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Abstract. The Cahn-Hilliard equation was introduced to model the phase separation in two-component

alloys. This is one of the mathematical models most used to describe tumor growth through the evolution

of healthy, cancerous and dead cells. In this work we present a numerical study of this equation by intro-

ducing higher-order derivatives with a nonlinear source term. Our objective is to solve the higher-order

anisotropic problem with locally refined meshes in space using the finite element method for the gen-

eralized Cahn-Hilliard model. A phenomenological model that can describe the growth of a cancerous

tumor will be treated. Numerical simulations are presented to illustrate the effects of higher-order terms

on anisotropy and studies with space adaptivity strategy are also presented indicating its computational

efficiency when compared to fixed meshes, especially in the case of anisotropic problems.
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1 INTRODUCTION

Phase-field models have rapidly gained popularity over the last twenty years in various fields,

and examples of their applications have been studied in the formation of microstructures during

solidification, in solid-state transformations (Chen, 2002; Wang and Li, 2010); in multiphase

flows (Anderson et al., 1998) as it can be seen in the recent reviews (Boettinger et al., 2002;

Plapp, 2007). The number of application areas treated with the help of phase-field models is

large, since this is a rapidly advancing field. All these areas have in common the fact that

they involve the motion of interfaces or boundaries in response to a coupling of the boundary

with one or several transport fields (such as diffusion, flow, stress or temperature fields). This

interaction generates morphological instabilities and leads to the spontaneous emergence of

complex structures.

In the context of materials sciences the classical Cahn-Hilliard (CH) equation describes im-

portant qualitative features of two-phase systems related with phase separation processes, where

isotropy and constant temperature are assumed. The application of this model in cases involving

phase separations allows to capture the dynamics of a fast initial separation, resulting in the for-

mation of a diffuse interface between the two phases of the mixtures. Then, at a second stage,

in a slower time scale diffusion occurs to define the phases. These two stages are character-

ized by dynamics in different time and space scales, which makes the numerical solution of the

Cahn-Hilliard equation difficult. For more details on applications we refer the reader to Cahn

and Hilliard (1958); Cahn (1961); Cherfils et al. (2011); Langer (1971) and Maier-Paape and

Wanner (2000) for more details.

One of the applications of phase field modeling is in the modeling of cancer diseases. Hana-

han and Weinberg (2011) describe a set of characteristics for the formation of tumor cells.

Byrne et al. (1999) address possible effective treatments for the disease, where the knowledge

of the mechanisms of growth and interaction between tumor cells are relevant for a possible

eradication of the disease. In this context, mathematical and computational modeling can sup-

port research on this area through development of models that describe the different aspects of

tumor growth and which allows new types of experimentation and understanding.

The use of Cahn-Hilliard type equations in biological modeling is somewhat recent. The

earliest work in this context was written by Cohen and Murray (1981), where they essentially

reintroduced the Cahn-Hilliard equation in the setting of ecological population dynamics and

added a source term to model the growth of the population. Their main motivation was that the

Fickian diffusion model, which is used quite frequently in ecological equations, is too restric-

tive in many cases. They gave the example of populations that exhibit negative diffusion, in

other words, populations that tend to aggregate. The Cahn-Hilliard diffusion operator, though

nonlinear, is general enough to describe backward diffusion and Fickian diffusion as special

cases.

Cristini et al. (2008) and Wise et al. (2008) presented Cahn-Hilliard models in the context of

cancerous tumour growth. These models are rather complicated and include several variables.

Their source terms are essentially composed of a part that accounts for cell mitosis (growth) and

for cell apoptosis and necrosis (cell death). The CH model can be viewed as a simplified version

of the models studied in Cristini et al. (2008) and Wise et al. (2008) (without considering the

anisotropic terms of the high order coefficients), being one that yields qualitatively comparable

model predictions in some sense. Hawkins-Daarud et al. (2012) presented a four-species model

of tumor growth based on the Cahn–Hilliard/diffuse-interface framework and a mixed (continu-

ous) finite element framework (unconditionally gradient stable, first-order accurate in time and
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mass conservative) was used to numerically solve it.

In the simulations of anisotropic higher-order Cahn-Hiliard equations, the resulting growth

from the source term increases the need for a high spatial resolution of the finite element mesh

to correctly resolve the growth of the sharp interface region. Simulations with meshes with

a large number of nodes are computationally expensive as it requires repeated solutions of

large scale linear systems. In addition, the fine time steps required for accurate and stable

simulations (Eyre, 1998) poses an even more challenging computational problem. Therefore,

the use of adaptive mesh methods provides a solution to overcome these problems. The adaptive

mesh algorithm works to maintain a fine resolution only where it is needed (i.e., near the sharp

interface that is growing) so that the number of degrees of freedom is significantly reduced,

resulting in more efficient computations while at the same time capturing the correct dynamics

of growth. In this work we introduce the use of an adaptive mesh algorithm in the solution to

the anisotropic higher-order Cahn-Hiliard equation for tumor growth.

This paper is organized as follows: the model problem is presented in Section 2. In Sec-

tion 3 the numerical formulation based on mixed finite elements and the time discretization

scheme for this problem is recalled. The mesh adaptivity algorithm employed in this work is

also presented. Numerical results are presented in Section 4 for different anisotropy scenarios.

Comparisons between solutions obtained with fixed and adaptive meshes are presented in terms

of computational performance illustrating the potential of the proposed formulation to simulate

efficiently the higher-order Cahn-Hilliard equations for modeling tumor growth. Concluding

remarks are mentioned in Section 5.

2 MATHEMATICAL MODEL

The classical Cahn-Hilliard equation is defined by

∂u

∂t
+∆2u−∆

1

ǫ
f(u) +

1

ǫ
g(x, u) = 0, in Ω, (1)

where Ω is a two-dimensional domain, x = {x, y} denotes the spatial coordinates, ∆(·) is

the laplacian operator, u represents the variable of interest in the range [−1, 1] where u ≈ 1
indicates a saturation of tumor cells and u ≈ −1 indicates a saturation of healthy cells. Here,

ǫ > 0 is a parameter relative to the interface between the components, f(u) is the derivative of

F (·) which is the free energy in a homogeneous system and g(x, u) is a volumetric source term.

This source term can be used to describe the growth of cancerous tumours and other biological

entities. In this case, when g(x, u) 6= 0, the mass can change in time, and the energy defined

above can possibly increase. The following free energy F (u) function

F (u) =
1

4
(u2 − 1)2, (2)

which has the form of a double well is usually employed for CH models was considered in this

work.

To describe the growth of the cancerous tumor we consider a nonlinear sixth-order parabolic

partial differential equation (Cherfils et al., 2017; Wise et al., 2008). The model is given by:

∂u

∂t
−∆Au+∆Bu−∆

1

ǫ
f(u) +

1

ǫ
g(x, u) = 0, in Ω, (3)
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subject to initial conditions u(x, 0) = u0 and periodic boundary conditions. Here, A and B are

operators defined by:

A = a20ǫ
∂4

∂x4
+ a02ǫ

∂4

∂y4
+ a11ǫ

∂4

∂x2∂y2
, (4)

B = a10ǫ
∂2

∂x2
+ a01ǫ

∂2

∂y2
. (5)

Note that in the case of a20 = a02 = a11 = 0 the equation (3) reduces to the classical Cahn-

Hilliard equation (3). A detailed analysis of the solution for equation (3) was presented by Cher-

fils et al. (2017) and Miranville (2013).

In equation (3) the source term g(x, u) acts as a proliferation term, as proposed by Khain and

Sander (2008), in view of biological applications. In this work we choose g(x, u) as follows:

g(x, u) = md(u+ 1)−mg(1− u)2(1 + u)2,

which was proposed by (Aristotelous et al., 2015) for tumor growth, where md and mg are death

and growth coefficients constants, respectively.

We focus here on the anisotropic case with sixth-order partial derivatives, which influences

the pattern of tumor growth. For instance, when a20 > a02 and a20 > a11 there is an anisotropic

behavior, where a differentiated pattern in the x-direction is obtained. In the case where a02 >

a20 and a02 > a11 the pattern of tumor growth will be predominant in the y-direction, and in the

case where a11 > a20 and a11 > a02 a complex pattern, called cross anisotropy, which acts in

both directions x and y is observed.

3 NUMERICAL FORMULATION

The numerical scheme adopted in this work to solve the higher-order Cahn-Hiliard equa-

tion (3) employs a mixed finite element formulation for the spatial discretization and the back-

ward Euler method combined with the Eyre (1998) scheme for the time discretization. To

correctly capture the growth dynamics without the use of highly refined mesh resolution, we

employ an adaptive mesh algorithm for the finite element formulation. Before, introducing the

numerical methods, basic notation is introduced. We consider V h ⊆ H1
per the following finite

element space

V h = {z ∈ C0(Ω) : z|τ ∈ Pk(τ), τ ∈ T
h, z|∂Ω periodic}, (6)

where Th is a family of triangulations of the domain Ω and Pk denotes the set of polynomials

of degree less than or equal to k. In this work we only considered the linear case with k = 1
to obtain discrete approximations uh of u. The time domain is equally split into n time steps

∆tn = tn+1 − tn, which is denoted by ∆tn = ∆t for simplicity.

3.1 Mixed variational formulation

Before introducing the mixed variational formulation the equation (3) is rewritten by intro-

ducing a new variable v = −Au−Bu− 1

ǫ
f(u) to obtain the following mixed problem:

∂u

∂t
+∆v + g(x, u) = 0, (7)

v + a20ǫ
∂4u

∂x4
+ a02ǫ

∂4u

∂y4
+ a11ǫ

∂4u

∂x2∂y2
− a10ǫ

∂2u

∂x2
− a01ǫ

∂2u

∂y2
+

1

ǫ
f(u) = 0. (8)
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Additionally, the following variables are introduced

∂2u

∂x2
= p,

∂2u

∂y2
= q, (9)

such that

∂4u

∂x2∂y2
=

1

2

∂2p

∂y2
+

1

2

∂2q

∂x2
. (10)

Then, the following variational formulation is presented: find (u, v, p, q) ∈ H1
per(Ω)

4 such that

(

∂u
∂t
, v1

)

− (∇v,∇v1) + 1

ǫ
(g(x, u), v1) = 0, (11)

(v, v2)− a20ǫ
(

∂p

∂x
, ∂v2

∂x

)

− a02ǫ
(

∂q

∂y
, ∂v2

∂y

)

− a11ǫ
2

(

∂q

∂x
, ∂v2

∂x

)

−a11ǫ
2

(

∂p

∂y
, ∂v2

∂y

)

− a10ǫ(p, v2)− a01ǫ(q, v2) +
1

ǫ
(f(u), v2) = 0, (12)

(p, v3) + (∂u
∂x
, ∂v3

∂x
) = 0, (13)

(q, v4) + (∂u
∂y
, ∂v4

∂y
) = 0, (14)

for all v1, v2, v3, v4 in V h and where (w, z) =
∫

Ω
wzdΩ denotes the L2(Ω) inner product.

3.2 Time integration

Next we introduce the implicit Euler method for time discretization of equation (11). The

resulting fully discrete problem is given by:

(

un+1
−un

∆t
, v1

)

− (∇vn+1,∇v1) + 1

ǫ
(g(x, un+1), v1) = 0, (15)

(vn+1, v2)− a20ǫ
(

∂pn+1

∂x
, ∂v2

∂x

)

− a02ǫ
(

∂qn+1

∂y
, ∂v2

∂y

)

− a11ǫ

2

(

∂qn+1

∂x
, ∂v2

∂x

)

−a11ǫ

2

(

∂pn+1

∂y
, ∂v2

∂y

)

− a10ǫ(p
n+1, v2)− a01ǫ(q

n+1, v2) +
1

ǫ
(f(un+1), v2) = 0, (16)

(pn+1, v3) + (∂u
n+1

∂x
, ∂v3

∂x
) = 0, (17)

(qn+1, v4) + (∂u
n+1

∂y
, ∂v4

∂y
) = 0, (18)

for all test functions v1, v2, v3, v4 in V h.

Note that due to the presence of the nonlinear term f(un+1) this scheme would require the

solution of a coupled nonlinear system of equations. In this work we adopt the semi-implicit

scheme proposed by Eyre (1998) to solve the higher-order Cahn-Hiliard equation. This scheme

is unconditionally stable by using a convex-concave splitting of f(u) in the following form

f(u) = fc(u) + fe(u), (19)

where the convex part fc(u) is treated implicitly, whereas the concave part fe(u) is explicit in

time. Note that these choices are not unique and in this paper we considered the following

functions: fc(u) = 2u and fe(u) = u3 − 3u.

However, the source term g(u) could be also nonlinear, as is the case in this work. Therefore,

the next step is to make use of the Picard iterative method for the treatment of the nonlinear term

g(u). In this context we denote by un+1

k the approximate solution to be found at time instant
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tn+1 at step k of the Picard method. Thus, the following set of equations have to be solved by

iteration:
(

un+1

k+1
−un

∆t
, v1

)

− (∇vn+1

k+1
,∇v1) + (g(un+1

k ), v1) = 0, (20)

(vn+1

k+1
, v2)− a20ǫ

(

∂pn+1

k+1

∂x
, v2

)

− a02ǫ
(

∂qn+1

k+1

∂y
, v2

)

−a11ǫ
2
(
∂qn+1

k+1

∂x
, ∂v2

∂x
)− a11ǫ

2
(
∂pn+1

k+1

∂y
, ∂v2

∂y
)

−a10ǫ(pn+1

k+1
, v2)− a01ǫ(q

n+1

k+1
, v2)

+1

ǫ
(fc(u

n+1

k+1
) + fe(u

n, v2)) = 0, (21)

(pn+1

k+1
, v3) + (

∂un+1

k+1

∂x
, ∂v3

∂x
) = 0, (22)

(qn+1

k+1
, v4) + (

∂un+1

k+1

∂y
, ∂v4

∂y
) = 0. (23)

The solution algorithm to obtain approximated solutions for the higher-order Cahn-Hiliard

equations is described in Algorithm 1.

Algorithm 1: Solution of the higher-order Cahn-Hilliard equations.

1 Input: u0, ∆t, T , kmax, tol ;

2 Output: un+1, vn+1, pn+1, qn+1 ;

3 n← 0;

4 while n∆t ≤ T do

5 un+1
0 ← un;

6 k ← 0;

7 while k < kmax do

8 find: un+1

k+1
, vn+1

k+1
, pn+1

k+1
, qn+1

k+1
, in eqs. (16− 19) given un, un+1

k ;

9 if max|un+1

k+1
− un+1

k | < tol then break ;

10 k ← k + 1;

11 end

12 un+1 ← un+1

k+1
;

13 n← n+ 1 ;

14 end

3.3 Mesh adaptivity

In this work we explore the effects and performance of the solution by considering an adap-

tive mesh algorithm for higher-order Cahn-Hiliard equations. To this end, we used the mesh

adaptation algorithm from FreeFem++ (Hecht, 1998, 2012) in which a variable metric/Delau-

nay automatic meshing algorithm is implemented. The essential idea is to redefine the scalar

product used in an automatic mesh generator to evaluate distance and volume, to construct

equilateral elements according to a new adequate metric. The procedure is briefly described

next.

The mesh adaptation is based on the Delaunay-Voronoi algorithm considering a specified

distance function for two points. Thus, for a distance (or metric) matrix M the associated

distance d(x, y) is

d(x, y) = ‖x− y‖, where ‖x‖2 = xTMx. (24)
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Thus, the length lM of a curve γ ∈]0, 1[ with respect to M is given by:

lM =

∫ 1

0

√

γ′(t)M(γ(t))γ′(t)dt (25)

There are some options to compute M, as discussed in Hecht (2012). However, in this work the

scalar product is based on the evaluation of the Hessian of the variable u of the problem. For

P1 continuous finite elements the metric can be defined by

lM =
1

err
|∂2

huh|, (26)

where |∂2
huh| =

√

(|∂2
huh|)2 and ∂2

huh is an approximation of the Hessian matrix of uh, which

is done automatically by FreeFem++ by default. The adaptive algorithm is implemented by

the adaptmesh function, which in this work was used with the following parameters:

Th = adaptmesh(Th, u, hmin=0.0001, hmax=0.05, nbvx=22e5,

periodic=[[1,x],[3,x],[2,y],[4,y]]),

where Th is the finite element mesh; u is the variable of interest; hmin is the minimum edge

size; nbvx is the maximum number of vertices and periodic defines the boundary conditions

of the problem. In addition, we remark that the simulations were carried out with an initial grid

resolution of 100× 100 triangular elements to properly capture the initial conditions.

4 NUMERICAL EXPERIMENTS

In this section we present some numerical simulations to illustrate the effects of anisotropic

higher-order terms on CH dynamics and mesh adaptivity. All the computations presented were

performed with the finite element library FreeFem++ (Hecht, 1998, 2012) and considered a

two-dimensional mesh of triangular elements. We also carried out simulations for fixed and

adaptive meshes to compare the results and computational performance.

4.1 Problem settings

To consider avascular tumor growth, numerical experiments are performed for the higher-

order Cahn-Hiliard equation with a mass source (proliferation term) for tumor growth. Equa-

tion (3) was considered with the following set of parameters as described by (Cherfils et al.,

2017):

Ω = (−0.7, 1.7)× (−1.7, 0.7), ∆t = 1× 10−6, ǫ = 0.0125, (27)

f(u) = u3 − u, g(x, u) = 46u(1 + u) + 280(u− 1)2(u+ 1)2, (28)

and the following initial condition

u0(x, y, 0) = − tanh

(

1√
2ǫ

(

√

2(x− 0.5)2 + 0.25(y + 0.5)2 − 0.1
)

)

. (29)

which prescribes an initial mass of tumor in the center of the domain. The Table 1 presents

a summary of the parameters used for the classical CH and anisotropic higher-order CH cases

used in the simulations.
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Table 1: Coefficients aij used in the simulations.

Case a20 a02 a11 a10 a01

Cahn-Hilliard 0 0 0 1 1
x-direction 1.8× 10−5 5.0× 10−6 5.0× 10−6 1 1
y-direction 5.0× 10−6 1.8× 10−5 5.0× 10−6 1 1
cross-direction 5.0× 10−6 5.0× 10−6 1.8× 10−5 1 1

4.2 Cahn-Hilliard solution

Initially, in Figure 1 we show the results of a tumor growth simulated with the classical

Cahn-Hilliard model, where the parameters were taken from the first row of Table 1. In this

case the adaptive approximation of the solution is shown, where the spatial distribution of the

density of u indicates: u ≈ 1 (dark red color) a saturation of tumour cells, u ≈ −1 (light blue

color) indicates no tumour cells and u ≈ 0 shows the diffusive interface between tumor cells

and healthy cells.

Figure 1: Solution of the Cahn-Hilliard equation using adaptive mesh with 16325 triangular

elements. Shown are filled contour plots of the density u and final adaptive mesh.

4.3 Fixed mesh comparison

First we present results for the cross anisotropic case, as described in Table 1, comparing

the dynamics of the solution between fixed and adaptive mesh cases. Fixed triangular meshes

were created by subdividing the square domain using (Nx + 1) × (Ny + 1) nodes in each

direction, thus resulting in a structured finite element mesh comprised of a total of Nx×Ny× 2
elements. For instance, in the case Nx = Ny = 300, to ease the notation the fixed mesh

cases will be simply referred as to 300 × 300. The fixed mesh solutions considered in the

experiments were: 100× 100, 150× 150, 200× 200, 300× 300 and 400× 400. For these cases

the discretizations resulted in a total of 20000, 450000, 80000, 180000 and 320000 triangular

elements, respectively.

Fig. 2 show the contour plot of the solution u with fixed uniform meshes and adaptive mesh-

ing. We observe that the adaptive mesh takes the same shape of the corresponding solution with

fixed mesh for (the cases of 300× 300 and 400× 400 triangular elements).

The profiles of the solutions obtained with different discretizations and adaptive mesh are

compared at a diagonal line starting from (−0.7,−1.7) to (1.7, 0.7) in Figure 3. The results

show that coarse discretizations, up to 250 × 250 triangular elements, fail to correctly capture

the generated pattern, whereas the refined meshes starting from 300 × 300 approximate to the
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Figure 2: Comparison of the solution u at time instant t = 1.3× 10−2 using fixed meshes with

100× 100, 150× 150, 200× 200 and 300× 300 triangular elements and adaptive mesh for the

case of cross anisotropy with 23568 triangular elements.

same solution. Therefore, we considered the fixed mesh of 300 × 300 elements as a reference

case. In this scenario efficient computational performance is achieved, since we would have

to employ, at least, exactly 180000 triangles for the reference fixed mesh case, whereas for the

adaptive mesh we used no more than about a maximum 45000 triangles, as shall be discussed

next.

1.0 0.5 0.0 0.5 1.0 1.5 2.0
y

1.0

0.5

0.0

0.5

1.0

u

100 × 100
150 × 150
200 × 200
250 × 250
300 × 300
400 × 400
Adaptive mesh

Figure 3: Comparison of the solutions at a diagonal line in the domain for the different fixed

mesh cases and the adaptive mesh strategy.

4.4 Effects of anisotropy

With very small coefficients for the sixth-order terms a20, a02 and a11, the tumor growth

evolves similarly, although the x, y and cross directions are clearly more influenced, as shown

in Figure 4, on panels (a), (b) and (c), respectively. Here, we can notice that the tumor mass first
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elongates in the x-direction and then grows into a more complicated structure as time evolves.

Analogously for the cases with anisotropy in y-direction (cross-direction), the tumor mass firsts

elongates in the y-direction (cross-direction) and, then, grows into a more complicated pattern.

The results show that the anisotropy is strongly influenced by the choice of the coefficients in

the higher-order terms.

(a) (b) (c)

Figure 4: Solutions of the anisotropic cases at time instant t = 2.0 × 10−2: (a) x direction

with 22592 elements; (b) y direction with 20482 elements; (c) and cross direction with 29750

elements.

This complex growth phenomenon occurs because there is a strong mass source at the bound-

ary of the tumor where the tumor (dark region) meets the healthy tissue (light region) and a mass

sink in the interior of the tumor domain. The mass source is biologically related to cell division

and growth and the mass sink is related the cell death due to hypoxia and necrosis. A detailed

description of this behavior is complicated and occurs essentially due to diffusion instability;

see Cristini et al. (2008) and Wise et al. (2008) for further details.

4.5 Computational performance

Next, considering the adaptive mesh scheme with hmin=0.0001 and hmax=0.05 and

starting with an initial mesh of 100× 100 triangular elements, we studied the remeshing during

the entire simulation of the dynamics of tumor growth in the anisotropic case until t = 2.5×10−2

in terms of the number of elements. Figure 5 shows the number of triangular elements used in

the adaptive mesh algorithm for each time instant of the numerical simulation for the classical

Cahn-Hilliard and the anisotropic cases presented before, which were detailed in Table 1.

Note that for the cross-direction the number of elements was higher than the other cases,

since the dynamics is more complex. Also note that the pattern of anisotropic growth for the

x-direction is more complex than in the y-direction, as can be seen in panels (a) and (b) from

Figure 4, which resulted in more elements for the x-direction case.

Finally, when comparing the adaptive mesh scheme with the fixed mesh scheme with 300×
300× 2 triangular elements at the time t = 2, 5× 10−2, we can see that there the adaptive mesh

scheme always used less elements, no more than 45000 elements, and therefore, was more

efficient in terms of computational resources.
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Figure 5: Number of triangular elements for the adaptive mesh simulation as a function of time

for the x, y and cross directions anisotropic cases.

5 DISCUSSION

The adaptive mesh algorithm depends on a set of parameters such as the values of the mini-

mum and maximum edge size, maximum number of vertices and initial mesh resolution. In this

work after an initial evaluation of the parameters, a specific setting which resulted in successful

simulations, as reported in section 4.3 and Figure 2, was found and their values were kept fixed.

In future works the effects of hmin and hmax could be further explored to further improve the

computational performance without compromising the quality of the numerical approximations.

Additionally, we remark that the choice of the initial resolution for the adaptive mesh algo-

rithm is important and should be evaluated with care, since in our initial experiments a very

coarse mesh significantly affected the obtained pattern in the end of the simulations since it was

not able to capture the proper initial conditions.

With respect to related works, we remark that adaptive mesh schemes have been used with

success in the context of Cahn–Hilliard equations. Spatially adaptive simulations were per-

formed in Wise et al. (2011) and Hawkins-Daarud et al. (2012). A more detailed analysis was

presented in Aristotelous et al. (2015) using a discontinuous Galerkin method and a marking

strategy based on an inverse estimate which indicates if the solution at the element is highly

oscillatory and should be refined. In particular Han and Wang (2015) presented an adaptive

algorithm for the CH equation coupled to the Navier-Stokes equations. The adaptive mesh

algorithm used was the same as presented here based on FreeFem++ (Hecht, 2012) and its

adaptive meshing. Considering the importance and pratical use of adaptive algorithms for CH

models, we remark that to the best of our knowledge the present work is the first that considers

adaptivity for the high-order anisotropic CH equation.

6 CONCLUSIONS

In this work we presented an adaptive mesh algorithm for the efficient and proper numerical

solution of the anisotropic higher-order Cahn-Hilliard equation with a proliferation term. The

numerical solution was performed using a mixed finite element method for spatial discretiza-

tion. For time integration the implicit Euler combined with the Eyre scheme, for the treatment
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of the nonlinear term, was employed.

The results of this work showed that the adaptive mesh scheme was able to reproduce the

dynamics of tumor growth when compared to a very spatially refined mesh. In addition, the

numerical experiments have shown that the total number of elements for the adaptive case is

lower than in the refined reference solution most of the time during the simulation, resulting

in a considerable gain in computational economy. For instance, we observed that for the fixed

mesh at least 180000 triangles had to be used in the spatial discretization. For the adaptive mesh

we used no more than 45000 triangles to reproduce the same dynamics of the tumour growth

driven by diffusion instability.
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