
PYBILAYERS: A PYTHON TOOL TO AUTOMATE THE ANALYSIS OF
MEMBRANE-BASED MOLECULAR DYNAMICS SIMULATIONS

M. Silvina Moyanoa,b, Michael Ferguson∗a,b, Hugo E. Di Lorenzoa, Marcos A. Guerraa,

Agustín N. Quirogaa, Santiago A. García Marzanoa, Ana P. Tapiaa, Ana M. Nuñeza and

Matías A. Viab,c

aInstituto de Bioingenería, Facultad de Ingenería, Universidad de Mendoza, Mendoza, Argentina,

michael.ferguson@um.edu.ar

bConsejo Nacional de Investigaciones Científicas y Técnicas, Mendoza, Argentina

cFacultad de Ciencias de la Salud, Universidad de Mendoza, Mendoza Argentina

Keywords: Molecular Dynamics, Python, Analysis, Membranes, Computer Simulation.

Abstract. From a biological point of view, the study of lipid bilayers is of great importance as they

form part of the plasmatic membrane in each and every living cell. Due to the complexity of their

basic functions, the mechanical properties of lipid bilayers have long been studied. These investigations

have not been limited to experimental approaches and there are now many research groups tackling

the problem from a computer simulation perspective. In general, these studies are performed using

classical molecular dynamics simulations with coarse grained lipids (MARTINI force field). It is the

analysis of these simulations that allows for a potentially greater understanding of bilayers mechanics.

In this work, we present a new tool which has been specifically designed for lipid bilayer simulations.

The tool focuses on two areas 1) the analysis of the thermodynamic quantities of the system, and 2)

structural analysis based on the instantaneous configurations of the system. Designed with generality

at its forefront, the tool can read configurations of a given membrane and, through the incorporation of

the vectorised libraries available in python, users can expect a high throughput of complex analyses on a

modern desktop computer. The implementation of this tool in the wider biophysics of lipid membranes

community will provide consistent, standarised results and, therefore, open a new pathway to a greater

understanding of lipid bilayer mechanics.

Mecánica Computacional Vol XXXVII, págs. 1649-1656 (artículo completo)
A. Cardona, L. Garelli, J.M. Gimenez, P.A. Kler, S. Márquez Damián, M.A. Storti (Eds.)

Santa Fe, 5-7 Noviembre 2019

Copyright © 2019 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

1 INTRODUCTION

Cells are generally viewed as the building blocks of all living things. Cells themselves are

actually comprised of a great number of individual components, each of which determines

different mechanical properties. These properties are essential for life itself as a great many

functions, both internal and external, of each cell are dependent on mechanical phenomena.

Cellular mechanics is the generic name given to this group of processes and it includes, shape

retention, cellular mobility, cellular adhesion, and the interaction between cells and their envi-

ronment.(Kamm and Mofrad, 2006) Cells are separated from the environment by a thin lipid

bilayer which is comprised of a mixture of cholesterol, glucolipids, phospholipids, and a range

of transmembrane proteins. The phospholipids are the most abundant and as their length and

polarity varies, so do the structural characteristics and mechanical properties of individual mem-

branes. The composition of lipids differs and generally responds to changes in intensive thermo-

dynamic variables such as temperature, pressure and solvent concentration.(Heimburg, 2007)

The mechanical properties of cells have been the subject of study and discussion for cen-

turies due to the large number of mechanical processes carried out by each unit to fulfill its

basic functions. Currently there are experimental methods that allow for the application of

forces in the order of pN and the measurement of distances to the order of nanometers. This

allows to study viscoelastic properties in macromolecules and fractions of a cell. The external

forces are applied by optical tweezers, glass needles, magnetic particles and indenters, while

the deformations in a scale of nanometers to microns are measured by optical detectors or by

high resolution microscopy.(Kamm and Mofrad, 2006; Heimburg, 2007) However, experiments

alone are not always sufficient to describe the mechanical properties of cellular membranes.

Computer simulation is a complementary technique which allows for the study of materials

at the atomistic/molecular level. It is often employed alongside experimental investigations to

aid in the description of small length- and time-scale processes. Molecular dynamics (MD) al-

lows for the calculation of the movement of individual classical molecules in models of solids,

liquids and gases.(Allen and Tildesley, 2017) It starts from the idea that the behavior of a sys-

tem can be calculated if we have a group of initial conditions and the interaction forces between

all of the components of the system. From here, a sequence of configurations, or trajectory,

is generated by continually solving Newton’s equations of motion for all of the particles in

the system. The inter-particle interactions are described by empirical potentials taken from ex-

periments and quantum mechanics calculations. Selecting the appropriate parameters for the

system under study allows for the accurate calculation of values associated with experimental

observables. MD simulations may contain hundreds of millions of atoms and configurations in

the trajectory are saved frequently. This leads to large amounts of data that must be processed

in order to determine the macroscopic properties of the system. Analysing the trajectories gen-

erated by MD simulations can often become tedious and tiresome tasks for individual scientists

to perform, at times requiring days of discrete calculations in order to obtain the desired results.

For this purpose we are developing a new analysis tool called PyBiLayers. And, while still in

early stages of development, it is already proving to be a fast and accurate tool for the analysis

of soft biomaterials, such as lipid bilayers, under mechanical stress.

2 TOOLS AND METHODS

Any automated tool must be programmed, and we have decided to write PyBiLayers in the

Python language. Python(van Rossum, 1995) has become one of the favoured programming

languages for scientific investigations around the world. This is due to various factors, from the

M.S. MOYANO et.al.1650

Copyright © 2019 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

fast learning curve, readability and power of the language, to the many functions and modules

which are integrated through Python’s free software licence, and its ability to incorporate other

programming languages. This final characteristic is one which we will explore at a later stange

in this work. Further to the technical advantages, Python has a large, active programming

community which, thanks to their support, allows for quick and efficient code development.

The base programming of PyBiLayers is written in Python 3 due the aforementioned ad-

vantages and that it will continue to receive support and updates unlike its predecessor, Python

2. Beyond this, the employment of the NumPy(Walt et al., 2011) and SciPy(Jones et al., 2001)

modules are essential to the efficiency of our calculations. NumPy provides support for applica-

tion of mathematical functions to matrices and multi-dimensional arrays, while SciPy allows us

to perform optimizations, linear algebra, integration, and interpolation. As we are dealing with

large amounts of three-dimensional data, the employment of the NumPy and SciPy libraries is

essential. Both libraries are written in the compiled language C, which allows of the vectorisa-

tion of many array based operations. This vectorisation results in a much more efficient code

than the equivalent written in pure python. To give the users visual results, we are employing

the powerful, and very popular, MatPlotLib module(Hunter, 2007) which is designed to allow

the user to produce high quality graphics with relatively few lines of code.

In its current form PyBiLayers, already has a wide range of functionalities available to the

simulator. These include the geometric center of mass (COM) of the system, true COM of the

lipid species, dipole moment of water, self-diffusion coefficient of each species, lipid density

in the xy-plane, area of potential pores, average radial distribution function, and plotting of

the system thermodynamic quantities. Along with these the unilateral density profiles of the

number of molecules, molecular and atomic charges. The geometric COM of the system is

calculated simply as follows,

COM =
1

M

n∑

i=1

miri (1)

where M is the total mass of all n particles in the system, mi is the mass of the given particle i

and ri are its coordinates. The dipole moment of the water particles in the system is calculated

by,

〈~µ〉 =
1

nw

nw∑

i=1

qi~ri (2)

where 〈~µ〉 is the average molecular dipole moment for all waters in the system, qi is the charge

differential between the O and the two H atoms along the vector ri. The vector ri runs from the

midpoint between the two H atoms and the O atom of each water molecule.

The self-diffusion coefficient is commonly derived from an mean squared displacement

(MSD) calculation of the atomic coordinates throughout a trajectory. In general, only the initial

configuration of the system, i.e. at time = 0, is used as the reference point for the MSD cal-

culation. With PyBiLayers we have implemented the more accurate MSD from multiple time

origins(Allen and Tildesley, 2017) calculation, with minimal effect on the overall calculation

time.

Mecánica Computacional Vol XXXVII, págs. 1649-1656 (2019) 1651

Copyright © 2019 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

The lipid density in the xy-plane is calculated as a two-dimensional histogram in the follow-

ing form;

ρx,y =
1

Ax,y

h∑

x=1

h∑

y=1

n
Lipid
ij (3)

where ρx,y is the lipid density in the histogram bin x, y, h is the number of histogram bins in

each direction, nLipid
x,y is the number of lipids in histogram bin x, y, and A is the area enclosed

by the denoted histogram bin.

The radial distribution function g(r) provides information about the local density of of the

system at a given radius r from a a specific point or particle.

g(r) =
n(r ± ∆r

2
)

Ω(r ± ∆r
2
)

1

ρ
(4)

where n(r± ∆r
2
) is the number of particles within a shell of inner radius r− ∆r

2
and outer radius

r + ∆r
2

, Ω is the given shells volume and ρ is the global density for the full system.

For a number of the functions in PyBiLayers it is vital to accurately determine the centre

of mass of each molecule in the system. Generally, this is calculated by a weighted average

of the molecules individual particles. However, due to the employment of periodic boundary

conditions in molecular dynamics simulations the weighted average method has potential to

produce errors. For example, if half of a molecule crosses the maximum of the simulation cell

that half will begin to appear in the opposite side of the cell. If the COM was taken from a

weighted average at this point it would give a result in the center of the box, i.e. not where

the molecule is. To avoid these errors we have opted to use a slightly more resource intensive

method(Bai and Breen, 2008), where the coordinates of the molecule’s particles are projected

onto a circles and averaged to obtain the COM on the circle. The projection is then reverted to

give the cartesian coordinated of the COM. This allows us to analyse exactly where each particle

is during the simulation. An added benefit to this calculation of course is the generation of a

trajectory with unwrapped coordinates, which improves the visual inspection of the trajectory.

As mentioned, we make great use of the NumPy module throughout the code. It has been

especially advantageous in radial distribution, and uni- and bilateral density functions through

the use of the 1D and 2D histogram functions. Calculation times for these functions are up to

six times faster than were accomplished through more iterative techniques.

3 RESULTS

PyBiLayers is designed for the analysis of molecular dynamics simulations which have been

performed using the LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator)

code.(Plimpton, 1995) The LAMMPS source code contains a set of Python-based tools com-

monly known as Pizza.py.(Plimpton and Jones, 2010) Though it can be observed that the scripts

are aimed at producing images from dump files and in the preparation of input files for simula-

tion with LAMMPS. On top of this the Pizza.py toolkit is mainly focused toward Lennard-Jones

particle-based simulations rather that a molecularly bonded systems. PyBiLayers on the other

hand is a post-processing analysis tool designed to work with molecule-based systems in the liq-

uid state, with an emphasis on lipid systems. In computer simulation atoms are heavy enough

to be considered as classical objects, therefore by solving Newton’s second equation of motion,

Equation 5, their movements can be determined.

ma = m
d2r

dt2
=

∂V

∂r
(5)

M.S. MOYANO et.al.1652

Copyright © 2019 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

where m is mass, a is acceleration V is the potential energy from all of the atomic positions

which are contained in the vector r and t is time.(Jensen, 2007) For many-body systems the

solutions of Newton’s equation becomes extremely complex and must therefore be calculate

numerically rather than analitically. There are multiple different algorithms available for this

and LAMMPS takes advantage of the popular Verlet algorithm.(Jensen, 2007; Swope et al.,

1982) Continually determining the motion of all of the particles in a systems allows for the

generation of a trajectory, following the process shown in Figure 1.

Figure 1: Process by which trajectories are generated in LAMMPS. Image adapted from Cai et al. (2012)

We chose LAMMPS because it is a very fast, flexible and powerful MD code however, there

is a lack of soft matter analysis codes available for the post-processing of the trajectories that

it produces. To test the code we performed initial simulations on a trial system consisting of

a pure DOPC (1,2-dioleoyl-SN-glycero-3-phosphocholine) membrane immersed in water. We

used the coarse grained MARTINI force field(Marrink et al., 2007) to describe all of the inter-

particle interactions in the system, employing the polarizable description(Yesylevskyy et al.,

2010) for water molecules. MARTINI was chosen as it is widely used in the biophysics of lipid

membranes simulation community as it allows for the simulations of realistic system sizes for

long time scales.(Ingólfsson et al., 2014)

Figure 2: Flow diagram demonstrating the processing of LAMMPS thermodynamic and trajectory data by the

PyBiLayers code.

During simulations LAMMPS typically generates two separate output files. One in which the

trajectory is printed and another which contains thermodynamic information. The current ver-

Mecánica Computacional Vol XXXVII, págs. 1649-1656 (2019) 1653

Copyright © 2019 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

sion of PyBiLayers is capable of reading both of these files independently and perform these

analyses mentioned in the previous section. Once complete, the analysis is output as required

by the user; as a new tabulated data file, a publication quality graphic, or both simultaneously.

The file containing the thermodynamic output from LAMMPS also contains the initialisation,

finalisation and computational efficiency data. PyBiLayers extracts the thermodynamic data for

analysis and graphing purposes following the process as desrcibed in Figure 2.

Figure 3 shows one of the most basic functions of the PyBiLayers code, the translation of

tabulated energy data into a graph which allows for a simpler interpretation of system behaviour.

In this case the data is taken from a simulation where the DOPC membrane was annealed from

0K to 300K during a period of 0.5 ns.

Figure 3: Output of PyBiLayers showing the evolution of the potential (EPot), kinetic (EKin) and total

(ETot) energies of a DOPC membrane system during an annealing process.

Graphics similar to that shown in Figure 3 can be produced for any of the possible thermo-

dynamic data outputs from LAMMPS.(Plimptop, 1995) Analysis based on the thermodynamic

data, such as the surface tension, also have their own dedicated plotting functions.

Performing analyses based on the trajectory data is, in general, a more complex and time

consuming process. As mentioned in the methods section, we took advantage of the histogram

functions found in the NumPy library to perform uni- and bi-lateral density analyses. Here, in

Figure 4 we show the graphic output of the PyBiLayers codes for the unnormalised lipid density

analysis in the xy-plane. This data is generated from the trajectory information by creating a 2D

histogram in x and y with 20 bins in each direction, thus leading 400 bins in total for the plane.

These bins are populated by using the x and y coordinates of the particles which represent the

membrane in the system. We found that the most effect method to visualise this data was to

generate a 2D heat-map of the data, Figure 4, an option available in the MatPlotLib library.

A grid of 400 histogram bins in some cases may be small and lead to observable discretisation

of data in the plot. To avoid this we called the 2D interpolation functions from the SciPy library,

specifically employing the cubic spline interpolation. This generates a smoother, more relatable,

M.S. MOYANO et.al.1654

Copyright © 2019 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Figure 4: Graphical representation of the unnormalised lipid density in the xy-plane of the simulation

cell.

view of the lipid density and it allows for a more accurate calculation of the areas where the is a

specific density of lipids. This analysis is performed for every frame in the trajectory, allowing

the simulator to directly monitor the evolution of the lipid density in the membrane when a

stress is applied.

4 CONCLUSIONS

In this work we have shown the potential applications of a new generic analysis tool for

simulations in the area of cellular mechanics. While the code is still in the early stages of

development it is already showing potential in the automation of membrane simulation analysis

and the production of high quality output.

We are in continuous development of the code and soon plan to bring features including, ani-

mated graphic outputs, lipid orientation analysis, multi-method line tensions determination, and

surface construction leading to free and occupied volume calculations. In tandem to the expan-

sion of functionality, we plan to implement the parallelisation of the code for both multi-core

processors and graphical processing units (GPUs) were possible. While a considerable amount

of development remains, we are confident that, once released, PyBiLayers will be adopted by

many in the biophysics of lipid membranes community.

AUTHOR CONTRIBUTIONS

Authors M. S. Moyano, H. E. Di Lorenzo, and M. Ferguson all contributed equally to the

design, preparation, and writing of the presented work.

Mecánica Computacional Vol XXXVII, págs. 1649-1656 (2019) 1655

Copyright © 2019 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

ACKNOWLEDGEMENTS

The authors gratefully acknowledge funding from la Dirección de Investigaciones de la Uni-

versidad de Mendoza (DIUM), Argentina. Resolución: HCS No 81/2016

REFERENCES

Allen M.P. and Tildesley D.J. Computer simulation of liquids. Oxford University Press, Oxford,

2017. ISBN 9780198803201.

Bai L. and Breen D. Calculating center of mass in an unbounded 2d environment. J. Graph.

Tools, 13(4):53–60, 2008. doi:10.1080/2151237X.2008.10129266.

Cai W., Li J., and Yip S. 1.09 - molecular dynamics. In R.J. Konings, editor, Comprehensive

Nuclear Materials, pages 249 – 265. Elsevier, Oxford, 2012. ISBN 978-0-08-056033-5.

doi:10.1016/B978-0-08-056033-5.00128-2.

Heimburg T. Thermal Biophysics of Membranes. Wiley-VCH Verlag GmbH and Co. KGaA,

2007. ISBN 9783527611591.

Hunter J.D. Matplotlib: A 2d graphics environment. Comput. Sci. Eng., 9(3):90–95, 2007.

doi:10.1109/MCSE.2007.55.

Ingólfsson H.I., Lopez C.A., Uusitalo J.J., de Jong D.H., Gopal S.M., Periol e.X., and Marrink

S.J. The power of coarse graining in biomolecular simulations. Wiley Interdiscip. Rev.:

Comput. Mol. Sci., 4(3):225–248, 2014. doi:10.1002/wcms.1169.

Jensen F. Introduction to Computational Chemistry. John Wiley & Sons, Chichester, 2nd

edition, 2007.

Jones E., Oliphant T., Peterson P., et al. SciPy: Open source scientific tools for Python.

http://www.scipy.org/, 2001. [Online; accessed 17-Jul-2018].

Kamm R.D. and Mofrad M.R.K. Cytoskeletal Mechanics: Models and Measurements in Cell

Mechanics. Cambridge Texts in Biomedical Engineering. Cambridge University Press, 2006.

doi:10.1017/CBO9780511607318.

Marrink S.J., Risselada H.J., Yefimov S., Tieleman D.P., and de Vries A.H. The martini force

field: Coarse grained model for biomolecular simulations. J. Phys. Chem. B, 111(27):7812–

7824, 2007. doi:10.1021/jp071097f.

Plimpton S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys.,

117(1):1–19, 1995. doi:10.1006/jcph.1995.1039.

Plimpton S. and Jones M. Pizza.py toolkit. 2010. Last Accessed: 20/Sept/2019.

Plimptop S. thermo_style command. https://lammps.sandia.gov/doc/thermo_style.html, 1995.

[Online; accessed 17-Jul-2018].

Swope W.C., Andersen H.C., Berens P.H., and Wilson K.R. A computer simulation method for

the calculation of equilibrium constants for the formation of physical clusters of molecules:

Application to small water clusters. J. Chem. Phys., 76(1):637–649, 1982. doi:10.1063/1.

442716.

van Rossum G. Python tutorial. Technical Report CS-R9526, Centrum voor Wiskunde en

Informatica (CWI), Amsterdam, 1995.

Walt S.v.d., Colbert S.C., and Varoquaux G. The numpy array: A structure for efficient numer-

ical computation. Comput. Sci. Eng., 13(2):22–30, 2011. doi:10.1109/MCSE.2011.37.

Yesylevskyy S.O., Sch afer L.V., Sengupta D., and Marrink S.J. Polarizable water model for

the coarse-grained martini force field. PLoS Comput. Biol., 6(6):1–17, 2010. doi:10.1371/

journal.pcbi.1000810.

M.S. MOYANO et.al.1656

Copyright © 2019 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

	INTRODUCTION
	Tools and Methods
	Results
	Conclusions

