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Abstract. A stochastic model of a wood pole under wind loads is addressed in order to study its failure

under different criteria. In order to evaluate wind loads on a structure, the Argentine standard CIRSOC

102-2005 proposes simplifications that take into account the effects of shape, location and dynamics of

a load variable in time, resulting in an equivalent quasi-static action, which simplifies the strength and

deformations assessment of a given structure. However, if a temporal and spatial varying record of the

wind load is considered in detail, the results should be comparable to those obtained with the standard

load. The structural model consists of a wood utility pole with one end embedded in the ground and

the other end free, with deterministic geometry and material properties values. The pole is subjected

to a wind load along its length. The stochastic dynamic wind load as a temporal function derived from

a Power Spectral Density Function using the Spectral Representation Method and taking into account

spatial and temporal correlations. The structural model is discretized with FEM and the realizations are

analyzed with Monte Carlo method. In the study, the maximum displacement at the tip is assumed as the

failure threshold. This work seeks to explore results from different failure criteria for dynamic loads and

to compare them with the results of a pole under quasi-static deterministic wind load. The criteria are the

first passage, the dwell time above the failure threshold, the extreme values distribution, the crossing rate

and the cumulative proportion of displacements above the threshold of all the realization. A comparison

is carried out by means of the fragility curves to assess the suitability of each approach.
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1 INTRODUCTION

The behavior of a utility wood pole with linearly varying diameter (truncated cone) under

wind load is analyzed in order to assess its reliability. The case of a quasi-static wind load

as prescribed by the Argentine standard (CIRSOC 102, 2005) is solved as a reference. Pre-

vious works by the authors have addressed different complexities both in the load and in the

material properties. A pole under quasi-static wind load was analyzed considering the random

geometric variables (Gonzalez de Paz and Rosales, 2015) and the study included the reliability

analysis regarding strength and serviceability. Then, the modulus of elasticity of a wood pole

was considered as a homogeneous random variable and as a stochastic field in Gonzalez de Paz

et al. (2016); in this case, the first passage was evaluated. More complex models of the wood

properties were addressed in Gonzalez de Paz et al. (2017). In effect, previous models were

compared with the weak zone approach including the change of stiffness due to the knots. Con-

fidence bands were calculated and the load was represented by a stochastic temporal function.

The failure of the pole is calculated regarding to the top displacement serviceability condition

which limit is proposed in the wood structures’ Argentine standard (CIRSOC 601, 2016). Five

failure criteria are employed in the present work: the first passage deals with the time when

the response first crosses a given threshold (Benaroya et al., 2005; Shinozuka and Wu, 1988);

the dwell time counts the total time that the structure is in the undesirable zone (Shinozuka

and Wu, 1988); the extreme value distribution is the probability distribution function of the

extreme values in a certain period of time (Melchers and Beck, 2018); the crossing rate mea-

sures the number of times in which the displacement crosses the limit in a certain time interval

(Melchers and Hough, 2007) and the time integrated displacements measures the area of the

displacement-time plot above the limit w.r.t. the total plot area (Melchers and Beck, 2018).

The stochastic wind load is found by the Spectral Representation Method Shinozuka and

Deodatis (1991) starting from the Davenport’s power spectrum (Dyrbye and Hansen, 1996).

The resulting function includes the temporal and spatial correlations.

The fragility curves are a very useful means to evaluate the probability of damage of a struc-

ture as a function of one relevant variable (Palencia et al., 2008; Gonzalez de Paz et al., 2016).

In this study, the five failure criteria mentioned above are analyzed in order to adopt a failure

level for each of them. Afterwards, the stochastic model (stochastic wind load) is run and

the responses are statistically processed in order to obtain the fragility curves as a function of a

range of wind reference velocities. The failure criteria results are compared with the quasi-static

wind velocity case.

2 STRUCTURAL MODEL

The structure under study is a Eucalyptus grandis pole which is a vertical column which

diameter varies linearly, embedded in the soil. The structural model is a beam clamped at the

ground line subjected to transverse wind load. Two models of wind action are applied length-

wise the pole. One of them is the proposed by the Argentine standard CIRSOC 102 (2005) and

the other is a dynamic stochastic load with accounts for spatial and temporal correlations. The

wood properties parameters and the geometric quantities (height and ground and top diameters)

were obtained from Torrán et al. (2009). The geometric quantities are depicted in Table 1.

The Modulus of Elasticity (MOE) value is a constant and equals to the deterministic value

found by Torrán et al. (2009), MOE = 10.935 N/m2. Damping in timber material is considered

random with a uniform distribution, assuming values between 1% to 3% of the critical damping

cc. The mass is considered as a deterministic value equal to 707 kg/m3, corresponding to the
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Table 1: Geometric Data (Torrán et al., 2009)

GL-T distance ground line diameter top diameter

10.175 m 0.262 m 0.191 m

mean value presented in Torrán et al. (2009) for a mean moisture content of 45%.

3 WIND LOAD

The described model is subjected to two types of wind load: a quasi-static load calculated

following the standard CIRSOC 102 (2005), variable only in height and a stochastic dynamic

load, variable in height and time.

3.1 Stochastic Dynamic Wind Load

In order to calculate the dynamic stochastic wind load in the time domain, it is necessary to

recreate a temporal record which is composed of two contributions: one is a deterministic mean

value with position variation and the other, a fluctuating random field with variation in position

and time.

The fluctuating wind velocity is obtained by the application of Spectral Representation

Method (SRM) (Shinozuka and Deodatis, 1991). The method starts from a Power Spectral

Density Function (PSDF) and a coherence function, to be chosen in accordance with the type of

problem to be simulated. Then, the random signals are created as a superposition of harmonic

functions with a random phase angle, weighed by coefficients that represent the importance

of the value of frequency within the spectrum and the spatial correlation. The process can be

simulated by the following:

fj(t) =
3

∑

k=1

N
∑

n=1

|Hjk(ωn) |
√
2∆ω cos[ω̂nt+ Φkn] (1)

where ∆ω is the frequency interval with which the PSDF is discretized, ωn = ∆ω(n−1), ω̂n =
ωn + ψkn∆ω, ψkn is a random value uniformly distributed between 0 and 1, N is the amount

of frequency ranges and, Φkn are the random independent phase angles uniformly distributed

between 0 and 2π. More details can be found in Shinozuka and Deodatis (1991). The SRM

requires of the implementation of different steps. The Davenport’s PSDF is chosen (Dyrbye

and Hansen (1996)):

RN(z, ω) =
ωS(z, ω)

σ2(z)
=

2

3

f 2
L

(1 + f 2
L)

4/3
(2)

where ω is the frequency in Hz, σ is the standard deviation and fL is the non-dimensional fre-

quency fL = ωLu/U(z). Lu is the length scale of turbulence (1200 m in Davenport’s PSDF)

and U(z) is the wind mean velocity at height z. The expression for U(z) correspond to the po-

tential law adopted by the Argentinian standard (CIRSOC 102, 2005) U(z) = 2.01V (z/zg)
2/α

where V is the nominal wind velocity which, together with zg and α, are values given by the

standard code depending on the characteristics of the structure location.

Then, the assumed coherence function is

Coh(zi, zj, ω) = exp

{

−2ω
Cz | zi − zj |
U(zi) + U(zj)

}

(3)
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where zi and zj are the heights of two given points of the pole. Then, each Sij of the S(ω)
matrix, for a given value of frequency can be calculated as

Sij(zi, zj, ω) =
√

S(zi, ω)S(zj, ω) Coh(zi, zj, ω) (4)

Following this procedure, each value Sij(zi, zj, ω) will be calculated, and then, for each fre-

quency ω, H(ω) matrices will be found. Finally, it is possible to construct the temporal series

given by

u(zj, t) =
m
∑

k=1

N
∑

n=1

Hjk(ωn)
√
2∆ω cos[2πω̂nt+ Φkn]. (5)

Table 2: Adopted values employed in the calculation of the time dependent velocity field.

Coefficients σ2 Lu Cz ωc ∆ω t ∆t N m

Value 38.77 1200 m 11.5 2.5Hz 0.004 Hz 300 s 0.3 s 625 10

Once the fluctuating component of the wind speed has been determined, the Argentinean

Standard (CIRSOC 102, 2005), with some modifications carried out in order to take into account

the dynamics of the wind, is employed in the calculation of the wind load. This standard defines

the transversal wind force F as:

F = qz GCfAf (6)

where G is the gust-effect factor, Cf is the force coefficient which includes the effect of the

shape of the structure, Af is the projected area normal to the wind. qz is the dynamic velocity

pressure evaluated at height z of the structure:

qz = 0.613 kz kzt kd V
2I (7)

where kz is the dynamic pressure exposure coefficient, kzt is the topographic factor, kd is

the wind directionality factor, V is the basic wind speed and I is the importance factor. kz
is a function of the elevation z and the exposure category that described the ground surface

roughness using information about the natural topography, vegetation and constructed facilities

in the vicinity of the structure of interest.

For the determination of the fluctuating component of the wind velocity, the expression

V kz = U(z) was used. Then, the Equation 7 becomes

q̄z = 0.613 kzt kd(U(z) + u(z))V I (8)

and the Equation 6 results:

F = q̄z GCfAf (9)

Table 3 shows the adopted values for the mentioned coefficients.

4 FAILURE CRITERIA

In general, the failure of a structure is assumed when the demand S is larger or equal to a

given limit R, i.e. the probability of failure is written as

pf = P [G(R, S) ≤ 0] (10)

where G(·) is known as the ’limit state function’ and the probability of failure is identical to the

limit state violation. The types of failure studied is this work are operational, without collapse,

analyzing maximum displacements due to wind load acting on the structure.
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Table 3: Coefficients employed in the determination of the wind load according to CIRSOC

102 (2005).

Coefficients G Cf I kd kzt α zg
Value 1 2.0 1 0.85 1 9.5 274 m

Load Response

Threshold R = r

Upcrossing 
Event S > r

Load Response S(t)

Time tFirst Exceedence Time t1

Extreme Value 
Distribution

Instantaneous 
Distribution

m
peaks

Figure 1: Typical realizations of load effect S(t) and threshold R, with R a time-independent

variable (Melchers and Hough, 2007).

4.1 Static Failure Criterion

In this study, the limit for the static load model is set when the displacement in the top of the

pole (demand S) is equal or larger to a maximum displacement allowed for this structural type

of R = H/100 = 0.10175 m (CIRSOC 601, 2016).

4.2 Dynamic Failure Criteria

Loads and their associated response can be expressed as stochastic processes. Figure 1 shows

a realization of a load response S which fluctuates around a mean value. Also, an instantaneous

probability distribution fS can be described. Threshold R = r represents the strength or limit

state of a structural system. In this study, R takes a deterministic value, invariant in time.

4.2.1 First Passage

The first passage problem is highly related to the reliability of a structure under a dynamic

load. It is also known as first excursion problem or first crossing problem (Benaroya et al.,

2005). The term "first passage failure", however, does not necessarily indicate that a structure

fails immediately following the first time response passes a given threshold level R = r.

pf = P (S(t) > R) (11)

where pf is the probability of failure for the first passage, S(t) a load response realization and

R the defined failure threshold. R represents the limit state of the structure and can be a random

variable, but in this study adopts a deterministic value equals to a displacement 1% height of

the pole.

This threshold R separates the safe part of the unsafe part of the process. If a process exceeds

the threshold at least once, it is said to fail for "first passage". In reliability, the probability of
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failure for the first passage and the first time of occurrence are usually analyzed. Here, we will

focus only on the first result.

4.2.2 Dwell time above the failure threshold

That the studied parameter of the structure exceeds a limit value and fails for the first passage,

does not imply that the structure fails immediately after the event (Shinozuka and Wu, 1988).

We can think that the failure is due to accumulation of damage, and a way to measure it is

to count the total time that the structure is in the undesirable zone, i.e. the dwell time of a

parameter over the defined failure threshold. However, this value does not provide information

about how much a structure parameter exceeds the threshold.

4.2.3 Extreme Value Distribution

Sometimes only the maximum values of a parameter (load or response) are recorded in a

certain period of time. The corresponding probability distribution is known as extreme value

distribution, and a high level of response is particularly significant for the estimation of struc-

tural safety (Melchers and Beck, 2018). A local maximum of a stochastic process S is defined

as the value of S(t) such that S ′(t) = 0 and S ′′(t) <0. Local maxima are peaks in a typical

realization of S(t) and depend on the magnitude of these with respect to the limit state. In

addition, they provide information on the magnitude of the damage.

4.2.4 Crossing Rate

Considering the limit state function G(t) = R(t) − S(t), where R(t) is the strength and

S(t) the value of a studied time variable parameter of the structure, we establish the prob-

ability P (G(t) ≤ 0) as crossing problem. The time in which G is zero for first time is

called "failure time" and the event is a "failure for the first passage". Counting the number

of up-crossings through a threshold "a" in a time interval ∆t, the up-crossing rate ν+a will be:

ν+a =
up− crossing

∆t
.

As mentioned earlier, the collapse of the structure may not occur due to the first crossing

event. However, it does have special significance in dynamic problems that involve fatigue.

4.2.5 Time integrated displacement

The classical approach is to consider the integration transferred to the load or load effect

process, which is then assumed to be representable, over the total time period, by an extreme

value distribution.This means the load effect has been turned from a process into a random

variable. Also, the resistance is assumed to be time invariant. Then the problem becomes

time-invariant, and it is possible to perform the analysis in a classical way (Melchers and Beck,

2018).

In the time-integrated approach, the whole lifetime [0, tL] of the structure is considered as a

single unit, and all statistical properties of all random variables must relate to this lifetime. The

probability distributions of interest are the distribution of maximum responses for loads and the

minimum resistances in a lifetime structure. Simple comparison of the maximum load and the

minimum resistance is, however, not appropriate since it is highly unlikely that the occurrence
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of the lifetime maximum load will coincide with the lifetime minimum resistance. The time-

integrated approach is based on the concept of applying a loading system to the structure at

regular intervals in time. In this case the probability of failure of the structure may be considered

simply a function of the number N of statistically independent loading applications to cause

failure.

5 RESULTS

From the described criteria, the limit state function G(·) was determined in each case. For

this, for the deterministic failure wind velocity a dynamic stochastic wind load was performed

and the displacement of the top of the pole was analyzed in a model under this dynamic load.

If this displacement is greater than 1% of the value of the height of the pole H , it is a failure

condition. With the Monte Carlo Method, the analysis of different parameters was made from

the distribution of the displacements, and aG(·) function was defined for each criterion. Finally,

these functions were applied to the results from the models under wind loads generated from a

range of wind velocities and the different fragility curves were found.

5.1 Analysis for Deterministic Failure Wind Velocity

For the deterministic model with wind load from the standard, it was determined that the

speed at which the limit state is reached is 27.6 m/s. A number of 1000 stochastic dynamic wind

loads were generated with V = 27.6 m/s as basic wind velocity and then they were applied to

the described pole model. Pole top displacements were obtained and analyzed based on the

criteria listed. Figure 2 shows the different analysis.
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(a) First Passage Time.
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(b) Time over the threshold.
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(c) Peaks cumulate distribution.
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(e) Proportional time integrated displacement.

Figure 2: Dynamic stochastic model with V =27.6 m/s. Analysis of different failure criteria.
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Figure 2a shows the time distribution of the first passage, whose shape fits an exponential

distribution 1−e−νt, as mentioned in Benaroya et al. (2005). Failure probability for first passage

criterion for this wind velocity is high, and we conclude that it is a very strict criterion for the

proposed failure definition. It also studied how much time the displacements dwelled above

the threshold (Figure 2b) and the relationship with respect to the total simulation time was

calculated. It was found that the dwell time above the failure threshold has an average of

43% and this value was adopted as the limit for this criterion. Figure 2c shows the cumulative

distribution of extreme values or peaks of a realization. For 27.6 m/s, about 80 % of the extreme

values are above the defined failure threshold, and this is the condition we adopt for this case.

The up-crossing rate distribution for deterministic failure wind velocity is shown in Figure 2d.

It can be observed that this value exhibits a approximate mean value of 1/s. However, this

limit cannot be adopted as a single criterion given that for wind velocities higher than 27.6

m/s the displacement crossing rate is is lower and it is seen that most of the displacements

remain above the threshold. To identify whether the displacements are above or below it, this

criterion was combined with the extreme value distribution. It is proposed that if the mean of

the extreme values is above the threshold, then the realization happens mostly in the region

above the limit and then, it is in a failure condition. Finally, the distribution of the time integral

of the displacements above the threshold with respect to the total displacements was analyzed.

It was found that, for the studied velocity, the mean value is a 9% of this proportion and then,

this is the adopted value for the failure criterion.

In what follows, the limit state function G(·) is listed for each criterion:

• Gfirst passage : δthreshold − δ(t)

• Gdwell time =: T ime over threshold ≥ 43% total time

• Gextreme values =: P (δpeaks(t) ≥ δthreshold) ≥ 0.8

• Gcrossing rate : ν
+ > 1/s ∩ µpeaks > δthreshold

• Gintegrated displacement : P

(

∫

t
δup(t)dt

∫

t
δ(t)dt

≥ 0.09

)

> 0.5

where δ(t) is the pole top displacement as a function of time, δthreshold is the allowable max-

imum displacement for the failure of the static model, δpeaks(t) is the extreme value of the

displacement at time t, δup(t) is the displacement above δthreshold.

5.2 Fragility Curves

Based on the limits proposed above for each criterion, an analysis was performed por wind

velocities in a range of 18 m/s to 31.5 m/s. The fragility curves were constructed for each case

and are depicted in Figure 3. From the plot, it is apparent that the curve corresponding to the

failure criterion of the first passage yields high probabilities for wind velocities less than 27.6

m/s, resulting in a quite conservative criterion. For the other criteria, the curves are around the

line of deterministic failure being the curve of the crossing rate criterion the leftmost and with

smoother slope. The criteria that account for the dwell time over the threshold, the extreme

value distribution and the proportion of accumulated displacement in time, result in rather steep

curves, the latter lying between the other two. This is due to the fact that the last criterion

considers both the dwell time as the magnitude of the displacements that overpass the prescribed

limit. Then, it is concluded that the criterion of the time integrated response is the most adequate
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Figure 3: Fragility curves.

since it deals with more quantity of information and the fragility curve approximates better to

the quasi-static model of the standard.

6 CONCLUSIONS

The standard (CIRSOC 102, 2005) suggests procedures to simplify the dynamic effect of the

load by means of different coefficients. If the aim is to assess the reliability of the structure

under the wind load, the stochastic nature of the response due to the random load cannot be

disregarded. Thus, a failure criterion applied to a response of the structure under an equivalent

load could be misleading. The equivalent criterion to the failure of a quasi-static model is the

first passage, but, as was observed above, the probability of failure for the reference model is

very close to 1 and consequently, high probability of failure is found for lower velocities. Other

criteria were explored for the random wind load which are related to the fatigue phenomenon:

dwell time, extreme value distribution, crossing rate and proportion of the response above the

threshold accumulated in time. In order to define the corresponding limit state functions, the

dynamic response at the top of a pole clamped at the ground under stochastic wind load was

studied using the velocity in which the deterministic quasi-static model fails. This test was

carried out using the Monte Carlo method with N = 1000 realizations to perform the statistical

analysis. For the crossing rate criterion, that is, how many times per unit of time the realization

values goes from a value below the limit to surpass it, it was found that it cannot be taken as

an isolated parameter and it should be combined with other criterion. Not only it is relevant

to know the crossing rate but also if the displacement remains above or below the prescribed

threshold when the number of crossings is less than 1/s. To determine whether the realization

crosses and stays above the limit, it was proposed the failure condition that assesses if the

mean of the peak distribution mean surpasses that value. Once the limits were prescribed, these

functions were applied to the dynamic response of the pole under stochastic wind in a range

of reference velocities ranging from 18 m/s and 31.5 m/s, yielding the fragility curves for each

criterion. It was verified that the curve found using the first passage criterion develops mainly

in the range of velocities lower to 27.6 m/s while the remaining curves show variations around

this velocity. The curve that accounts for the crossing rate exhibits higher probabilities for

lower wind velocities and then, the results can be regarded as more conservative. For the other
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fragility curves, the criterion that considers the time integrated response lies between the dwell

time and the extreme values distribution curves.

It could be concluded that such curve combines the dwell time and the extreme values, then

being the most representative among all the analyzed criteria and the most adequate to describe

the probability of the proposed service failure.
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