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Abstract. The main purposes of this work are the formulation and application of a computational 
algorithm for the elasto-plastic static analysis of structures, including finite displacements and 

rotations. An hexahedrical isoparametric finite element with eight nodes and one-point quadrature is 

used. Mechanisms to avoid hourglass modes as well as volumetric and shear locking are introduced. A 

corotational formulation is employed to deal with the geometrically nonlinear analysis, whereas an 

explicit algorithm (based in Euler’s scheme) is implemented for the elasto-plastic analysis. The applied 

constitutive models include the Mohr-Coulomb as well as the Von Mises yield criterion with isotropic 

hardening. Numerical examples with highly nonlinear behavior are presented to demonstrate the range 

of applicability of the formulation. 
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1  INTRODUCTION 

Low order three-dimensional finite elements have been used with efficiency in many solid 

mechanics problems. However, volumetric locking is encountered for incompressible or near 

incompressible materials and shear locking appears in bending-dominated situations when no 

special element technology is embedded to overcome this deficiency. Among the ideas to 

eliminate this problem, reduced integration may be used. Nevertheless, the results achieved 

through the use of these elements can be unsatisfactory or even meaningless when spurious 

modes are excited. Hence, the use of the reduced integration elements requires an efficient 

numerical stabilization scheme to suppress the spurious modes. 

Low order finite elements with reduced integration and hourglass stabilization are 

especially attractive due to their computational efficiency. The numerical efficiency gained by 

working with a lower number of Gauss points is in particular noticeable when the numerical 

cost of a finite element analysis is strongly coupled to the numerical effort at the element 

level. This is the case when explicit computations are performed and also computations based 

on highly complex constitutive models. 

In a non-linear finite element analysis, it is necessary to integrate the constitutive relations 

to obtain the unknown increment in the stresses. These relations define a set of ordinary 

differential equations and methods for integrating them are usually classified as explicit or 

implicit. Since explicit schemes employ the standard elasto-plastic constitutive law and 

require only first derivatives of the yield function and plastic potential, they can be used to 

design a general purpose integrator, as the one proposed by Sloan et al. (2001), which can be 

used for a wide range of models. By being more straightforward to implement than implicit 

methods, an explicit method will be used in this work to integrate the constitutive relations. 

Several authors have been working in the subject of low order finite elements with 

hourglass stabilization. The three-dimensional reduced integration concept was mainly 

developed by Belytschko, Liu and coworkers. Liu et al. (1994) developed an underintegrated 

eight-node hexahedral element where the dilatational term of the normal strain components as 

well as some shear strain components are treated in a special way. Based on the multiple-

quadrature formulation given in Liu et al. (1994), Hu and Nagy (1997) as well as Duarte Filho 

and Awruch (2004) proposed a new simple one-point quadrature hexahedral element. The 

strain and stress vectors are firstly expanded in a Taylor series at the element center up to 

bilinear terms. The constant terms are used to compute the element internal force vector and 

the linear and bilinear terms are used to form the hourglass resisting force vector. As shown in 

Liu et al. (1994), the corotational system is employed to remove those modes associated with 

shear locking and the dilatational part of the gradient matrix is evaluated only at the center of 

the element to avoid volumetric locking. 

In the formulation of Liu et al. (1998), the element proposed by Liu et al. (1994) is 

implemented for large deformation elasto-plastic analysis. The authors work with four point 

quadrature which has the advantage that plastic front can be captured more accurately. On the 

other hand, the advantage of computational efficiency is partially lost. 

Thus, the objective of this work is to verify the computational efficiency and the 

robustness of the eight-node hexahedral element with one-point quadrature developed by Hu 

and Nagy (1997) and by Duarte Filho and Awruch (2004), added with the elasto-plastic 

scheme proposed by Sloan et al. (2001), in the analysis of structural and geotechnical 

problems. The numerical simulation presented here was compared with results obtained by 

others authors and by a commercial software and it is shown that critical problems with 

physical and geometrically nonlinear analysis may be solved with the one-point quadrature 

three-dimensional element. 
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2 PRINCIPLE OF VIRTUAL WORK 

In a finite element representation, the principle of virtual work is given by: 

int d d

e e

t t

e

V S

V Sδ δ δ= +∫ ∫W u b u p , (1) 

where the superscript t designates the transpose; δu is the virtual displacement vector in the 

element “e”; b is the body force vector applied in the element domain Ve; p  is the traction 

vector applied on the element boundary Se; 
int

eW  is the element internal virtual work given by: 

int dV

e

t

e

V

δ δ= ∫W ε σε σε σε σ , (2) 

where σσσσ is the stress vector in the element and δε is the virtual strain vector due to δu. 
 If the strain in the element is interpolated in terms of nodal displacement by: 

e= B Uεεεε , (3) 

then, equation 2 can be rewritten as:  

int d

e

e t t

e

V

Vδ δ= ∫W U B σσσσ , (4) 

where B  is the gradient matrix. 

3  ONE-POINT QUADRATURE EIGHT-NODE HEXAHEDRAL ELEMENT WITH 

HOURGLASS CONTROL 

 For an eight-node hexahedral element, the spatial coordinates, xi, and the displacement 

components, ui, in the element are approximated in terms of nodal values, xia and uia, by:  

8

1

i a ia

a

x N x
=

=∑ , (5) 

8

1

i a ia

a

u N u
=

=∑ , (6) 

where the trilinear shape functions are expressed as: 

( ) ( ) ( )( )
1

, , 1 1 1
8

a a a aN ξ η ζ ξ ξ η η ζ ζ= + + + , (7) 

and the subscript i denotes coordinate components (x, y, z) ranging from one to three and a 

denotes the element nodal numbers ranging from one to eight. The referential coordinates ξ, η 

e ζ  of node a are denoted by ξa, ηa e ζa, respectively. 

 If the following column vectors are defined for nodal coordinates in the spatial system and 

the natural system: 

[ ]1 1 2 3 4 5 6 7 8, , , , , , ,t t x x x x x x x x= =x x , (8) 

[ ]2 1 2 3 4 5 6 7 8, , , , , , ,t t y y y y y y y y= =x y , (9) 

[ ]3 1 2 3 4 5 6 7 8, , , , , , ,t t z z z z z z z z= =x z , (10) 

[ ]1, 1, 1, 1, 1, 1, 1, 1t = − + + − − + + −ξξξξ , (11) 
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[ ]1, 1, 1, 1, 1, 1, 1, 1t = − − + + − − + +ηηηη , (12) 

[ ]1, 1, 1, 1, 1, 1, 1, 1t = − − − − + + + +ζζζζ , (13) 

the Jacobian matrix at the center of the element (ξ = η = ζ = 0) can be evaluated as: 

( )
1

8

t t t

t t t

t t t

 
 

=  
 
 

x y z

J 0 x y z

x y z

ξ ξ ξξ ξ ξξ ξ ξξ ξ ξ

η η ηη η ηη η ηη η η

ζ ζ ζζ ζ ζζ ζ ζζ ζ ζ

, (14) 

 and its determinant jo can be written as: 

 ( )
1 1

det
512 8

t t t

t t t

o e

t t t

j V= = =

x y z

J 0 x y z

x y z

ξ ξ ξξ ξ ξξ ξ ξξ ξ ξ

η η ηη η ηη η ηη η η

ζ ζ ζζ ζ ζζ ζ ζζ ζ ζ

, (15) 

where eV  is the volume of the 8-node hexahedral element. 

 To identify the deformation modes of the element, as it can be seen in Liu et al. (1994), the 

gradient submatrices Ba(0) at the center of the element are defined as follows: 

( )

( )

( )

( )

1

2

3

0

0

0

a

a

a

a

x

y

z

 ∂
 

∂   
 ∂  

= =   ∂     ∂
 
 ∂ 

N

b
N

B 0 b

b
N

,  (a = 1,2,...,8). (16) 

 If the inverse matrix of J(0) is denoted by D, then the gradient vectors b1, b2 and b3 in 

equation 16, according to Liu et al. (1998), can be shown to be: 

{ } [ ]1 1 11 12 13

1

8
ab D D D= = + +b ξ η ζξ η ζξ η ζξ η ζ , (17) 

{ } [ ]2 2 21 22 23

1

8
ab D D D= = + +b ξ η ζξ η ζξ η ζξ η ζ , (18) 

{ } [ ]3 3 31 32 33

1

8
ab D D D= = + +b ξ η ζξ η ζξ η ζξ η ζ . (19) 

 To alleviate volumetric locking, the idea underlying reduced-selective integration is used. 

The gradient matrix is decomposed into two parts: 

 

( ) ( ) ( )ˆ, , , ,ξ η ζ ξ η ζ= +B B 0 B� , (20) 

where ( )B 0�  is the gradient matrix corresponding to the dilatational part of the strain vector, 

evaluated at the element center only, and ( )ˆ , ,ξ η ζB  is the gradient matrix corresponding to 

the deviatoric part of the strain vector.  

Then, equation 4 can be rewritten as: 
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( ) ( ) ( )int ˆ[ , , ] , ,

e

e t t t

e

V

dVδ δ ξ η ζ ξ η ζ= +∫W U B 0 B� σσσσ . (21) 

 Expanding ( )ˆ , ,ξ η ζB  in a Taylor series at the element center up to bilinear terms, 

equation 20 can be rewritten as: 

( ) ( ) ( ) ( ) ( ), , ,
ˆ ˆ ˆ, , ξ η ζξ η ζ ξ η ζ= + + + +B B 0 B 0 B 0 B 0  

                          ( ) ( ) ( ), , ,
ˆ ˆ ˆ2 2 2ξη ηζ ξζξη ηζ ξζ+ +B 0 B 0 B 0 , 

(22)   

where B(0) is the one-point quadrature gradient matrix contributed from both the dilatational 

and deviatoric parts: 

( ) ( ) ( )ˆ= +B 0 B 0 B 0� . (23) 

 The other terms on the right-hand side of equation 22 are the gradient matrices 

corresponding to non-constant deviatoric strain. The first and second derivatives of B  are 

obtained after some tedious algebra and can be found in Liu et al. (1998). 

 The stress vector is also expanded in a Taylor series about the element center up to bilinear 

terms: 

( ) ( ) ( ) ( ) ( ), , ,
ˆ ˆ ˆ, , ξ η ζξ η ζ ξ η ζ= + + + +0 0 0 0σ σ σ σ σσ σ σ σ σσ σ σ σ σσ σ σ σ σ  

                       ( ) ( ) ( ), , ,
ˆ ˆ ˆ2 2 2ξη ηζ ξζξη ηζ ξζ+ +0 0 0σ σ σσ σ σσ σ σσ σ σ . 

(24) 

 By substituting equation 22 and equation 24 into equation 21, we can integrate and obtain 

the internal virtual work of the element as: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )int

, , , , , ,

1 1 1ˆ ˆ ˆˆ ˆ ˆ
3 3 3

e t t t t t

e ξ ξ η η ζ ζδ δ
 

= + + + +  
W U B 0 0 B 0 0 B 0 0 B 0 0σ σ σ σσ σ σ σσ σ σ σσ σ σ σ  

( ) ( ) ( ) ( ) ( ) ( ) e

ttt V


++ 00B00B00B ξζξζηζηζξηξη ,,,,,,

ˆˆ
9

1
ˆˆ

9

1
ˆˆ

9

1
σσσσσσσσσσσσ

, 

(25) 

where the first term on the right-hand side of equation 25 is the one-point quadrature internal 

virtual work. The other terms are also evaluated at the element center to provide the 

stabilization of the element.  

 By assuming that the Jacobian is a constant, 1/8 of the element volume, the one-point 

quadrature element internal force vector without hourglass control can be expressed by: 

( ) ( )e t

eV=f B 0 0σσσσ . (26) 

 The element stiffness matrix for the underintegrated element can be obtained by using the 

stress-strain law Cσ = εσ = εσ = εσ = ε  in conjunction with the strain displacement relation given by 

equation 3: 

e e e=f K U , (27) 

where K
e
 is the element stiffness matrix evaluated at the element center without hourglass 

control and it is given by: 

( ) ( )e t

eV=K B 0 C B 0 , (28) 
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which is rank insufficient and may exhibit spurious singular modes. To eliminate these 

spurious singular modes, it is necessary to add the hourglass-resisting force, hgf , to the 

element internal force vector as: 

int e hg= +f f f . (29) 

 By observing equation 25, 26 and 29, hgf  may be defined as: 

( ) ( ) ( ) ( ) ( ) ( )


+++= 00B00B00Bf ζζηηξξ ,,,,,,

ˆˆ
3

1
ˆˆ

3

1
ˆˆ

3

1
σσσσσσσσσσσσ

ttthg

 

            

( ) ( ) ( ) ( ) ( ) ( ) e

ttt V


++ 00B00B00B ξζξζηζηζξηξη ,,,,,,

ˆˆ
9

1
ˆˆ

9

1
ˆˆ

9

1
σσσσσσσσσσσσ

. 

(30) 

If the first and second derivatives of the stress vector can be derived from the material 

constitutive equations, the element stabilization stiffness matrix K 
stab
 may be also defined as: 

hg stab e=f K U . (31) 

 This matrix is added to the element stiffness matrix, K
e
, so the element stiffness matrix K 

is rank sufficient and is given by: 

e stab= +K K K . (32) 

 To avoid the derivation of the relationships between the first and second derivative of the 

stress vector and the nodal displacement vector in equation 30, Hu and Nagy (1997) proposed 

a “stabilization matrix”, E, to satisfy following constitutive relations: 

, ,
ˆˆ

ξ ξ= Eσ εσ εσ εσ ε  ,     , ,
ˆˆ

η η= Eσ εσ εσ εσ ε  ,      , ,
ˆˆ

ζ ζ= Eσ εσ εσ εσ ε , 

, ,
ˆˆ

ξη ξη= Eσ εσ εσ εσ ε  ,   , ,
ˆˆ

ηζ ηζ= Eσ εσ εσ εσ ε  ,   , ,
ˆˆ

ξζ ξζ= Eσ εσ εσ εσ ε . 
(33) 

where E is the elastic material modulus matrix, which is the simplest form for computation 

and is given as: 

 
3 3

6 6

3 3

x

x

x

 
=  
 

e 0
E

0 e
, (34) 

where, 

2 0 0

0 2 0

0 0 2

µ 
 

= µ 
 µ 

e , (35) 

and µ is the Lamé constant. 

 Elasto-plastic material behavior or damage is characterized by a sudden softening of the 

material if a certain stress limit is reached. To prevent excessive stiffness and enhance the 

behavior of elasto-plastic materials, Reese (2005) proposed the use of an optimal parameter 

µ
opt
 in the stabilization matrix. The factor µ

opt
 can be seen as the smallest parameter which 

yields an hourglass-free deformation pattern and it can be obtained as follows: 

opt H

E H
µ µ=

+
, (36) 
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where E represent the Young’s modulus and H is the hardening modulus at the onset of 

plastification. 

 Then, by substituting equation 33 in equation 30, the element stabilization stiffness matrix 

is obtained in the following form: 

( ) ( ) ( ) ( ) ( ) ( ), , , , , ,

1 1 1ˆ ˆ ˆ ˆ ˆ ˆ
3 3 3

stab t t t

ξ ξ η η ζ ζ

 
= + + +  

K B 0 E B 0 B 0 E B 0 B 0 E B 0  

( ) ( ) ( ) ( ) ( ) ( ), , , , , ,

1 1 1ˆ ˆ ˆ ˆ ˆ ˆ.......
9 9 9

t t t

eVξη ξη ηζ ηζ ξζ ξζ

 
+ +  

B 0 E B 0 B 0 E B 0 B 0 E B 0 . 

(37) 

 The element developed so far is free of volumetric locking and has no spurious singular 

modes. However, it is not suitable to plate/shell analysis owing to the shear and membrane 

locking in thin structures and it cannot pass the patch test if the mesh is irregular. 

 To remove shear locking, it is shown by Hu and Nagy (1997) that the gradient submatrices 

corresponding to the assumed shear strain is written in an orthogonal corotational coordinate 

system rotating with the element and each shear-strain component is linearly interpolated in 

one referential coordinate direction only: 

( ) ( ) ( ),
ˆ, ,xy xy xy ζξ η ζ ζ= +0 0ε ε εε ε εε ε εε ε ε , (38) 

( ) ( ) ( ),
ˆ, ,yz yz yz ξξ η ζ ξ= +0 0ε ε εε ε εε ε εε ε ε , (39) 

( ) ( ) ( ),
ˆ, ,xz xz xz ηξ η ζ η= +0 0ε ε εε ε εε ε εε ε ε , (40) 

which implies: 

( ) ( ) ( ) ( ) ( ), , , , ,
ˆ ˆ ˆ ˆ ˆ

xy xy xy xy xyξ η ξη ηζ ξζ= = = = =B 0 B 0 B 0 B 0 B 0 0 , (41) 

( ) ( ) ( ) ( ) ( ), , , , ,
ˆ ˆ ˆ ˆ ˆ

yz yz yz yz yzη ζ ξη ηζ ξζ= = = = =B 0 B 0 B 0 B 0 B 0 0 , (42) 

( ) ( ) ( ) ( ) ( ), , , , ,
ˆ ˆ ˆ ˆ ˆ

xz xz xz xz xzξ ζ ξη ηζ ξζ= = = = =B 0 B 0 B 0 B 0 B 0 0 , (43) 

where ˆ xyB , ˆ yzB e ˆ xzB are the gradient matrices corresponding to the deviatoric strain 

components ˆ xyεεεε , ˆ yzεεεε  e ˆ xzεεεε , respectively. 

 The one-point quadrature element will pass in the patch test when it is skewed if the 

gradient matrix Ba(0) is replaced by the uniform gradient B’a(0) defined by Flanagan and 

Belytschko (1983) as: 

( )
1

' , ,

e

a a

e V

dV
V

ξ η ζ= ∫B B . (44) 

4  CORROTATIONAL APPROACH FOR PHYSICAL AND GEOMETRICALLY 

NONLINEAR ANALYSIS 

 It has been shown that the elimination of the shear locking depends on the proper treatment 

of the shear strain. It is necessary to attach a local coordinate system to the element so that the 

strain tensor in this local system is relevant for the treatment. The corotational system 

described in Liu et al. (1998) is employed for this purpose. By using the corotational system, 

the integration of the elasto-plastic constitutive equations becomes easier. 

 Theoretically, the motion of a continuous medium can always be decomposed into a rigid 

body motion followed by a pure deformation. If the finite element discretization is fine 

enough to provide a valid approximation of the continuum, this decomposition can be 
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performed at the element level. If the rigid body motion is eliminated from the total 

displacement field which corresponds to large displacements and rotation but small strains, 

the pure deformation part is always a small quantity relative to the element dimensions. 

4.1 Corotational stress updates   

 For stress and strain updates, we assume that all variables at the previous load step tn are 

known. Then, it is only necessary to calculate the strain increment from the displacement field 

within the load increment [tn, tn+1], and the procedure described by Liu et al. (1998) to 

calculate the deformation part ( defˆ∆u ) of the displacement increment in a corotational system 

is used. In this work, defˆ∆u  is referred to the mid-point configuration (tn+1/2). 

 Denoting the spatial coordinates of the previous load step configuration, nΩ , and the 

current configuration, 1n+Ω , as xn e xn+1  in the fixed global Cartesian coordinate system Ox, 

the coordinates in the corresponding corotational Cartesian coordinate system, ˆ
nOx  and 1

ˆ
nOx + , 

can be obtained by the following transformation rules: 

nnn xRx =ˆ , (45) 

111
ˆ

+++ = nnn xRx , (46) 

where nR  and 1n+R  are the orthogonal transformation matrices which rotates the global 

coordinate system to the corresponding corotational coordinate system, respectively (defined 

in Liu et al. (1998) and in Duarte Filho and Awruch (2004)). 

 Since the strain increment is referred to the configuration at 2/1+= ntt , assuming the 

velocities within the increment [tn, tn+1] are constant, it is obtained: 

( )12/1
2

1
++ += nnn xxx , (47) 

2/12/12/1
ˆ

+++ = nnn xRx . (48) 

 Similar to polar decomposition, an incremental deformation can be separated into the 

summation of the pure deformation and the pure rotation. Letting ∆u  indicate the 

displacement increment within the load increment [tn, tn+1], it may be written: 

rotdef
uuu ∆+∆=∆ , (49) 

where def∆u  e rot∆u  are, respectively, the deformation part and the pure rotation part of the 

displacement increment in the global coordinate system.  

 In order to obtain the deformation part of the displacement increment referred to the 

configuration at t = tn+1/2, it is necessary to find the rigid rotation from nΩ  to 1n+Ω . 

 It can be shown that the total rotation displacement increment can be expressed as: 

( ) ( )nn

t

nnn

t

nnn xxRuxxRxxu ˆˆˆˆ
12/112/11

rot −−∆=−−−=∆ +++++ . (50) 

 Then, the deformation part of the displacement increment referred to 1/ 2n+Ω  is: 

( )nn

t

n xxRuuu ˆˆ
12/1

rotdef −=∆−∆=∆ ++ . (51) 

 Therefore, the deformation displacement increment in the corotational system 2/1
ˆ

+nxO  is 

obtained as: 
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nnn xxuRu ˆˆˆ
1

def

2/1

def −=∆=∆ ++ . (52) 

 Since the corotational coordinate system rotates with the configuration, it is used the 

corotational Cauchy stress, which is objective, as stress measure. The rate of deformation (or 

velocity strain vector), �εεεε , also defined in the corotational coordinate system, is used as the 

measure of the strain rate: 
























∂

∂
+

∂

∂
==

t

x

v

x

v
d

ˆ

ˆ

ˆ

ˆ

2

1ˆ
defdef

εεεε� , (53) 

where def
v̂  is the deformation part of the velocity in the corotational system x̂ . 

 Then, the strain increment is given by the mid-point integration of the velocity strain 

tensor,   

1 def def

1/ 2 1/ 2

ˆ ˆ1ˆˆ d
ˆ ˆ2

n

n

tt

n nt

τ
+

+ +

  ∂ ∆ ∂ ∆
 ∆ = = +  
∂ ∂   

∫
u u

d
x x

�εεεε . (54) 

 Once the strain increment is obtained by equation 54, the stress increment can be 

calculated with the elasto-plastic scheme described in Section 5, and the total strain and stress 

can then be updated as: 

 1
ˆ ˆ ˆ

n n+ = + ∆ε ε εε ε εε ε εε ε ε , (55) 

1
ˆ ˆ ˆ

n n+ = + ∆σ σ σσ σ σσ σ σσ σ σ . (56) 

4.2 Constitutive equations and solution of the incremental system of equations 

 As the material rate for the Cauchy stress tensor is not a frame-invariant rate, it is 

employed the Green-Naghdi objective rate, which, according to Liu et al. (1998) and Duarte 

Filho and Awruch (2004), gives the following material tangent matrix: 

( ) ( )σσσσσσσσ T
00

0C
T ˆ

3363

3666
+








=

xx

xx
, (57) 

where 0m×n denotes the m×n zero matrix, C is a 6×6 stress-strain matrix and ( )σσσσT̂ , the initial-

stress matrix, is defined below: 

( )

2 0 0 0 011 12 13 12 13

2 0 0 022 12 23 12 23

2 0 033 23 13 23 13

13 23 13 2311 22 22 11

2 2 2 2 2 2

22 33 13 33 2212 12

2 2 2 2 2

33 11 23 11 3312

2 2 2 2

13 2311 22

2 2 2

22 33 12

2 2

33 11

2

ˆ

symm.

σ σ σ σ σ

σ σ σ σ σ

σ σ σ σ σ

σ σ σ σσ σ σ σ

σ σ σ σ σσ σ

σ σ σ σ σσ

σ σσ σ

σ σ σ

σ σ

−

−

−

+ −
−

+ −
−

+ −
−

+
− −

+
−

+






=



T σσσσ






 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

(58) 
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 The T(σσσσ) matrix is arranged to be compatible with the following ordering of strain and 

rotation components: 

[ ]312312312312332211 ωωωεεεεεε ���������=tεεεε . (59) 

 Then, the equilibrium equation at the j
th
 iteration can be written in the corotational 

coordinate system as: 

 11
ˆˆˆˆ

−− −=∆ jjj fPUK , (60) 

where Û∆  is the displacement increment vector; jP̂  is the externally applied nodal point 

forces and the tangent stiffness matrix 1
ˆ

−jK  and the internal nodal force vector 1
ˆ

−jf  are: 

( ) stab

j

t

j K0BTC0BK ++= −− )('ˆ)('ˆ
11 , (61) 

hge

j fff +=−1
ˆ . (62) 

 The tangent stiffness and nodal forces are transformed into the global coordinate system 

as: 

jj

t

jj RKRK ˆ= , (63) 

( )1ˆˆ ˆt t

j j j j j j−= − =r R P f R r , (64) 

where R is the transformation matrix of the corotational system defined by Liu et al. (1998) 

and by Duarte Filho and Awruch (2004). 

5  ELASTO-PLASTIC CONSTITUTIVE EQUATION 

 During a typical step of an elasto-plastic finite element analysis, the forces are applied in 

increments and the corresponding nodal displacement increments are found from the global 

equilibrium equations. Once these displacements are known, the strain increments at the 

integration points within each element are determined using the strain displacement relations. 

If the stresses associated with an imposed strain increment cause plastic yielding, the elasto-

plastic constitutive equation may be written in the following incremental form: 

ep∆ = ∆Cσ εσ εσ εσ ε . (65) 

 According to Owen and Hinton (1980), the elasto-plastic stress-strain matrix, Cep, for the 

particular case of an associated flow rule is given by: 

e e
ep e

e

t

tH
= −

+

C aa C
C C

a C a
, (66) 

where Ce is the elastic stress-strain matrix, a is the yield surface gradient and H is the 

hardening modulus, that can be expressed, in the case of linear hardening, as a function of the 

elastic modulus E and the plastic tangent modulus ET as: 

1

T

T

E
H

E E
=

−
. (67) 
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5.1 Integration of the constitutive equations 

 According to Liu et al. (1998), with the use of a corotational system, the integration of the 

finite deformation elasto-plastic constitutive equations takes a simple form, as the small 

deformation theory. The integration of the constitutive equations is performed at element level 

in the corotational system. The integration scheme, proposed by Sloan et al. (2001) is used in 

this work to deal with the physical nonlinearity. The integration scheme can be summarized in 

computing an elastic trial stress state, finding the yield surface intersection point (considering 

also the case of elasto-plastic unloading), updating the stresses and restoring the stresses to 

the yield surface.  

 With 0σσσσ  denoting the initial stress state, the elastic trial stress state can be easily computed 

according to e 0 e= + ∆σ σ σσ σ σσ σ σσ σ σ , where e e∆ = ∆Cσ εσ εσ εσ ε . The problem of finding the stresses at the 

yield surface intersection point intσσσσ  is equivalent to finding the scalar quantity α which 

satisfies the following non-linear equation: 

 0 e int(  ) ( ) 0f fα+ ∆ = =Cσ ε σσ ε σσ ε σσ ε σ , (68) 

where f is the yield function. A value of α = 0 indicates that ∆εεεε  causes purely plastic 

deformation, while a value of α = 1 indicates purely “elastic” deformation. Thus, for an elastic 

to plastic transition, we have 0 < α < 1 and the “elastic” part of the stress increment is given 

by eα ∆C εεεε . If the initial stress state is lying on the yield surface and the angle θ  between the 

yield surface gradient a0 and the tangential elastic stress increment e∆σσσσ  is larger than 90º, the 

stress increment may cross the yield surface twice. This possibility is caused by the use of a 

tolerance to the value of the yield function which permits the stresses to lye just outside the 

yield surface, and it can be checked with: 

0 e

0 e2 2

cos
t

θ
∆

=
∆

a

a

σσσσ

σσσσ
, (69) 

where 
2

⋅  is the norm in the space L2. Sloan et al. (2001) gives a detailed algorithmic 

description of the method to find α, with sufficient details in order to be implemented in a 

finite element code. 

 Once α is found, the portion of the tangential elastic stress increment e∆σσσσ  that corresponds 

to plastic deformation is computed with e(1 )α− ∆σσσσ  and used to compute the stress increment: 

e eλ∆ = ∆ −∆ C aσ σσ σσ σσ σ , (70) 

where the plastic strain-rate multiplier, ∆λ, which for the particular case of the von Mises 
yield criterion with isotropic hardening is equal to the equivalent plastic strain, can be found 

as follows: 

e

e

t

t
λ

Η

∆
∆ =

+

a

a C a

σσσσ
. (71) 

5.2 Correction of stresses to the yield surface 

 At the end of each increment in the explicit integration process, the stresses may diverge 

from the yield condition. The extent of this violation, which is commonly known as yield 

surface “drift”, depends on the accuracy of the integration scheme and the nonlinearity of the 
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constitutive relations. Sloan (1987) suggested that, once the integration is performed 

accurately, the amount of yield surface drift will be small and any remedial action is optional. 

Other authors, including Crisfield (1991), strongly advocate some form of iterative stress 

correction as the effects of violating the yield condition are cumulative. 

 The radial return algorithm, used to correct the stresses in this work, consists in finding the 

closest-point-projection of the stress state onto the yield surface, if the stress state lies outside 

the yield surface. A small correction to the plastic strain-rate multiplier is computed with the 

following equation: 

0

e

t

f

H
δλ =

+ a C a
, (72) 

where 0f  is the value of the yield function for the uncorrected stresses. The stresses and the 

equivalent plastic strain are then updated according to the following expressions: 

eδλ0= − C aσ σσ σσ σσ σ , (73) 
pl plε ε δλ= −0000

, (74) 

where the subscript 0 in equation 73 and equation 74, as well as in equation 69 refers to 

uncorrected variables. 

6  NUMERICAL EXAMPLES 

 Numerical applications involving the von Mises as well as the Mohr-Coulomb yield 

criterion exhibiting highly nonlinear behavior, are presented to test and to verify the element 

performance for physical and nonlinear geometrically analysis. Results are compared with 

those reported by other authors and with the commercial code ABAQUS (2004). 

6.1 Elastic-plastic cantilever beam 

 This simulation presents the elasto-plastic response of a cantilever beam subjected to a 

transverse shear load of 80 kN at one end. The three displacements degrees of freedom of all 

the nodes at the fixed end are prescribed. The length of the beam is L = 24.0 m, while the 

width is B = 1.0 m and the height is H = 4.0 m. The material has isotropic hardening with 

bilinear uniaxial stress-strain relation and the material parameters are: elastic modulus E = 1.0 

× 10
4
 kN/m

2
, Poisson’s ratio ν = 0.3, initial yield stress σ0 = 3.0 × 10

2
 kN/m

2
, and the 

tangential modulus after yielding,   ET = 1.0 × 10
3
 kN/m

2
. An schematic representation of the 

example can be found on Figure 1. 

 

Figure 1: Elastic-plastic cantilever beam 

 The results achieved with the present element are compared with those given by the 8 node 

brick element with incompatible mode (called C3D8I) in ABAQUS. The mesh used in the 

calculations with the present element and C3D8I has 48×8×1 (length×height×width) 
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elements. The initial geometry configuration and the final deformed mesh can be seen in 

Figure 2. 

 

Figure 2: Initial geometry and deformed mesh 

 The deflection on the mid-surface is shown in Figure 3. It may be observed that the result 

is very close to those given by the C3D8I element of ABAQUS. 
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Figure 3: Deflection on the mid-surface of elastic-plastic beam 

6.2 Square plate under concentrated load 

 A concentrated load of 70 kN is applied at the center of a square plate with length L = 40 m 

and thickness t = 0.4 m, as shown on Figure 4. The material is an elastic-plastic model with 

isotropic hardening and Young’s modulus E = 3.0 × 10
7
 kN/m

2
, tangential modulus after 

yielding, ET = 3.0 × 10
6
 kN/m

2
, Poisson’s ratio ν = 0.3 and initial yield stress σ0 = 4.0 × 10

4
 

kN/m
2
. The plate has simply supported edges and due to symmetry, only a quarter of the plate 
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is modeled with 24×24×6 three-dimensional elements (6 elements were used in the thickness 

direction). 

t

L 

L = 40x

y

P

 

Figure 4: Square plate under concentrated load 

 The present solution is compared with results obtained by the element C3D8I, in 

ABAQUS. The plots of central deflection vs concentrated load is given in Figure 5.  

 Analyzing the results it is possible to see that the present solution agrees very well with the 

solution achieved with ABAQUS. 
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Figure 5: Vertical load vs central deflection 

6.3 Mohr-Coulomb slope stability analysis 

 A slope stability analysis with the Mohr-Coulomb yield criterion is performed in this 

example. The slope geometry and boundary conditions are presented in Figure 6. 

 

Figure 6: Slope geometry and boundary conditions 
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The unit weight of the material is γ = 20.0 kN/m3, the cohesion c = 1.0 kN/m2, the friction 

angle φ = 40º and the dilatational angle ψ is equal to zero. The material has the Young’s 

modulus E = 10.5 × 10
3
 kN/m

2
 and the Poisson’s ratio ν = 0.3. The out-of-plane displacement 

degree of freedom is prescribed in all nodes allowing only displacements in the plane. The 

slope is discretized with a mesh containing 10×10×1 elements (1 element was used in the 

length direction).  

In order to find the factor of safety of the slope, the analysis is performed for several trial 

factors of safety of the soil parameters ranging form 1.00 to 2.65 and the maximum 

displacement vs factor of safety of each analysis is plotted in Figure 7. The plotted results 

indicate that the factor of safety of the slope lies around 2.6. It can be seen that the results 

obtained with the use of the current formulation are close to those achieved by Smith and 

Griffiths (1997). Bishop and Morgenstern (1960) produced charts for slope stability analysis 

using slip circle techniques, and these give a factor of safety of 2.505 for the slope considered 

on this example.  
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Figure 7: Maximum displacement vs factor of safety 

The normalized displacements are plotted in Figure 8. The deformed mesh and the nature 

of the failure mechanism of the slope are also indicated on Figure 8. 

 

Figure 8: Normalized displacements 
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6.4 Cylindrical shell with free edges  

A cylindrical shell is submitted to a pair of concentrated forces, inducing large 

displacements and rotations. The geometry of the cylinder is characterized by a length L = 

10.35 m, radius R = 4.953 m and a constant thickness t = 0.094 m. The material has isotropic 

hardening and its properties are: Young’s modulus E = 10.5 × 10
3
 kN/m

2
, Poisson’s ratio ν = 

0.3125, initial yield stress σ0 = 1.05 × 10
2
 kN/m

2
, and plastic tangent modulus ET = 10.5 × 

10
2
 kN/m

2
. No boundary conditions are applied to the free edges of the shell, being the load 

pair responsible for the equilibrium of the cylinder. Due to symmetry reasons, only one eighth 

of the cylinder is discretized with a mesh containing 16×8×6 elements (circumference× 

length×thickness).  A schematic representation of the example is presented in Figure 9. 

P

P

A

B
x

y

z

 

Figure 9: Stretching of a cylinder 

In order to obtain the post-buckling response, the Generalized Displacement Control 

Method, proposed by Yang and Shieh (1990) was implemented. The solution obtained for the 

displacements with the present element, in both points A and B, vs the applied load are 

compared with the results given by Masud and Tham (2000) and Valente et al. (2004). The 

final deformed configuration is plotted in Figure 10. 

 

Figure 10: Deformed mesh due to the 40 kN load 

In Figure 11 results obtained with the use of the current formulation compared with those 

published in the literature. The present solution agree very well with the results obtained by 

Valente et al. (2004) and is very close to the solution published by Masud and Tham (2000). 

D. SCHMIDT, A.M. AWRUCH, I.B. MORSH1876

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



0

5

10

15

20

25

30

35

40

0 1 2 3 4 5
Displacement (m)

A
p
p
li
ed
 l
o
ad
 (
k
N
)

Present solution: pt A

Masud and Tham (2000): pt A

Valente et al. (2004): pt A

Present solution: pt B

Masud and Tham (2000): pt B

Valente et al. (2004): pt B

 

Figure 11: Applied load vs displacement 

7 CONCLUSIONS 

 An isoparametric hexahedrical finite element with eight nodes and one-point quadrature 

was formulated and it was applied to analyze physical and geometrically nonlinear problems 

involving plates and shells. The Mohr-Coulomb as well as the Von Mises yield criterion with 

isotropic hardening, in the context of structures with finite displacements and rotations, was 

used. A corotational formulation was employed to deal with the geometrical nonlinear 

analysis while an explicit algorithm was implemented for the elasto-plastic analysis. Good 

results were obtained when compared to those presented by other authors and those obtained 

using a commercial software, and no volumetric and/or shear locking were detected in any 

case. 

 Future works will extend applications of this element to geotechnical problems, using more 

complex constitutive equations, and kinematic, as well as mixed hardening, will be 

implemented. 
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