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Abstract. Most real mechanical problems present nonlinear characteristics and are governed by nonlin-

ear initial value problems (IVP). These nonlinear IVP usually do not present a known analytical solution.

For this reason, approximation methods are employed. There exist many well-known analytical and nu-

merical approximation techniques available in the literature which prove efficient in this assignment and

can provide approximations up to any desired precision. While both methods succeed in presenting a

approximation to IVP, the analytical methods have the advantage of deriving analytical approximation

where the model parameters, initial conditions, etc, are explicitly present in the resultant mathemati-

cal expressions. This renders the latter a very cost-effective solution from a computational point of view,

when we are interested in evaluating the model response in circumstances where those parameters or con-

ditions change. Moreover, analytical approximations can very convenient when dealing with a stochastic

approach, and especially with the Monte Carlo method. The Monte Carlo method is an important tool to

build statistical models of random objects transformations. Usually, to construct an accurate statistical

model (often histograms and sample statistics), several samples of the transformation output are required.

If each sample is obtained by a numerical integration, the computation of the Monte Carlo method be-

comes a time-consuming task, with a high computational cost. An alternative to reducing those costs

is to employ an analytical approximation. In this case, the computation of a numerical integration for

each realization is replaced by a simple substitution in the expression of the analytical approximation, a

much less costly task than that of the numerical methods. Therefore, the aim of this article is to quantify

and compare the computational costs of the construction of statistical models by means of the Monte

Carlo method using numerical and analytical approximations. The objective is to compare the gain in

terms of CPU time when analytical approximations are used over numerical approximations. For this, a

classic example of the literature will be used: an IVP involving the Duffing equation where one of the

parameters of the problem will be modeled as a random variable.
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1 INTRODUCTION

Dynamical problems governed by nonlinear initial value problems (IVP) ordinarily do not

present a known analytical solution. In such case, an alternative is to compute approximate so-

lutions, which also prove helpful in the understanding of the characteristics of their dynamics.

Numerical and analytical methods are efficient in this assignment and can provide approxima-

tions up to any desired precision. Numerical methods have been widely applied in this type

of problems. There exist many computational packages for their implementation, such the

software MATLAB which includes several algorithms to perform numerical integrations. The

most famous MATLAB 4th and 5th order Runge-Kutta method implementation is chosen for

the numerical solutions in this paper. However, analytical approximations have an advantage in

relation to numerical ones: they allow a deeper understanding into how the solution depends on

the problem parameters. There exist many analytical techniques in the literature that allow us

in this assignment (Sanchez (1996), Gomes (2019c), Gomes (2019d)). One of this method is

the Lindstedt-Poincaré, a powerful technique to compute periodic analytical approximations. It

transforms a nonlinear IVP, for which we do not know the analytical solution, into a linear-IVP

family which we know to solve each one of them.

Parametric analysis is very important in the study of dynamic systems, as it helps to identify

the phenomenon originated by the nonlinearity.This analysis, when carried out by means of a

numerical approximation, has a high computational and temporal cost, since for each value of

the parameter it is necessary to do a numeric integration Pasquetti (2008). The cost to do such

analysis could be even higher if we take a stochastic approach as we can see in Lima (2015),

Lima (2017a) and Lima (2017b). In the paper Lima (2017b) a parametric study of a stochastic

nonlinear IVP was performed. The influence of two parameters was analyzed, one of them

assumed 40 different values and the other 8, totalizing 320 combinations. As the article con-

siders uncertainties and is aimed to building a statistical model, for each combination of the

parameters it was necessary to do a Monte Carlo simulation. The Monte Carlo method is an

important tool, which permits us to construct statistical models of random objects transforma-

tions. To obtain an accurate statistical model (often histograms and sample statistics), usually

several samples of the transformation output are required. In each Monte Carlo simulation the

IVP was be integrated 2,000 times, totaling 640,000 numerical integrations. To perform all of

these calculations sequentially, 2,5 years would be required. Alternatively, the parallelization

strategy was used. Integrations have been distributed into 16 computers, reducing the simula-

tion time for 55 days. Note that even with parallelization, the computational cost remained high

and took almost 2 months. An alternative to improve the computation time is to replace the nu-

merical integrations by employing analytical approximations for the solution of each realization

of the Monte Carlo Method. By doing this, instead of computing a numerical integration, we

only need to do substitutions into the analytical expressions for each realization. A much less

costly task. To verify this, we compute analytical and numerical approximations to the Duffing

equation and chose as random variable the initial displacement.

2 ANALYTICAL APPROXIMATION

The Lindstedt-Poincaré method is an analytical technique to compute approximations to

nonlinear initial value problems, which ordinarily do not have a analytical solution. In this

context, these analytical methods are a helpful tool to study the response of those systems. A

traditional example in the literature is the IVP involving the Duffing equation, which presents a
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cubic nonlinearity, defined as

ẍ+ ω2
0 x + γ x3 = 0 , (1)

with initial conditions x(0) = A0 and ẋ = 0. Where �̇ means the derivative with respect to t,

γ is a constant parameter that controls the nonlinearity. Due to the cubic term, the Eq. (1) is

nonlinear and an analytical solution is not known. As an alternative, we can use the Lindstedt-

Poincaré method to compute an analytical approximation. This method transforms a nonlin-

ear initial value problem in a linear-IVP family with known analytical solution for each linear

IVP. The method considers as solution to the nonlinear IVP, a uniform expansion in relation

to the perturbation parameter that should be introduced multiplying the nonlinear term (Gomes

(2019a)). Replacing the expansion in the equation and doing some algebraic manipulations, we

can transform the nonlinear IVP into a linear- IVP family. To find the original analytical solu-

tion we must calculate all linear IVP. However, as it is cumbersome to solve all these IVP, we

usually consider N terms of the expansion. By doing this, we say that we have an approxima-

tion of order N. In Bender (1999), Radhika (2015), Gomes (2018), Gomes (2019b) more details

about this methodology are provided. Therefore, we computed an analytical approximation of

second order given by

x(t) ≈A0 cosωt+ ǫ γ
A3

0

32ω2
0

(cos 3ωt− cosωt)

+ ǫ2 γ2 A5
0

128ω4
0

(

23 cosωt

8
−

3 cos 3ωt

1
+

cos 5ωt

8

)

(2)

ω(A0) ≈ω0 + ǫ γ

(

3A2
0

8ω0

)

− ǫ2 γ2

(

21A4
0

256ω3
0

)

. (3)

3 STOCHASTIC APPROACH - MONTE CARLO METHOD

When we work with stochastic problems, the Monte Carlo method is an important tool due its

ability to obtain numerical approximations for complex problems. It is used to make predictions

about stochastic objects (Shonkwiler (2009)) and are grounded in two theorems, the law of large

numbers and the central limit theorem (Sampaio (2012)). This method is commonly used in

random object transformations when the transformation is difficult to compute, or when we do

not know how to perform the analytical transformation of the probabilistic mode. So, we use

the Monte Carlo method to generate a statistical model through a probabilistic one that we know

how to build.

As random variable, we chose the initial displacement, A0, and modeled it as a Beta function.

Its probability density function (PDF) is

xα−1 (x− 1)β−1

B(α, β)
, (4)

where B(α, β) = Γ(α) Γ(β)
Γ(α+β)

and Γ is the Gamma function with support [0 , 200]. We fixed the

parameter β = 2 and chose 66 different values for α between [1.5 , 8]. For those values the

shape of the PDF changes, as shown in Fig. 1. So, for values of α closer to 1.5 we have more

probability to have values of A0 under 100, while for values of α closer to 8 there is a higher

probability of having values of A0 above 100.
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Figure 1: Probability density function of Beta distribution

4 COMPUTATIONAL RACE

To analyze the temporal cost to perform a Monte Carlo simulation using analytical and nu-

merical approximations, we vary some parameter values to see its influence in the CPU time.

For the numerical approximation, we used the Runge-Kutta method of 4o and 5o order to in-

tegrated the Eq. (1), and to analytical approximation we used the Eq. (2). We considered 66
sample of Beta distribution for each value of α between [1.5 , 8] with 104 realizations each one.

Figure 2 shows the CPU time in seconds to the analytical and numerical approximations for

each of the 66 samples of the Beta distribution. For this case, the numerical approximation took

almost 5, 66 hours in the total, and the analytical approximation took almost 100 times less,

only 3, 2 minutes.

Figure 2: CPU time of the analytical and numerical distribution for each of the 66 samples of Beta distribution,

considering γ = 1.0, ǫ = 1.0.

We also analyze the influence of γ, since this parameter controls the nonlinearity of the

system, higher its value, more nonlinear becomes the equation. So γ assumed 11 values between
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[0 , 2]. Thereby, for each realization with a pair of values α and γ, we integrated the numerical

approximation and evaluated the analytical approximation 7.26 x106 times.

Figure 3: CPU time of the numerical distribution for each of the 66 samples of Beta distribution, considering

0 < γ < 2.0, ǫ = 1.0.

Figure 4: CPU time of the analytical distribution for each of the 66 samples of Beta distribution, considering

0 < γ < 2.0, ǫ = 1.0.

Figures 3 and 4 shows the CPU time to perform the numerical and analytical approximation,

respectively. To compute the Monte Carlo method for all combinations of γ and α with the

numerical approximation, it took almost 60, 75 hours, while with analytical approximation it

took almost 32, 16 minutes. When γ assume value equal to 0 the Eq. (1) becomes linear, and

in the both cases, numerical and analytical, the CPU time is much less than other curves with

non-zero γ values. This cases, with nonzero γ, with the numerical approximation the CPU time

increases as γ and α increase. While with analytical approximations the CPU times does not

varies significantly.
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5 CONCLUSIONS

With the simulations using analytical and numerical approximation to perform the Monte

Carlo method, we can verify that the numerical integrations are very sensitive to the parameters

values. The temporal cost to integrate the Eq. (1) using the Runge-Kutta method of 4o and

5o order is influenced by the value of γ and α, the Beta distribution parameters. It can also be

observed that the CPU time to compute a numerical approximation is responsive to the values of

the parameters, while the computational cost of the analytical approximation does not present

a significant change. Moreover, observing the Figs. 3 and 4, it seems to us that the CPU time

will continue to increase with the increase of the γ and α value, whereas for the analytical

approximation the CPU time seems to continue in the same time range. In addition, there is an

important difference in the magnitude of the time taken to calculate each of the approximations,

while the numerical approximations takes hours to compute the analytical takes minutes.

REFERENCES

Bender Carl M.;Orszag S.A. Advanced mathematical methods for scientists and engineers I:

Asymptotic methods and perturbation theory. Springer-Verlag New York, Inc., 175 Fifth

Avenue, New York, NY, 10010, USA, 1 edition, 1999.

Gomes M. Estratégias de aproximações analíticas hierárquicas de problemas não lineares:

métodos de perturbação. Master’s Thesis, Pontifícia Universidade Católica do Rio de

Janeiro, 2019a.

Gomes M.; Lima R.S.R. Approximations using symbolic algebra coupled with poincaré-

lindstedt method: some applications. In Proceedings of DINAME 2019. Buzios, RJ, Brasil,

2019b.

Gomes M.;Lima R.S.R. Qualitative analysis of dynamical problems using a combination of

symbolic algebra coupled with poincaré-lindstedt method. In Mecanica Computacional. San

Miguel de Tucumán, Argentina, 2018.

Gomes M.:Lima R.S.R. Método de múltiplas escalas aplicado em um problema de valor inicial

com atrito seco. CNMAC 2019 XXXVIII Congresso Nacional de Matemática Aplicada e

Computacional, Uberlândia., 2019c.

Gomes M.:Lima R.S.R. Multiscale method applied in a stick-slip oscillator. COBEM 2019

Proceedings of the 25th International Congress of Mechanical Engineering, Uberlândia.,

2019d.

Lima R.; Sampaio R. Stick-mode duration of a dry-friction oscillator with an uncertain model.

Journal of Sound and Vibration, 353:259–271, 2015.

Lima R.; Sampaio R. Construction of a statistical model for the dynamics of a base-driven

stick-slip oscillator. Mechanical Systems and Signal Processing, 91:157–166, 2017a.

Lima R.; Sampaio R. Parametric analysis of the statistical model of the stick-slip process.

Journal of Sound and Vibration, 397:141–151, 2017b.

Pasquetti E. Métodos Aproximados de Solução de Sistemas Dinâmicos Não-Lineares. Ph.D.

thesis, PUC-Rio, Engenharia Civil, 2008.

Radhika TSL; Iyengar T.R.T.R. Approximate Analytical Methods for Solving Ordinary Differ-

ential Equations. Taylor and Francis Group/CRC, 6000 Broken Sound Parkway NW, Suite

300 Boca Raton, FL 33487-2742, 2015.

Sampaio R.L.R. Modelagem estocástica e geração de amostras de variáveis e vetores

aleatórios. Notas de Matemática Aplicada, SBMAC, vol.70., 2012.

Sanchez N.E. The method of multiple scales: asymptotic solutions and normal forms for non-

M. GOMES, R. LIMA, R. SAMPAIO654

Copyright © 2019 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



linear oscillatory problems. Journal of Symbolic Computation, 21(2):245–252, 1996.

Shonkwiler R. W.;Mendivil F. Explorations in Monte Carlo Methods. Springer, 2009.

Mecánica Computacional Vol XXXVII, págs. 649-655 (2019) 655

Copyright © 2019 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar


	INTRODUCTION
	ANALYTICAL APPROXIMATION
	STOCHASTIC APPROACH - MONTE CARLO METHOD
	COMPUTATIONAL RACE
	CONCLUSIONS

