergy is obtained:

Energy:
p2

2m
, (28)

Constitutive law: p = mv, (29)

Coenergy:
mv2

2
. (30)

When plotting the constitutive law p = mv, with p in the y-axis and v in the x-axis, the

area underneath the line represents the energy and the area above the line the coenergy. Notice

that the kinetic coenergy is often called kinetic energy in most literatures. The term coenergy

is omitted. The reason that happens is that for linear systems the energy equals the coenergy,

making the introduction of a new concept unnecessary. For relativistic situations, the constitu-

tive law changes. Now, a nonlinear relation is analysed. Energy and coenergy now differ. The

linear equation for the momentum p used to give the problem similar areas and consequently

similar energies. The relativistic nonlinear equation gives rise to different areas and different

quantities. Finally, we define energy functions for electrical systems as

Energy:

Tm = Tm(λ), (31)

We = We(q). (32)

Coenergy:

Wm = Wm(q̇), (33)

Ve = Ve(υ). (34)
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The magnetic energy Tm is described as a fuction of the flux linkage λ. Wm is the magnetic

coenergy described as a function of the current q̇. The electric coenergy Ve varies with the

voltage υ. The electric energy We varies with the charge q. Although their difference in the

choice of independent variables, energy functions Tm and Wm, as well as Ve and We have the

same units. Note that the magnetic energy and coenergy are functions that can be related through

a constitutive law and it depends on the characteristics of the system, just like the example of the

moving particle in the mechanical domain. The same holds true to electric energy and coenergy

functions. Again, it is important to emphasize that these functions, for magnetic and electric

parts separately, may not always be the same, the equality is a characteristic of linear systems

only. A benefit of the coenergy is the advantage to calculate mechanical torques and forces of

magnetic or electrical origin. It is also interesting to analyze the relation between energies with

a graphical approach.

Figure 3: Graphics of energy and coenergy for linear and non-linear systems .

These functions are related through theirs sum, which equals the sum of the multiplication

of two independent variables, which are the chosen possibilities to describe electrical systems:

q and its derivative q̇ and λf and its derivative ef . To verify this information an analysis of the

graphics is sufficient. For N electrical terminals:

Tm +Wm =
N
∑

i=1

(λf )iq̇i, (35)

Ve +We =
N
∑

i=1

(ef )iqi. (36)
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3 MODELING TECHNIQUE FOR ELECTROMECHANICAL SYSTEMS

3.1 Electromechanical Coupling

One of the most important subjects when electromechanical systems comes to mind is the

electromechanical coupling (Woodson and Melcher, 1968) and how it should appear in the

equations of the system. By a sum of energy functions of the electrical part (they are presented

in section 2.2), it is possible to obtain the electromechanical coupling of the system. The en-

ergy being discussed in these functions is the energy between coupling terminals. A coupling

terminal can store magnetic or electrical energy, or both.

First, it is shown how to obtain the electromechanical coupling of a system which stores

magnetic energy, then the same method is applied to a system with electrical energy stored. To

simplify calculus, it is supposed that the system has only one coupled terminal:

Tm +Wm = q̇λ, (37)

d

dt
(Tm +Wm) =

d

dt
(q̇λ), (38)

d

dt
Tm +

d

dt
Wm =

d

dt
(q̇λ), (39)

(

q̇
dλ

dt
− fe

dx

dt
− τe

dα

dt

)

+
(dWm

dq̇

dq̇

dt
+

dWm

dx

dx

dt
+

dWm

dα

dα

dt

)

=
(

q̇
dλ

dt
+ λ

dq̇

dt

)

, (40)

(dWm

dq̇
− λ
)dq̇

dt
+
(dWm

dx
− fe

)dx

dt
+
(dWm

dα
− τe

)dα

dt
= 0 (41)

.

Now, the same is done for the electric part:

Ve +We = υq, (42)

d

dt
(Ve +We) =

d

dt
(υq), (43)

d

dt
Ve +

d

dt
We =

d

dt
(υq), (44)

(

υ
dq

dt
− fe

dx

dt
− τe

dα

dt

)

+
(dWe

dυ

dυ

dt
+

dWe

dx

dx

dt
+

dWe

dα

dα

dt

)

=
(

υ
dq

dt
+ q

dυ

dt

)

, (45)

(dWe

dυ
− q
)dυ

dt
+
(dWe

dx
− fe

)dx

dt
+
(dWe

dα
− τe

)dα

dt
= 0. (46)
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It is possible to satisfy the equations as dυ, dx, dq̇ and dα can have arbitrary values. By

requiring the coefficients to be zero one gets

•
dWe

dυ
= q,

•
dWe

dx
= fe,

•
dWe

dα
= τe,

•
dWm

dq̇
= λ,

•
dWm

dx
= fe,

•
dWm

dα
= τe,

Depending on the characteristics of the system, the coupling can be obtained by the equations

above and if the stored energy is known, the electrical and mechanical terminal relations can

now be calculated. To differ from the magnetic coenergy and the electric energy, Wm and We,

we represent the coupling term as W∗.

3.2 Lagrangians for Electromechanical Systems

By simply grouping the mechanical kinetic coenergy T and potential energy V with the

magnetic coenergy Wm and electrical energy We in the Lagrange’s equations, a formulation for

electromechanical system can be developed (Bishop, 2008). For a generalized coordinate z one

gets

d

dt

(

∂

∂żi
(T +Wm)

)

−
∂

∂zi
(T +Wm) +

∂

∂zi
(V +We) = 0, (47)

d

dt

(

∂

∂żi
(T +Wm)

)

−
∂

∂zi
(T +Wm − V −We) = 0. (48)

Introducing the Lagrangian L for electromechanical systems

L = T − V +Wm −We, (49)

where the Lagrangian for mechanical systems L and electrical systems W are defined by:

L = T − V, (50)

W = Wm −We. (51)

As a result an extended Lagrangian is obtained:

L = L+W . (52)
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By substituting in equation 48 we get:

d

dt

(

∂L

∂żi

)

−
∂L

∂zi
= 0. (53)

Now, a generalized function Q must be added to the right side of the equation 53. A clever

way to represent this generalized function is with an index i. For example, a Q1 could represent

the imposed forces and the dissipation of the mechanical part and a Q2, the imposed voltages

and the dissipation of the electrical part. We define

Qi = Fi −
∂Di

∂żi
. (54)

The dynamical equations for electromechanical systems are obtained from

d

dt

(

∂L

∂żi

)

−
∂L

∂zi
= Qi, (55)

d

dt

(

∂L

∂żi

)

−
∂L

∂zi
= Fi −

∂Di

∂żi
. (56)

3.3 Step by Step: Lagrangians for Electromechanical Systems

[Step 1: Identifying the problem]

First step consists in identify how many mechanical and electrical variables the system needs

to be described. In this paper the electrical part is described by the coordinate q (for electric

charges) and the mechanical part is described by the coordinates x (for translational displace-

ments) and α, φ, or θ (for angular displacements).

[Step 2: Electromechanical Coupling]

Step 2 consists in determining the electromechanical coupling of the system. Electrome-

chanical couplings are not always evident. An identification of which terminals demonstrate

interactions between subsystems seems to be a good start. After finding the coupling terminals,

some other questions might need answers. It is important to know from what kind of energy the

coupling is originated and what equation to use.

Couplings of electric origin can be identified by the equations

dW∗

e

dυ
= q, (57)

dW∗

e

dx
= fe, (58)

dW∗

e

dα
= τe. (59)
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Couplings of magnetic origin can be identified by the equations:

dW∗

m

dq̇
= λ, (60)

dW∗

m

dx
= fe, (61)

dW∗

m

dα
= τe. (62)

After the coupling is obtained, it must be inserted in W . The sign of the coupling will depend

of its origin. If it is originated from a magnetic coupling field, the sign should be positive. If it

is originated from an electric coupling field, the sign should be negative. The coupling must be

added to its respective energy, namely

W = (Wm +W
∗)−We (For a magnetic coupling), (63)

W = Wm − (We +W
∗) (For an electrical coupling). (64)

[Step 3: Kinetic Coenergy and Potential Energy]

Describe kinetic coenergy and potential energy of the mechanical part.

Translational and rotational kinetic coenergy are represented by T .

Gravitational and elastic potential energy are represented by V .

[Step 4: Magnetic Coenergy and Electric Energy]

Describe magnetic coenergy and electrical energy of the non-coupled electrical part.

Magnetic coenergy is represented by Wm.

Electrical potential energy is represented by We.

[Step 5: Lagrangian for Electromechanical Systems]

We write the Lagrangian:

L = L+W , (65)

L = T − V +Wm −We ±W
∗. (66)
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[Step 6: Generalized Forces]

We introduce the function Q.

Where D is a dissipative function for resistances and viscous frictions. F includes imposed

forces and voltages. For each degree of freedom i, the Q function takes the form:

Qi = Fi −
∂Di

∂żi
. (67)

[Step 7: Lagrange’s Equations]

Being zi a generalized coordinate:

d

dt

(

∂L

∂żi

)

−
∂L

∂zi
= Fi −

∂Di

∂żi
. (68)

4 DYNAMICS OF ELECTROMECHANICAL SYSTEMS

4.1 Scotch-Yoke Mechanism

Figure 4: Cart-motor system with a scotch-yoke mechanism.

Figure 5: DC motor.
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As previously stated, the first electromechanical system analysed in this paper is composed

by a cart driven by a DC motor coupled by a mechanism called scotch-yoke. This system has

been an object of study to analyze the behavior of electromechanical systems, see(Lima and

Sampaio, 2016, 2012). Where υ is the voltage source, q̇ is the electric current, α is the angular

displacement of the disk, l is the electric inductance and r is the electric resistance. The motor

is coupled to the cart through a pin that slides into a slot machined in a plate that is attached

to the cart, d is the distance related to the eccentricity of the pin. In this system, there are two

coupling mechanisms. One of them is the electromechanical coupling. It exists when a disk is

attached to a motor. The other is a mechanical coupling. It exists when a mechanical part is

coupled to another mechanical part. In this case, the scotch-yoke mechanism is transforming

the rotational movement of the disk in a translational movement of the cart.

[Step 1: Identifying the problem]

This system has three movements involved. The rotational movement of the disk, the trans-

lational movement of the cart and the moving charges in the electrical part. It has one constraint

due to the scotch-yoke mechanism. It has two degrees of freedom. The electrical part is de-

scribed by the charge q and the mechanical part by the angular displacement α.

[Step 2: Electromechanical coupling]

For the electromechanical coupling, as it stores magnetic energy in the coupling terminal, it

is interesting to analyse the equation

dW∗

m

dα
= τe. (69)

In most DC motors, the torque τe is proportional to the armature current q̇ and the strength

of the magnetic field denoted by ke, which is the motor electromagnetic force constant (Hughes

and Drury, 2013) .

τe = keq̇. (70)

Substituting equation 70 in 69 gives

dW∗

m

dα
= keq̇, (71)

dW∗

m = keq̇ dα. (72)

Now, the magnetic energy stored in the terminals of the coupling equals the electromechan-

ical coupling of the system. For W∗

m = W∗:

W
∗ = keq̇α. (73)

[Step 3: Kinetic coenergy and potential energy]

T =
jmα̇

2

2
+

mcẋ
2

2
. (74)
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Where jm is the inertia moment of the motor. Besides the electromechanical coupling, there

is another one. The coupling between the motor and the cart is made by a mechanism called

scotch yoke, which transforms the rotational movement of the motor in the translation motion

of the cart, leading to the relations

x = dcos(α), (75)

ẋ = −dsin(α)α̇, (76)

Substituting 76 in 74 gives

T =
jmα̇

2

2
+

mc[−dsin(α)α̇]2

2
. (77)

This system has no potential energy for the mechanical part, i. e.

V = 0. (78)

[Step 4: Magnetic coenergy and electric energy]

For the electrical subsystem we write the magnetic coenergy:

Wm =
lq̇2

2
+W

∗, (79)

Substituting 73 in 79 leads to

Wm =
lq̇2

2
+ keq̇α, (80)

This system has no electrical potential energy.

We = 0, (81)

[Step 5: Lagrangian for electromechanical systems]

L = L+W , (82)

L = T − V +Wm −We, (83)

L =
jmα̇

2

2
+

mc[−dsin(α)α̇]2

2
+

lq̇2

2
+ keq̇α. (84)
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[Step 6: Generalized forces]

For the mechanical coordinate α:

F1 = 0, (85)

D1 =
bmα̇

2

2
, (86)

Q1 = F1 −
∂D1

∂α̇
, (87)

Q1 = −bmα̇. (88)

For the electrical coordinate q:

F2 = υ, (89)

D2 =
rq̇2

2
, (90)

Q2 = F2 −
∂D2

∂q̇
, (91)

Q2 = υ − rq̇. (92)

[Step 7: Lagrange’s equations]

d

dt

(

∂L

∂α̇

)

−
∂L

∂α
= Q1, (93)

d

dt

(

∂L

∂q̇

)

−
∂L

∂q
= Q2. (94)

For equations 93 and 94, respectively:

α̈[jm +mcd
2sin2(α)] + α̇[bm +mcd

2sin(α)cos(α)α̇]− keq̇ = 0, (95)

lq̈ + rq̇ + keα̇ = υ, (96)
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4.2 Crank-Slider Mechanism

Figure 6: Electromechanical system with a crank-slider mechanism.

Figure 7: DC motor.

The second system analysed in this paper consists of a crank-slider mechanism linked to a

pendulum of mass mp and length lp. There is not much difference to the previous system when

it comes to the electrical subsystem. The coordinates of the electrical subsystem are the same.

The particle with no mass in the mechanical part substitutes the cart. This system has also a DC

motor. There are viscous frictions in the disk coupled to the motor (bm), in the displacement of

the particle with no mass (bc) and in the movement of the pendulum (bp). It differs from the first

in the choice of coupling mechanism. The distance related to the eccentricity of the crank is d.

The length of the shaft is ds. The angles in the crank and in the shaft are given by α(t) and φ(t),
respectively. The angular displacement of the pendulum is given by θ(t).

[Step 1: Identifying the problem]

This system has four movements involved. The rotational movement of the disk, the rota-

tional movement of the shaft, the rotational movement of the pendulum and the moving charges

in the electrical part. It has one constraint due to the crank-slider mechanism. It has three de-

grees of freedom. The electrical part is described by the charge q(t) and the mechanical part by

the angular displacements α(t) and θ(t) .
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[Step 2: Electromechanical coupling]

Comparing to the first system analysed, the first coupling do not change:

W
∗ = keq̇α. (97)

[Step 3: Kinetic coenergy and potential energy]

For the kinetic coenergy and the potential energy of the mechanical part:

T =
jmα̇

2

2
+

mp(ẋ
2 + ẏ2)

2
, (98)

besides the electromechanical coupling, there is another one made by the crank-slider mecha-

nism. First, we begin by writing the position of the pendulum:

x = dcos(α) + dscos(φ) + lpsin(θ), (99)

y = −lpcos(θ). (100)

The angles α and φ are related by

cos(φ) =

(

1−
d2

d2s
sin(α)2

) 1

2

. (101)

Substituting in the equation and deriving in time gives

ẋ = −dα̇















sin(α) +
dsin(α)cos(α)

ds

(

1−
d2

d2s
sin(α)2

) 1

2















+ lpθ̇cos(θ), (102)

ẏ = lpθ̇sin(θ), (103)

introducing the function K(α):

K(α) = sin(α) +
dsin(α)cos(α)

ds

(

1−
d2

d2s
sin(α)2

) 1

2

. (104)

As a result, it is possible to simplify ẋ. For the horizontal and vertical velocities of the

pendulum:

ẋ = −dα̇K + lpθ̇cos(θ), (105)

ẏ = lpθ̇sin(θ). (106)
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Rewriting the kinetic coenergy:

T =
jmα̇

2

2
+

mp

2
[(lpθ̇cos(θ)− dα̇K)2 + (lpθ̇sin(θ))

2]. (107)

For the potential energy of the system we write the gravitational potential energy:

V = −mpglpcos(θ). (108)

[Step 4: Magnetic coenergy and electric energy]

For the magnetic coenergy of the system:

Wm =
lq̇2

2
+W

∗, (109)

Wm =
lq̇2

2
+ keq̇α. (110)

For the electric potential energy of the system:

We = 0. (111)

[Step 5: Lagrangian for electromechanical systems]

L = L+W , (112)

L = T − V +Wm −We, (113)

L =
jmα̇

2

2
+

mp

2
[(lpθ̇cos(θ)− dα̇K)2 + (lpθ̇sin(θ))

2] +mpglpcos(θ) +
lq̇2

2
+ keq̇α. (114)

[Step 6: Generalized forces]

For the mechanical coordinate α:

F1 = 0, (115)

D1 =
bc(−dα̇K)2

2
+

bmα̇
2

2
, (116)

Q1 = F1 −
∂D1

∂α̇
, (117)

Q1 = −bcd
2
K

2α̇− bmα̇. (118)
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For the mechanical coordinate θ:

F2 = 0, (119)

D2 =
bp((lpθ̇sin(θ))

2 + (lpθ̇sin(θ))
2)

2
, (120)

Q2 = F2 −
∂D2

∂θ̇
, (121)

Q2 = −bpl
2

pθ̇. (122)

For the electrical coordinate q:

F3 = υ, (123)

D3 =
rq̇2

2
, (124)

Q3 = F3 −
∂D3

∂q̇
, (125)

Q3 = υ − rq̇. (126)

[Step 7: Lagrange’s equations]

d

dt

(

∂L

∂α̇

)

−
∂L

∂α
= Q1, (127)

d

dt

(

∂L

∂θ̇

)

−
∂L

∂θ
= Q2, (128)

d

dt

(

∂L

∂q̇

)

−
∂L

∂q
= Q3. (129)

For equations 127, 128 and 129, respectively:

α̈[jm +mpd
2
K

2] + α̇[bm + bcd
2
K

2 +mpd
2
KK̇] + θ̈[−mplpdcos(θ)K]+

θ̇[mplpdsin(θ)θ̇K]− keq = 0, (130)

θ̈[mpl
2

p] + θ̇[bpl
2

p] + α̈[−mplpdcos(θ)α̇KK̇] + α̇[−mplpdcos(θ)K̇] +mplpgsin(θ) = 0, (131)

lq̈ + rq̇ + keα̇ = υ. (132)
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5 A COMMON MISTAKE IN THE LAGRANGIAN FORMULATION FOR ELEC-

TROMECHANICAL SYSTEMS

Many references claim to write a proper Lagrangian for electromechanical systems, please

see (Belato et al., 2001; Avanço et al., 2017; Cveticanin et al., 2018; Avanço, 2015; Belato,

2002) by adding a torque, said to be imposed, to the generalized forces in the Lagrangian’s

equations. This paper shows this is not correct and explains the mistake. The torque added

wrongly in the equations is arbitrary, it depends only on the coordinates of the system and it

must not be added as a generalized force. The standard derivations of the dynamical equation of

purely mechanical systems do not apply in this situation. Also, the derivation of a Lagrangian

that only provides mechanical terms of an electromechanical system is already an error. There

must be only one Lagrangian to describe the whole system. As an example of a wrong method,

take this solution proposed by the recent literature (Avanço et al., 2018) for the very last elec-

tromechanical system analysed in this paper:

[Error 1: Formulates a Lagrangian only for the mechanical part]

T =
jmα̇

2

2
+

mp

2
[(lpθ̇cos(θ)− dα̇K)2 + (lpθ̇sin(θ))

2], (133)

V = −mpglpcos(θ). (134)

Presents only two Lagrange’s equations ignoring the electrical part:

d

dt

(

∂L

∂θ̇

)

−
∂L

∂θ
= Q1, (135)

d

dt

(

∂L

∂α̇

)

−
∂L

∂α
= Q2. (136)

[Error 2: Adds an arbitrary torque to the generalized forces]

Q1 = −bcd
2
K

2α̇ +Mmotor(q̇, α̇). (137)

Where Mmotor is a function:

Mmotor(q̇, α̇) = τe(q̇)− bmα̇. (138)

In (Avanço et al., 2018) the torque Mmotor is given by equations (20) and (21) (the equation

numbers in this paragraph correspond to (Avanço et al., 2018)) , so as a solution of a coupled

system because (20) cannot be solved alone. With the hypothesis made, one gets (22) and (23)

uncoupling the system. Now Mmotor is only function of the coordinates and the initial condition

associated to (20) is lost. We stress the main point, when the hypothesis that the torque is only

function of the generalized coordinates is made the initial condition is lost, the electrical system

is uncoupled, and now depends of the mechanical system. This mistake is a common one and,

unfortunately, it pervades the literature. The mistake has a bonus, if one uncouples the system it

is easy to do a lot of computations since now one has only an ode to solve. The reference (Lima

and Sampaio, 2018) shows the mistake clearly.
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6 CONCLUSIONS

The objective of this paper was to formulate a Lagrangian for electromechanical systems. It

had also the purpose to correct common mistakes in formulations. It is not possible to deal with

electromechanical systems without knowing the electrical part. This incorrect method consists

in mimicking the standard derivations of purely mechanical systems to electromechanical sys-

tems. There are many references that say they are able to find the equations of electromechanical

systems through a Lagrangian. Frequently, they solve problems only for the mechanical part or

make mistakes in the formulation that leads to the correct solution. When systems composed

by different parts are analysed, the term that makes the connection between the two must be

discussed. The electromechanical coupling is an essential tool to formulate a Lagrangian. To

introduce the electromechanical coupling, it was necessary to present the difference between

energy and coenergy and how energy is transferred from one place to another in an electrome-

chanical model.
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