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Abstract. The microstructural analysis of a material allows the complete characterization of its mechan-

ical properties. Thus, the performance of a mechanical component depends heavily on the identification

and quantification of its microstructural constituents. Currently, this process is still done mostly manually

by experts, making it slow, very labor-intensive and inefficient. It is estimated that an experienced expert

takes 15 minutes per image to perform the proper identification and quantification of microconstituents.

Therefore, a computational tool could greatly assist to improve the performance in this task. However,

since a microstructure can be a combination of different phases or constituents with complex substruc-

tures, their automatic quantification can be very hard and, as a result, there are few previous works

dealing with this problem. Convolutional Neural Networks are promising for this type of application

since recently this type of network has achieved great performance in complex applications of compu-

tational vision. In this work, we propose an automatic quantification of microstructural constituents of

low carbon steel via Convolutional Neural Networks. Our dataset consists of 210 micrographs of low

carbon steel, and this amount of images was increased through data augmentation techniques, resulting

in a total of 672 samples for training. With regard to network architectures, we used the AlexNet trained

from scratch and the VGG19 and Xception both pre-trained. The results showed that CNNs can quantify

microstructures very effectively.
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1 INTRODUCTION

The mechanical properties of a material are determined essentially by the analysis of its

microstructures (Bhadeshia and Honeycombe, 2017). These microstructures stores the genesis

of a material and determines all its physical and chemical properties (Azimi et al., 2018). Hence,

the identification and quantification of microstructural constituents of a material is a critical

aspect in engineering.

Yet, even today, there is no automatic way of quantifying the microstructural constituents of

a material. This task has to be done manually by experts or with the aid of expensive and inef-

ficient devices. The American Society for Testing and Materials (ASTM) produces industrially

recognized standards for the analysis of microstructure evaluated by human experts. However,

implementing these standards is labor intensive and prone to human error (Campbell et al.,

2018).

This motivates us to use Deep Learning (DL) methods to automatically quantify these micro-

constituents in a material. These machine learning methods are recently receiving the attention

of scientists due to their strong potential to learn complex features. In recent years, due to its

remarkable precision in images patterns recognition and classification, Convolutional Neural

Networks (CNNs) are considered the most suitable DL method to treat with computer vision

tasks. There are some works that use CNNs to classify microstructures. However, the works

that use this tool to quantify the microconstituents are rare.

In this work, CNNs was applied to quantify five very common microstructures in welded

fusion zones: Grain Boundary Ferrite (PF(G)), Intragranular Polygonal Ferrite (PF(I)), Ferrite

with Aligned Second Phase (FS(A)), Ferrite with Non-aligned Second Phase (FS(NA)) and

Acicular Ferrite (AF). Three different CNNs architectures were compared: AlexNet trained

from scratch and the VGG19 and Xception both pre-trained.

2 RELATED WORKS

In the literature, it is possible to find some papers that aim at the automatic classification and

analysis of microstructures. Deep Learning methods were used by Azimi et al. (2018) to auto-

matically classify microstructures, such as martensite, bainite, and perlite.It was used different

CNNs architectures and also Support Vector Machines (SVM). The best results (93.94%) were

obtained using the MVCNN (Max-voting Fully Convolutional Neural Network).

Gola et al. (2018) classified microstructures of two distinct steels by data mining methods.

The results were obtained from different methods of preprocessing (raw and log-transformed),

different methods of division of data (shuffled and sample-wise) and different parameters C and

gamma of the SVM method. The best results reached 87% accuracy.

Supervised and unsupervised Machine Learning techniques were used by DeCost et al.

(2017) for the identification of microstructures in thermally treated high carbon steels. Different

feature extractors were used, e.g CNN and Bag of Words, and the learning algorithm SVM as

classifier. The results showed that CNNs were the best feature extractor. For the visualization

maps, the t-SNE clustering technique was used.

Specific microstructures with different magnitudes, chemical treatments and orientations

were automatically identified by Chowdhury et al. (2016). Two classification tasks were de-

veloped: classification between micrographs with and without dendrites, and classification be-

tween views of longitudinal dendrites and cross-sections. The learning algorithms SVM, KNN,

and Random Forests were used in the classification task. The best results were obtained when

pre-trained neural networks were used to extract the images features.
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3 METHODS

In this section, we describe our methods to quantify microstructures in steel images. In order

to accomplish this task, we applied and compared three different CNNs architectures. CNN is a

kind of neural network focused on recognizing visual patterns from images. Its training is done

without separation between the feature extraction and the classification step, which differs a lot

CNN from other image processing algorithms. CNNs are considered state-of-the-art approaches

in many vision applications due to their ability to get high accuracy results in complex computer

vision problems. The architecture of a CNN is similar to that of the connectivity pattern of

neurons in the human brain and was inspired by the organization of the Visual Cortex. The

basic concept of CNNs was developed by Fukushima (1980). However, only a few years ago

CNNs returned to the attention of the scientific community, especially after Krizhevsky et al.

(2012), which was a breakthrough in the computer vision area. A typical CNN is compounded

by several repeating kinds of layers that are stacked in layers, each named on the basis of the

performed operations:

Convolution layer is the first layer to extract features from an input image. It is composed

by learnable filters, which are convolved with the input data as shown in Equation(1):

(hk)ij = (Wk ∗ x)ij + bk (1)

where k = 1, ... , K is the index of the k-th feature map in convolution layer and (i, j) is

the index of neuron s in the k-th feature map and x represents the input data. Wk and bk are

trainable parameters (weights) of linear filters (kernel) and bias for neurons in the k-th feature

map respectively. (hk)ij is the value of the output for the neuron in the k-th feature map with

position of (i, j).

Pooling layer progressively reduce the spatial size of the representation, to decrease the

number of parameters and computations in the network. The two most common form are max

pooling and global average pooling, which either takes maximum or average values in each

sub-region of the input data.

Fully-connected Layer is a classic neural network layer, where each node is connected to

all nodes of the previous layer. Its output is a linear combination of the features of the previous

layer as shown in Equation (2):

yk =
∑

l

Wklxl + bk (2)

where yk represents the k-th output neuron and Wkl is the kl-th weight between xl and yk.

Activation Function applies a nonlinear activation over an input signal. It usually follows

a pooling or fully connected layer. There are different types of activation functions, such as

hyperbolic tangent, and the sigmoid function. However, ReLU function relu(x) = max(0, x)
was used because it trains the neural network several times faster without a significant penalty

to generalization accuracy.

Dropout Layer is a technique to improve the generalization of CNNs. The method randomly

ignores (drop) neurons and their corresponding parameters from the network architecture only

during the training phase.

Loss Layer specifies how training penalizes the deviation between the predicted and true

class labels and is normally the final layer of a neural network. As our task was to quantify

microconstituents in the images, our work can be considered a regression problem. The Mean
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Squared Error (MSE) and the Mean Absolute Error (MAE) given by Equation (3) and (4) are

two of the loss layers most used in regression tasks.

MSE =
1

n

n∑

i=1

(Yi − Ŷi)
2 (3)

MAE =

∑n

i=1
|yi − xi|

n
(4)

where n is the number of data points, Y is the true label and Ŷ is the predicted label.

In the following subsections, the three CNNs architectures applied in this work are described.

3.1 AlexNet

AlexNet, proposed by Krizhevsky et al. (2012), achieved a top-5 error of 15.3% in the Ima-

geNet Large Scale Visual Recognition Challenge (ILSVRC), more than 10.8 percentage points

lower than that of the runner up. It is considered one of the most influential papers published in

computer vision, having spurred many more papers published employing CNNs.

The model is a deep CNN with 60 million parameters and 650.000 neurons. It contains eight

layers as shown in Figure 1.

Figure 1: The AlexNet model. (Krizhevsky et al., 2012)

The first five are convolutional layers, some of them followed by max-pooling layers, and the

last three are fully connected layers. ReLU nonlinearity is applied after all the convolution and

fully connected layers. Dropout is applied before the first and the second fully connected year.

It is important to emphasize, as already mentioned, AlexNet was implemented from scratch in

this work.

3.2 VGG19

VGG19 is a version of VGGnet, proposed by Simonyan and Zisserman (2015). It was the

runner-up at the ILSVRC 2014 competition, achieving a top-5 error rate of 7.3%. It consists of

16 convolutional, five pooling and three fully-connected layers. The width of the convolution

layers starts from 64 in the first layer and then increasing by a factor of 2 after each max-pooling

layer until it reaches 512. Convolutional layers use 3 x 3 kernels with a stride of 1 and padding

of 1 and A rectified linear unit (ReLU) activation is performed right after each convolution. The

C. DANELON DE ALMEIDA et.al.2026

Copyright © 2019 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



first two fully-connected layers have 4096 channels each, and the third contains the number of

predictable classes, as shown in Figure 2 below.

Figure 2: The VGG19 model. (G. et al., 2019)

VGG19 was trained on more than a million images from the ImageNet database. Conse-

quently, the network has learned rich feature representations for a wide range of images. Ad-

ditionally, as the weight configuration of the VGGNet is publicly available, it was possible to

apply the pre-trained version of VGG19 in our task. This process is called transfer learning,

which is a machine learning technique based in transferring the parameters of a neural network

trained with one dataset for a specific task to another problem with a different dataset and task.

3.3 Xception

Xception, proposed by Chollet (2017) from Google, is considered an extreme version of

InceptionV3, which is an CNN architecture also by Google and it was first runner up in ILSVRC

2015. Xception has 36 convolutional layers structured into 14 modules, all of which have linear

residual connections around them, except for the first and last modules, as shown in Figure 3

below.

Figure 3: The Xception model. (Chollet, 2017)

Xception was also trained on the ImageNet ILSVRC dataset and it has achieved top-5 accu-
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racy of 0.945, outperforming VGGnet and InceptionV3. Furthermore, as its weight configura-

tion is also publicly available, we could apply transfer learning again, by using the pre-trained

version of Xception in our task.

4 IMPLEMENTATION DETAILS

4.1 Dataset

Our dataset contains 210 micrographs of a 1020 steel welded fusion zones. The images

were obtained by an Olympus GX5 Microscope and have a resolution of 2048 x 1532 pixels.

Each of these micrographs has a label with the percentage of microconstituents, being so a

supervised machine learning problem. These quantities were obtained manually by following

ASTM (2012), Figure 4 below shows one of the micrographs of the dataset.

Figure 4: Micrograph image analyzed in this work. Microconstituents: 36% PF(G), 3% PF(I), 16% AF, 34%

FS(NA) and 11%FS(A)

4.2 Data Preparation

As CNNs work better with large datasets, augmentation techniques had to be applied to in-

crease the number of images. From the original dataset, 21 images were separated for testing,

21 images for validation, and the remaining 168 images were mirrored in x and y-axis, increas-

ing the data to 672 training images. Furthermore, original resolution of the images was too high

and it would have been very computationally expensive to run with these large images. There-

fore, we had to choose a lower resolution without compromising results and the best choice was

to apply a reduction factor of 0.15, reducing the images to 307x230.

4.3 Training

Python programming language was used to implement the codes and CNN models were built

in Keras library. In order to train and test CNNs models, NVIDIA Tesla T4 GPU (15079 MiB

provided by Google Colaboratory) was used. We ran each computational model 100 epochs

using 6-fold cross-validation with shuffled data generated by different random seeds. As loss
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function, MSE was used. Additionaly, MAE and R2-score (proportion of the variance in the

dependent variable that is predictable from the independent variable), were applied as evaluation

metrics. Regarding the optimizer, ADAM e Stochastic Gradient Descent (SGD) were applied

and compared. In the Adam optimizer, we applied a learning rate of 0.0005 and in SGD we

used a learning rate of 0.01, momentum of 0.9, and weight decay of 1 ∗ 10−6.

5 RESULTS

In Table 1, comparable results between the three CNN models are presented. The results

show that AlexNet was the fastest model, taking only 4200 seconds (70 minutes) to run the

solution. As expected, Xception network took the longest time as it is the most complex network

among the ones we compared. Furthermore, VGG19 with SGD optimizer was the combination,

which achieved the best results in terms of error and accuracy.

Table 1: Comparison of results between CNN models

Architecture Optimizer Execution Time (s) Average R2 score MAE (%)

VGG 19 ADAM 8399 0.796 5.74

Xception ADAM 10798 0.769 5.57

AlexNet ADAM 4200 0.793 5.53

VGG 19 SGD 8404 0.834 4.88

Xception SGD 10806 0.7352 6.36

AlexNet SGD 4205 0.789 5.81

In order to show how the model can predict the percentage of microconstituents very accu-

rately, we present predictions of VGG19 model for six images of test, Figures 5 to 10. Each

micrograph is presented with its respective percentage label, the model predictions and the

mean absolute error. The quantities are presented in the following form: [%PF(G), %PF(I),

%AF, %FS(NA), %FS(A)].

Figure 5: Manual quantification:

[49%, 5.7%, 12%, 29.2%, 4.2%]

Predicted quantification:

[52.6%, 5.4%, 12.7%, 25.1%, 4.2%]

MAE: 1,76%

Figure 6: Manual quantification:

[31.2%, 4.2%, 7.8%, 47.4%, 9.4%]

Predicted quantification:

[32.9%, 5.4%, 13.5%, 42.1%, 6.1%]

MAE: 3,43%
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Figure 7: Manual quantification:

[22.4%, 3.1%, 19.3%, 45.8%, 9.4%]

Predicted quantification:

[25.8%, 4.2%, 18.2%, 46.9%, 4.9%]

MAE: 2,25%

Figure 8: Manual quantification:

[34.4%, 4.2%, 12%, 39.1%, 10.4%]

Predicted quantification:

[34.1%, 5.5%, 13.1%, 41.2%, 6.2%]

MAE: 1,81%

Figure 9: Manual quantification:

[47.4%, 7.8%, 11.5%, 32.3%, 1%]

Predicted quantification:

[43.9%, 7.3%, 11.9%, 32.9%, 4.2%]

MAE: 1,63%

Figure 10: Manual quantification:

[31.5%, 3.7%, 13.9%, 41.7%, 9.3%]

Predicted quantification:

[29.6%, 7%, 14.7%, 42.8%, 5.9%]

MAE: 2,11%

By analyzing the results, it is possible to observe that the model can reach values very close

to the input value. However, it is also observable that the CNN model mistakes more in some

microconstituents than others. Our models better predict the microconstituents that have less

variability among the data, such as PF(I) and FS(A). In contrast, microconstituents such as

FS(NA) and PF(G) present large variability among the data, which makes the task more difficult.

To illustrate this scenario, Figure 11 presents a boxplot of the average error of each model

per different microconstituents. As expected, it can be seen that models better predict PF(I) and

FS(A), and mistake more in PF(G) and FS(NA), as mentioned above.
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Figure 11: Average error per microconstituent

6 CONCLUSIONS

This work presents the feasibility of applying CNNs for steel microstructural quantification.

In order to achieve this goal, we have compared the performance of three CNN models. In

addition, augmentation techniques were used to increase the size of the training set and conse-

quently improve the performance of the models. According to results, VGG19 was considered

the best model for this application. Additionally, it was shown that the performance of the

models varies for each micro constituent, depending on their variability among the data.

From the predictions in the test set, it was observed that the model can achieve output values

very close to the input values, proving the efficacy in applying deep learning methods in this

task. In addition, it is worth mentioning that the network performs the quantification automat-

ically in a few seconds, and this task is currently done manually and consequently, very time

consuming and prone to error.

REFERENCES

ASTM. Standard Test Method for Determining Volume Fraction by Systematic Manual Point

Count. American Society for Testing and Materials, 2012.

Azimi S.M., Britz D., Engstler M., Fritz M., and Mücklich F. Advanced steel microstructural

classification by deep learning methods. Scientific Reports, 8:2128, 2018.

Bhadeshia H. and Honeycombe R. Steels: Microstructure and Properties, volume 4. Elsevier -

Butterworth-Heinemann, 2017.

Campbell A., Murray P., Yakushina E., Marshall S., and Ion W. New methods for automatic

quantification of microstructural features using digital image processing. Materials and De-

sign, 141:395–406, 2018.

Chollet F. Xception: Deep learning with depthwise separable convolutions. IEEE Conference

Mecánica Computacional Vol XXXVII, págs. 2023-2032 (2019) 2031

Copyright © 2019 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



on Computer Vision and Pattern Recognition (CVPR), 2017.

Chowdhury A., Kautz E., Yener B., and Lewis D. Image driven machine learning methods for

microstructure recognition. Computational Materials Science, 123:176–187, 2016.

DeCost B.L., Francis T., and Holm E.A. Exploring the microstructure manifold: Image texture

representations applied to ultrahigh carbon steel microstructures. Acta Materialia, 133:30–

40, 2017.

Fukushima K. Neocognitron: A self-organizing neural network model for a mechanism of

pattern recognition unaffected by shift in position. Biological Cybernetics, 1980.

G. L., G. R., P. S., C. P., B. F., and M. F. Automatic microstructural classification with convolu-

tional neural network. Information and Communication Technologies of Ecuador (TIC.EC),

884:170–181, 2019.

Gola J., Britz D., Staudt T., Winter M., and Andreas Simon Schneider Marc Ludovici F.M.

Advanced microstructure classification by data mining methods. Computational Materials

Science, 148:324–335, 2018.

Krizhevsky A., Sutskever I., and Hinton G.E. Imagenet classification with deep convolutional

neural networks. NIPS’12 Proceedings of the 25th International Conference on Neural In-

formation Processing Systems, 1:1097–1105, 2012.

Simonyan K. and Zisserman A. Very deep convolutional networks for large-scale image recog-

nition. International Conference on Learning Representations ICLR, 2015.

C. DANELON DE ALMEIDA et.al.2032

Copyright © 2019 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar


	INTRODUCTION
	RELATED WORKS
	METHODS
	AlexNet
	VGG19
	Xception

	IMPLEMENTATION DETAILS
	Dataset
	Data Preparation
	Training

	RESULTS
	CONCLUSIONS

