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Abstract. In this article we propose to use receding horizon strategies, like model predictive control

(MPC) and moving horizon estimation (MHE), to design guidance, navigation and path-planning tasks,

which play an essential role in autonomy of unmanned vehicles. As we propose to design these tasks

using MPC and MHE, the physical and dynamical constraints can be included at the design stage, thus

leading to optimal and feasible results. In order to evaluate the performance of the proposed framework,

we have used Gazebo simulator in order to drive a Jackal unmanned ground vehicle (UGV) along a

desired path computed by the path-planning module. The results we have obtained are successful as

the estimation and guidance errors are small and the Jackal UGV is able to follow the desired path

satisfactorily and it is also capable to avoid the obstacles which are in its way.
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1 INTRODUCTION

Autonomous unmanned vehicles (UVs) are capable to perform a set of predefined tasks with-

out human interaction. In order to do this, these vehicles should be able of sensing their envi-

ronment to measure their positions, velocities and detect if there are obstacles in their proximity

so as to navigate through the environment and achieve the targeted positions to perform the

tasks. The execution of these tasks involves the adquisition and processing of a wide variety of

sensors, as well as the solution of coupled optimization problems at different time scales. In this

context, these activities can be organized in three interrelated tasks (See Fig. 1): i) Guidance,

ii) Navigation, and iii) Path-planning.

UV

Navigation

Path-Planning

Guidance

Figure 1: Tasks interaction scheme

The guidance task refers to the control of the position, attitude and velocity of a vehicle along

a pre-defined path. To do this, a suitable control algorithm should be used in order to compute

which actuators’ deflections and/or motors’ speeds the vehicle should have so as to accomplish

a certain mission. A wide range of control techniques have been tested, ranging from classi-

cal to modern ones. Proportional-integral-derivative (PID) control is indeed the most popular

control technique used to control UVs. This is mainly due to its simplicity and because its pa-

rameters are easy to adjust. Several works dealing with PID control of UV have been found in

the specialized literature (Zhao et al., 2012). However, when using a PID controller a decoupled

version of the mathematical model of the UV is used. This may lead to unexpected results in the

presence of disturbances and even limit its performance due to unmodelled dynamics. Another

technique that has been successfully applied to control UVs is the linear quadratic regulator

(LQR) control algorithm (Khamseh and Janabi-Sharifi, 2017). Within optimal control tech-

niques model predictive control (MPC) can be found. Unlike LQR, the MPC algorithm allows

to include constraints in the optimization problem. This is very useful as physical and dynami-

cal characteristics of the vehicle and different types of obstacles can be taken into account just

by the inclusion of proper constraints in the minimization stage (Hang et al., 2017).

The navigation task aims to solve the problem of determining the position, velocity and

orientation of a vehicle in space using different sources of information (inertial measurement

units, GPS, among others). Traditionally, the Extended Kalman Filter (EKF) (Roumeliotis and

Bekey, 1999), Unscented Kalman Filter (UKF) (Rhudy et al., 2013) or the Particle Filter (PF)

(Cheng and Crassidis, 2004) are used to solve the navigation problem. Recently, the use of

non-linear observers such as MHE have been proposed as an alternative to the different types

of Kalman filters and statistical methods (Grip et al., 2012; Vandersteen et al., 2013). Both

EKF and MHE are based on the solution of a least-squares problem. While EKF uses recursive
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updates to obtain the estimates and the error covariance matrix, MHE uses a finite horizon

window and solve a constrained optimization problem to find the estimates. In this way, the

physical limits of the system states and parameters can be modeled through the optimization

problem’s constraints. The omission of this information can degrade the estimation algorithm

performance (Haseltine and Rawlings, 2005).

The path-planning task deals with searching a feasible path between the present location and

the desired target while taking into consideration the geometry of the vehicle and its surround-

ings, its kinematic constraints and other factors that may affect the feasible path. Different

methodologies are used to find feasible paths (LaValle, 2006; Saska et al., 2015; Xue et al.,

2014), however, most of them do not consider the dynamics of the UV that should follow the

path. In their review article, Yang et al. (2016) have surveyed different path-planning algo-

rithms. The authors discuss the fundamentals of the most successful robot 3D path-planning

algorithms that have been developed in recent years. They mainly analyze algorithms that can

be implemented in aerial robots, ground robots and underwater robots. They classify the dif-

ferent algorithms into five categories: i) sampling based algorithms, ii) node based algorithms,

iii) mathematical model based algorithms (which include optimal control and receding hori-

zon strategies), iv) bioinspired algorithms, and v) multifusion based algorithms. From these,

only mathematical model based algorithms are able to incorporate in a simple way both the

environment (kinematic constraints) and the vehicle dynamics in the path-planning process.

As it can be seen, there are a wide range of techniques that can be used to implement the guid-

ance, navigation and path-planning tasks. In this article we propose to use a unified framework

based on receding horizon techniques to design the three aforementioned tasks. To design the

path-planning and guidance modules we propose the use of the MPC algorithm (Murillo et al.,

2016), and to solve the navigation task we propose the use of the MHE algorithm (Sánchez

et al., 2017b). In this way, physical and dynamical constraints can be considered in the path-

planning, guidance and estimation stages. The advantages of using the proposed framework

are: i) the obtained path is guaranteed to be optimal and feasible, ii) the estimates of states and

parameters of the system are improved as they are guaranteed to satisfy physical limits, iii) the

position of actuators and motors’ speeds are computed in an optimal fashion satisfying their

physical limits, and iv) the three modules are in state-space form which is very useful when

working with multiple-input multiple-output (MIMO) systems.

This article is organized as follows. In Section 2 we provide a general overview of receding

horizon techniques. In Section 3 the guidance problem is formulated. In Section 4 the way in

which we estimate states and parameters is presented. The path-planning problem is described

in Section 5. Simulation results are presented in Section 6. Finally, conclusions are stated in

Section 7.

2 RECEDING HORIZON PRINCIPLE

The main objective of receding horizon techniques is to solve an explicit inverse problem

that allows the incorporation, at the design stage, of different types of constraints to obtain

the best feasible solution. For both control and estimation, the inverse problem to solve is

the minimization of a cost function that quantifies the performance of the system (for control

case) and how well we estimate unknown states and parameters (for estimation case). This

constrained minimization process is done over a fixed-time horizon window of a certain length.

This is shown in Fig. 2 for time k, being the cyan dashed-dot line the control window of length

Nc and the red dashed line the estimation window of length Ne. The arrival cost provides a

mean to incorporate information from previous measurements to the current estimates and the
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Figure 2: Scheme of the receding horizon principle

cost to go includes the missing information due to the use of a finite horizon approach. At the

next sampling instant k + 1, new information is included and old one is discarded by shifting

both windows one step in time and the constrained minimization process is restarted at the next

sampling instant. This is also shown in Fig. 2 for time k + 1.

When we refer to a control receding strategy we think in model predictive control. For

control case, we generally solve at each sampling instant, a constrained minimization problem

of the form
min
Uk|k

JMPC

st.







xk+i+1|k = f(xk+i|k,uk+i|k),
xk|k = x(k),
uk+i|k ∈ U , xk+i|k ∈ X ,

(1)

whereJMPC denotes the cost function to be minimized, i ∈ [0, 1, · · · , Nc−1], xk+i|k ∈ X ⊆ ℜ
nx

is the state vector, uk+i|k ∈ U ⊆ ℜ
nu is the control input vector, X and U are the state and input

constraint sets, respectively, Uk|k =
[

uk|k, · · · , uk+Nc−1|k

]T
is the control input sequence and

f(·) is a continuous and differentiable vector function that describes the dynamics of the system.

The solution of Eq. (1) is an optimal control input sequence (denoted here with an asterisk)

U∗
k|k =

[

u∗
k|k, · · · , u

∗
k+Nc−1|k

]T

, but only the first control input of this sequence is applied to

the system, i.e. uk = u∗
k|k. Then, the horizon is shifted forward to the next sampling instant

(k ← k+1) in a receding horizon fashion, discarding old information but including the new one,

thus compensating for unmeasured disturbances and/or unmodelled dynamics. As the reader

can see, the cost function JMPC in Eq. (1) plays a key role in obtaining the optimal control

sequence and it should be carefully designed in order to fulfill the goals of the system. The

different cost functions used to design the guidance and path-planning tasks will be properly

defined in Section 3 and 5, respectively.

To perform states and/or parameters estimation in a receding horizon fashion we use moving

horizon estimation. In this case, we also solve a constrained minimization problem at each sam-

pling instant but the solution obtained is different from the previous one as it includes estimates
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of states, parameters and noises. The MHE problem has the following form

min
x̂k−Ne|k,Ŵk|k

JMHE

s.t.















x̂k+i+1|k = f̄(x̂k+i|k, ẑk+i|k, ŵk+i|k),
ŷk+i|k = h̄(x̂k+i|k, v̂k+i|k),
x̂k+i|k ∈ X̄ , ẑk+i|k ∈ Z̄,
ŵk+i|k ∈ W̄ , v̂k+i|k ∈ V̄ ,

(2)

where JMHE denotes the cost function to be minimized, the hat (̂·) denotes estimated value,

i ∈ [−Ne, · · · ,−1], x̂k+i|k ∈ X̄ ⊆ ℜ
nx̂ , ẑk+i|k ∈ Z̄ ⊆ ℜ

nẑ stand for the estimated state

and algebraic state vectors, respectively, ŵk+i|k ∈ W̄ ⊆ ℜnŵ and v̂k+i|k ∈ V̄ ⊆ ℜ
nv̂ are

the estimated process and measurement noises vectors, respectively, ŷk+i|k ∈ Ȳ ⊆ ℜ
nŷ is the

measurement vector, f̄ and h̄ are differentiable vector functions that define the system dynamics

and the measurement equation, respectively, X̄ , Z̄ , W̄ , V̄ and Ȳ are the state, algebraic state,

process noise, measurement noise and measurement vector constraints sets, respectively. The

solution of problem of Eq. (2) are the optimal sequences X̂∗
k|k =

[

x̂∗
k−Ne+1|k, · · · , x̂

∗
k|k

]T

and

Ŵ∗
k|k =

[

ŵ∗
k−Ne|k

, · · · , ŵ∗
k|k

]T

, from where we extract the current estimates, i.e. x̂k = x̂∗
k|k

and ŵk = ŵ∗
k|k. Then, the estimation window is shifted forward to the next sampling instant

(k ← k + 1) in order to drop the oldest measurement and to include the current one, and the

minimization process is restarted. In this case, the cost function JMHE also plays a key role

in the behaviour of the MHE algorithm, and it should be carefully chosen in order to obtain

the best estimates as possible. The cost function used in the navigation task will be properly

described in Section 4.

3 THE GUIDANCE PROBLEM

To design the guidance task, we propose to solve Eq. (1) using the following cost function:

Jg =

Ng−1
∑

j=0

(

‖xk+j|k − x
sp

k+j|k‖
2
Q + ‖∆uk+j|k‖

2
R

)

+ ‖xk+Ng |k − x
sp

k+Ng |k
‖2P, (3)

where Ng is the guidance prediction horizon, Q, R and P are positive definite matrices. ‖(·)‖2α
stands for the alpha-weighted 2-norm, ∆uk+j|k = uk+j|k − uk+j−1|k and x

sp

k+j|k is the desired

path which is computed by the path-planning task.

To test the guidance task, we propose to use a Jackal1 unmmaned ground vehicle (UGV),

which is a small, fast, entry-level field robotics research platform. We need to emphasize that

we do not know the exact mathematical model of the Jackal UGV, however, we do know that

it is a complex model simulated by Gazebo simulator2. We propose to model Jackal UGV with

the mathematical model of a differential drive UGV. This last model is very simple, but for us

is the best model at hand and, as it will be shown in the simulation example, it will allow us to

control accurately the Jackal UGV along the pre-defined path. The mathematical model of the

differential drive UGV can be written as follows:

˙̃x(t) = f̃(x̃(t), ũ(t)) =





ṽ(t) cos ψ̃(t)

ṽ(t) sin ψ̃(t)
ω̃(t)



 , (4)

1https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/
2http://gazebosim.org/
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where x̃(t) = [x̃(t), ỹ(t), ψ̃(t)]T and ũ(t) = [ṽ(t), ω̃(t)]T are the UGV state and contol input

vectors, respectively, x̃(t) and ỹ(t) denote the UGV xy-position, ψ̃(t) denotes its yaw angle,

ṽ(t) and ω̃(t) stands for the UGV linear and angular velocities, respectively. As it can be seen,

Eq. (4) is expressed in its continuous-time form, but in order to be used in Eq. (1) it should

be in its discrete-time form. We have solved this issue using a discretization method called

collocation since it provides great accuracy at a relatively low computational cost (Sánchez

et al., 2017a).

4 THE NAVIGATION PROBLEM

In order to design the navigation task, we propose to solve Eq. (2) with the following cost

function

Jn =P0(1− ||q̂
n
b (k −Ne)||

2
2) + ||x̂k−Ne|k − x̄k−Ne|k||

2
P1
+

||ẑk−Ne|k − z̄k−Ne|k||
2
P2

+
0

∑

j=−Ne

(

||ŵk+j|k||
2
Qw

+ ||v̂k+j|k||
2
Rv

) (5)

where Ne is navigation prediction horizon, Qw and Rv are symmetric positive definite matrices

that penalize the estimated noise vectors ŵk+j|k and v̂k+j|k, respectively, x̄k−Ne|k and z̄k−Ne|k

are the current knowledge of the initial states and algebraic states estimates, respectively, P0 is

a positive constant which penalizes the deviations of the quaternion q̂nb which must have unit

norm, and P1 and P2 are symmetric positive semi-definite weighting matrices.

Using the equations that describe the rigid body dynamics (for a detailed description, see

Polóni et al. (2015)), the mathematical model used in the navigation task can be written in

Earth-Centered Earth-Fixed (ECEF) coordinates as follows:

ẋ(t) = f̄(x(t), z(t),w(t)) =













ve(t)
−2S(ωe

ie(t))v
e(t) + ae(t) + ge(pe(t))

1
2
qeb(t) · ω̃

b
ib(t)−

1
2
ω̃e
ie(t) · q

e
b(t)

0
0













, (6)

where x(t) = [pn(t), vn(t), qnb (t), α(t), β(t)]
T and z(t) = [ωb(t), an(t)]T are the state vector

and the algebraic state vector, respectively, pn(t) ∈ ℜ3 is the position, vn(t) ∈ ℜ3 is the

linear velocity, the quaternion qnb (t) ∈ ℜ
4 determines the orientation of the rigid body and

α(t) ∈ ℜ3 and β(t) ∈ ℜ3 are the gyroscope and accelerometer bias, respectively. ωb(t) ∈ ℜ3

and an(t) ∈ ℜ3 are the angular velocity and linear acceleration vectors. The superscript n, b and

e denote the East-North-Up (ENU) reference frame, the body reference frame and the ECEF

reference frame, respectively.

The measurement equations with measurement noise v(t) = [vω(t), va(t), vm(t), vp(t), vv(t)]
T ,

with v(·)(t) ∈ ℜ
3, are given by:

y(t) = h̄(x(t),v(t)) =













ωb(t) + α(t) + vω(t)
R(qeb)

Tae(t) + β(t) + va(t)
R(qeb)

Tme(t) + vm(t)
pe(t) + vp(t)
ve(t) + vv(t)













, (7)
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where me(t) contains the values of the magnitude of the terrestrial magnetic field given our

current latitude and longitude3, ωb(t) and ae(t) are the angular velocity and linear acceleration

vectors, respectively. The matrix R(qeb(t)) is the rotation matrix associated with the current

orientation quaternion. As before, Eqs. (6) and (7) are discretized using collocation method.

5 THE PATH-PLANNING PROBLEM

In order to design the path-planning task, we propose to solve Eq. (1) with the following cost

function:

Jp =

Np−1
∑

j=0

(

‖xk+j|k − w̆k+j|k‖
2
Q̆
+ ‖∆uk+j|k‖

2
R̆

)

+ ‖xk+Np|k − w̆k+Np|k‖
2
P̆
, (8)

where Np is the path-planning horizon length, w̆k+j|k defines each consecutive target waypoint,

Q̆, R̆ and P̆ are positive definite matrices.

In this article we propose to use an MPC based path-planning algorithm which uses a virtual

particle vehicle (PV) model to compute the paths (Murillo et al. (2018)). The mathematical

model that describes the movement of the PV can be written as follows:

˙̆x(t) = f̆(x̆(t), ŭ(t)) =





v̆(t) cos ψ̆(t)

v̆(t) sin ψ̆(t)
−τ v̆(t) + κT (t)



 , (9)

where x̆(t) = [x̆(t), y̆(t), v̆(t)]T and ŭ(t) = [ψ̆(t), T (t)]T are the PV state and control input

vectors, respectively, x̆(t) and y̆(t) denote the PV xy-position of the PV and v̆(t) is the modulus

of the PV velocity vector, ψ̆(t) and T (t) denote the yaw angle and the thrust force of the PV,

respectively, τ is a damping constant that determines the rate of change of the PV velocity and κ
is a constant proportional to the thrust force T . Equation (9) is also discretized using collocation

method.

6 SIMULATION EXAMPLE

In this section we present the usage of the proposed framework in order to estimate unknown

states, compute a feasible path and follow this path with a Jackal UGV using Gazebo simulator,

CasADi (Andersson et al., 2019), MPCTools (Risbeck and Rawlings, 2016) and Ipopt (Wächter

and Biegler, 2006).

For the guidance task we assume that the initial conditions of model defined in Eq. (4) are

x̃0 = [0, 0, 0]T and ũ0 = [0, 0]T . This model is discretized using collocation method with a

sampling rate Ts = 0.1 s and the guidance horizon is set to Ng = 10. The weight matrices are

chosen as: R = diag([20, 20]), Q = diag([300, 300, 150]) and P = diag([500, 500, 400]).
The constraints are configured according to the capabilities of the Jackal UGV: 0 ≤ ṽ(t) ≤
1.9 (m/s), −2 ≤ ω̃(t) ≤ 2 (rad/s), −0.3 ≤ ∆ṽ(t) ≤ 0.3 (m/s), −30 ≤ ∆ω̃(t) ≤ 30 (deg/s).
ψ̃(t), x̃(t) and ỹ(t) are unconstrained.

For the path-planning task we assume that the PV model initial conditions are x̆0 = [0, 0, 0]T

and ŭ0 = [0, 0]T . This model is also discretized using collocation method with a sampling rate

Ts = 0.1 s. The path-planning horizon is set to Np = 15. The weight matrices are chosen

as R̆ = diag([0.01, 0.01]), Q̆ = diag([100, 100, 100]) and P̆ = diag([500, 500, 500]). The

3This data is tabulated and can be obtained from https://www.ngdc.noaa.gov/geomag-web

Mecánica Computacional Vol XXXVII, págs. 1861-1870 (2019) 1867

Copyright © 2019 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



PV constraints are configured as follows: 0 ≤ T (t) ≤ 5 (N), −30 ≤ ∆ψ̆(t) ≤ 30 (deg/s),
−0.5 ≤ ∆T (t) ≤ 0.5 (N) and 0 ≤ v̆(t) ≤ 1.9 (m/s). ψ̆(t), x̆(t) and y̆(t) are unconstrained.

Both constants of the PV model are set as τ = 2 (1/s) and κ = 2 (1/kg). When computing

the path we assume that there are two circular obstacles of radii ro1 = ro2 = 0.5 (m) and

centres co1 = [5, 0]T (m) and co2 = [0, 5]T (m). The Jackal UGV should achieve the following

consecutive waypoints: w̆1 = [10, 0, 0.2]T , w̆2 = [0, 10, 0.2]T , w̆3 = [10, 10, 0.2]T and

w̆4 = [0, 0, 0]T .

For the navigation task we assume that there is no process noise (ŵk+j|k = 0). The Jackal

UGV simulated by Gazebo has two sensors: i) IMU, and ii) GNSS. The data given by these sen-

sors is corrupted by Gaussian noise and it is fused in order to estimate the Jackal’s xy-position

and its yaw angle. Here we use model of Eq. (6) in ENU coordinates with initial conditions

x̄−Ne
= [0, 0, 0.0635, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]T and z̄−Ne

= [0, 0, 0, 0, 0, 0]T .

This model is also discretized using collocation method with a sampling rate Ts = 0.1 s and

the estimation horizon is set to Ne = 6. The weights defined in Eq. (5) are chosen as Qw =
diag([10−1, 10−1, 10−1, 10−3, 10−3, 10−3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]), Rv = diag([1, 1, 1, 1,
1, 1, 10−3, 10−3, 10−3]), P0 = 0.1, P1 = diag([10−1, 10−1, 10−1, 10−3, 10−3, 10−3, 0.5, 0.5, 0.5,
0.5, 0, 0, 0, 0, 0, 0]) and P2 = diag([1, 1, 1, 1, 1, 1]).

The results obtained can be seen in Figures 3a- 3d. In Fig. 3a, three different paths are

shown: i) the setpoint path (squared-green line) which is computed by the path-planning task,

ii) the estimated Jackal xy-position (rounded-blue line) which is computed by the navigation

task and controlled by the guidance task in order to follow the setpoint path, and iii) the ground

truth (diamond-red line) which is given by Gazebo. From this figure it can be seen that the

interrelated work of the three tasks (path-planning, navigation and guidance) is done in such a

satisfactory way that it allows to move the Jackal UGV along the desired path with minor errors,

considering that sensors are corrupted by Gaussian noise. In Fig. 3b the Jackal UGV control

inputs are shown. Both control inputs are feasible and, as it can be seen from this figure, the

linear velocity of the vehicle is limited up to 1.9 (m/s) which matches both constraints defined

in the path-planning and guidance tasks. In Fig. 3c the guidance errors are shown, where xsp

and ysp are the desired xy-coordinates that define the desired path and ψsp is the desired yaw

angle. Note that we do not only define the Jackal UGV xy-coordinates but also we impose the

orientation it should have along the desired path. x̂, ŷ and ψ̂ are the components of the estimated

Jackal state vector. As it can be seen form this figure (top and middle), the guidance errors in

xy-position are small. However, the guidance error in the yaw angle seems to be a bit bigger

than the errors in the position. This is mainly due to the fact that the yaw angle is a control

input for the PV model in Eq. (9) and consequently no dynamics is considered. This problem

can be solved by adding this angle as a state variable and defining a first order dynamics for it,

as we did with the velocity of the PV. Figure 3d depicts the estimation errors, where xt, yt and

ψt denote the truth xy-component and the truth yaw angle, respectively, which can be obtained

from Gazebo simulator in order to check if our estimations are close to this truth values. It

can be seen that the navigation task is successfully employed as the errors we have made in the

estimation of xy-position (between ±0.15 (m)) and the yaw angle (between ±5 (deg)) of the

Jackal UGV are small.

7 CONCLUSIONS

In this article, we have presented a unified receding horizon framework that can be used

for the guidance and navigation of any UV along any feasible path. This framework can be

split into three interrelated task, all of them designed using a receding horizon principle, which
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allows us to include physical dynamics and constraints at the design stage. We have used MPC

technique for guidance and path-planning tasks and MHE for the navigation task. To evaluate

the performance of the proposed framework, we have used Gazebo simulator in order to drive a

Jackal UGV model along the path computed by the path-planning task.
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