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Abstract. Currently, the use of unmanned aerial vehicles (UAV), also known as drones, is increasing.

The applications are in several areas such as engineering projects, agriculture, livestock, monitoring,

and rescue. One of the main reasons to use UAV is its lower cost when compared to manned aircraft.

The flight of a UAV can be done remotely or autonomously. For the autonomous navigation, a Global

Navigation Satellite System (GNSS) is usually applied. However, a GNSS system can suffer natural or

human interference, becoming the research for alternatives strategies a hot topic in this field. An approach

to carry out the autonomous navigation without use of GNSS signal is to estimate the UAV position

by using data fusion combining different sensors. A solution for autonomous navigation is presented

applying inertial sensor and image processing, both are employed to estimate the drone position. The

data fusion process is carried out by a computational intelligence procedure. Two self-configuring ANNs

are employed here: for image edge extraction, and an operator for data fusion. A hybrid computer

architecture is employed to implement the solution with standard CPU and FPGA (Field Programmable

Gate Array).
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1 INTRODUCTION

Unmanned aerial vehicles (UAVs), also known as remotely piloted aircraft or drones, and

their applications are highlighted in recent years (Goltz et al., 2011; Valavanis and Vachtse-

vanos, 2014; Fiori et al., 2017). UAV can be applied for areas such as agriculture and livestock

(Eltner et al., 2014), rescue operations (Goncalves and Renato, 2015), land mapping (James

et al., 2017), and environmental and climate monitoring (Dash et al., 2017). A solid growth in

the use of UAV is expected in the future, due to the lower cost of manufacturing and operating

in comparison to traditional manned aircraft.

One topic of interest is to develop technologies for the control and navigation of UAVs. The

UAV navigation can be performed in a remote way or autonomously (Braga et al., 2015).

For remote navigation, it is necessary a navigation protocol, implemented on the ground

station, usually controlled by a radio control. The management and communication of the

aircraft can be done by a human pilot or software. Autonomous navigation does not require a

human pilot, ground station, or radio control. For this navigation type, the control of the aircraft

is done by an embedded computer system. The computer selects which signal should to be

applied from embedded sensors, for example, from the Inertial Navigation System (INS) or/and

from the Global Satellite Navigation System (GNSS).

There are some issues associated with remote navigation. Radio control communication has

a range restriction, where many UAV systems use IEEE 802.11-based wireless technologies. In

addition, interference on the radio signal implies in vulnerability associated to natural phenom-

ena or not (Groves, 2015). This work investigates technologies for autonomous navigation in

the presence of failures or absence of the GNSS signal.

2 MULTI-SENSOR DATA FUSION AND AUTOCONFIGURED ARTIFICIAL NEU-

RAL NETWORK

Data fusion from multi-sensors is one approach for autonomous navigation. For such ap-

proach, the position of the aircraft during navigation is estimated using the fusion of information

obtained from the embedded sensors. In the situation where the GNSS signal is not available,

data fusion proposes to find the UAV position by combining different strategies, with computer

vision techniques and INS sensor (Conte and Doherty, 2009).

Figure 1: autonomous navigation by multi-sensor data fusion.

One formulation for computer vision is based on edge extraction from the a georeferenced
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image, hereafter called reference image, and the image obtained by the UAV camera. The

convolution operation from segmented images is a scheme to estimate UAV position Conte

and Doherty (2009). Conte and Doherty Conte and Doherty (2009) have used Kalman filter to

determine the aircraft position, employing the INS data and computer vision. Figure 1 shows a

schematic for estimating the position of the aircraft; using data fusion.

In the present work, a new data fuser is proposed, where Kalman filter is replaced by an

artificial neural network (ANN). The ANN used here is the self-configured multilayer percep-

tron, and the back-propagation algorithm is employed to calculate the connection weights – the

learning phase.

For image edge extraction, the patterns shown in Figure 2 are applied to identify edges and

non-edges image pixels Braga et al. (2015, 2016). Another self-configured ANN was defined

for image edge extraction.

Figure 2: Patterns applied in artificial neural network training, applied in edge extraction.

The architecture for the both cited ANNs is computed as an optimization problem. The

objective is to find optimal values for the number of hidden layers, number of neurons for each

hidden layer, the learning ratio and momentum parameter, and the type of activation function.

For finding the optimal solution, the meta-euristic called Multiple Particle Collision Algorithm

(MPCA) was applied (Anochi and Velho, 2014; Anochi et al., 2015). The cost function φ to be

minimized is a combination of two factors: a metric for the ANN complexity – the first term

in the right hand side in the below equation, and the quadratic difference between the desired

values and the ANN output:

φ =
[

θ1e
x2

+ θ2y + 1
]

(

ρ1Et + ρ2Eg

ρ1 + ρ2

)

(1)

where x is the number of neurons; y corresponds to the number of epochs until the convergence

during the learning phase, θ1 and θ2 are adjustment parameters to calculate the complexity

quantification of the neural network; and ρ1 and ρ2 relates to the balance between learning (Et)
and generalization (Eg) errors.

3 REAL FLIGHT EXPERIMENT

The flight experiment was carried out at the Linköping University, Sweden. The Aircraft

used was the Yamaha Rmax UAV.

During the experiment, one hundred and thirty-nine types of real-time data were captured.

Data were collected from embedded sensors, such as compass, barometer, GPS, INS, gyroscope

and position of the servo motors, among others. Here, the INS (Accelerometers, Gyroscopes),

barometer and video camera were used, Table 1 presents a description of the data. Data fusion

was performed by KF – see Figure 1.

There is a difference in the acquisition rate between the sensors. The KF processing rate is

50 Hz. Therefore, the KF was applied only when the lowest acquisition rate sensor provides

Mecánica Computacional Vol XXXVII, págs. 609-618 (2019) 611

Copyright © 2019 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Sensor acquisition rate Resolution

Accelerometers 66 Hz 1 mG

Gyroscopes 200 Hz 0.1 deg/s

Barometer 40 Hz 0.1 m

Camera 25 Hz 384× 288 pixels

Table 1: Some parameters associated to sensors used in the autonomous navigation algorithm.

a new data. Taking this into account, the activation of the neural network is made only when

there is a change in the data obtained from the sensor with the lowest acquisition rate. In other

words, for some data fusion process, data from the faster sensors are not considered.

3.1 Neural Fuser

As mentioned before, the KF estimation was replaced by a self-configured ANN. The MPCA

algorithm seeks the best architecture for an ANN, through an optimization problem. One of the

interests was to implement the ANN in a dedicated hardware, with FPGA (Field Programmable

Gate Array). Hence the lower the network architecture the better it will be, in other words the

fewer layers and neurons per layer it has, the less costly the implementation will be in FPGA

and the less space will be required for ANN design.

Parameter value computed

Neurons in the input layer 12
Number of hidden layers 2

Neurons in the hidden layer 10
Neurons in the output layer 2

Learning rate 0.7
Rate of momentum 0.52
Activation Function Sigmoid

Table 2: ANN architecture to emulate KF.

The MPCA algorithm was configured to find the lowest architecture with the best perfor-

mance; For this two experiments were performed. In the first experiment the configuration of

the MPCA algorithm was defined so that the ANN architecture could have only one hidden

layer. The number of neurons for the hidden layer was also modified and varied; Architectures

with three, five, seven, ten and twenty neurons were tested in the hidden layer. The second

experiment was similar to the first one, but the configuration of the MPCA algorithm was de-

fined so that ANN has two hidden layers; In this experiment the same variation occurred in the

number of neurons per hidden layer. In both experiments the autoconfigured ANN output layer

has two neurons that provide the estimation of latitude and longitude respectively.

The total of 16,595 temporal data were used for self-configured ANN training in the two

experiments. The data set was separated as follows: seventy percent were separated for the

training phase, ten percent separated for the generalization phase and twenty percent for the

validation phase. Each temporal data defined a vector with twelve values that are latitude and

longitude, estimated by the image processing, data of the inertial sensor (Accelerometers, Gy-

roscopes) and altitude obtained by a barometer sensor; Same data used in data fusion performed

by KF.

The results show that the best architecture for the autoconfigured ANN to emulate the KF was
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that it had two hidden layers with ten neurons per hidden layer. This architecture obtained the

smallest error in the training, generalization and validation phases. Table 3 presents a summary

of the error for each of the experiments performed and Table 2 presents a summary of the

architecture obtained by the MPCA.

Number of hidden layers Number of neurons per layer Error during the training phase

1 3 1.57755221369082× 10−4

1 5 7.540736119348386× 10−5

1 7 7.601787260976976× 10−5

1 10 7.681266996990718× 10−5

1 20 7.806631084675314× 10−5

2 3 7.113050064122057× 10−5

2 5 6.12196424759292× 10−5

2 7 6.007679928803779× 10−5

2 10 5.993148180318353× 10−5

2 20 6.025567521060393× 10−5

Table 3: Training error for ANN training self-configuring with only one hidden string and for training with two

hidden layers; With variation in the amount of neurons per layer.

4 IMPLEMENTATION ON FPGA

One of the our objectives is to obtain dedicated hardware for the neural fuser to be onbard

in the aircraft. The VDHL codification was used to configure the FPGA as a neural fuser. The

used FPGA is from the family Xilinx spartan-6, and it is linked to a raspberry-pi type computer.

This computer is a small device with low cost.

Figure 3: Component responsible for sending and reading data on the FPGA board.
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The communication between the raspberry-pi computer and the FPGA is serial, with the bus

capacity of 16 bits. All data are normalized into interval [0, 1]. In order to reduce the processing

in the FPGA, data is scaled to an integer number, where the scale is defined according to the

required precision. This new number has more than 16 bits, so the number is separated into four

partitions, with 16 bits for each partition. After that, all partitions are sent to the FPGA, and

grouped inside the co-processor.

The control of sending and reading data is done by a component called wishboneIntercon.

The wishboneIntercon is composed of signals that receive information of type std_logic

and std_logic_vector. The latter directive is responsible for indexing each FPGA com-

ponent address ensuring that a given data is sent or read from the correct component. Figure 3

shows the VHDL description of the wishboneIntercon component. The input signals

for sending data are wbsAddress, wbsWritedata. The output signal wbsReaddata

is used to read data. The wbsStrobe, wbsCycle, wbsWrite, and wbsAck are flags.

The wbmAddress, wbmWritedata, and wbmReaddata signals are used for sending and

reading the internal components in the FPGA. The flags for internal data traffic, are the wbmStrobe,

wbmCycle, wbmWrite, and wbmAck signals.

For each data sent to the FPGA, four registers are used, because each register receives a 16
bits word. The input vector for the ANN has twelve inputs. Therefore, fifty six registers were

used to transfer the data to perform the fusion by the ANN. After sending the data, the infor-

mation needs to be reassembled, and this action is done by concatenating the 16 bits partitions

from the transferred values into a value of 64 bits.

The same representation in 64 bits is applied to the values of weights and bias, and equal

or very close values are shared, i.e., if a same weight value is used for more than one neuron,

a VHDL constant is created to be used more than once. This strategy is also applied to the

activation function case. The activation function is represented by a lookup table instruction.

5 FINAL REMARKS

The KF was emulated by the neural fuser implemented on FPGA. In the neural fuser, A

neural network with two hidden layers and ten neurons for each hidden layer was employed,

because this architecture obtained the smallest training error.

Figures 4 and 5 show the results of self-configured ANN activation for the second exper-

iment; Where the network has two hidden layers. The latitude and longitude estimates made

by the neural fuser are shown and the data presented are for the validation set corresponding to

twenty percent of the total data obtained during the flight. The results for each variation in the

number of neurons in the hidden layers are shown. From the presented result it is possible to

see that the neural fuser can emulate the KF.

There is an error in the result of the neural fuser estimation; A distance between the mea-

surements obtained with the neural fuser and the measurements obtained by KF. This error

calculated in cm is close to 0.6 × 10−4 cm. This means that even if there is a difference it is

sub-metric and does not compromise the neural fuser result. Figure 6 shows the error in cm for

the validation set - same set of data shown in Figures 4 and 5; For each measure used in the

activation of the neural fusion, the difference in cm between the measures estimated by the KF

and the measures estimated by the neural fuser was calculated. The smaller the number of neu-

rons in the hidden layers the greater the error in cm between the estimates made by the neural

fuser and the estimates made by KF; The smallest distances are for when the hidden layers have

the number of neurons between ten or twenty and the biggest distances are when the hidden

layers have between three and five neurons.
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Figure 4: Latitude for two hidden layers.

Figure 5: Longitude for two hidden layers.

The algorithimic complexity of the neural fuser is simpler than the KF, since the neural fuser

does not require information from the dynamics of the aircraft. The neural fuser is just a non-

linear mapping between the inputs and desired outputs, fully formulated by data driven; This

means that the neural fuser can be an example of other ways of advertising. Figures 7 and 8
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Figure 6: Error in cm, for architecture with two hidden layers.

Figure 7: Latitude estimation of by ANN implemented in FPGA.

show a comparison between the result of the data fusion made by KF and the result of the fusion

of data made by the neural fuser implemented in FPGA. the estimates for latitude and longitude

– here the validation set was also used.
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Figure 8: Longitude estimation of by ANN implemented in FPGA.
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