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Abstract. Our approach for autonomous navigation is to apply image processing for estimating the

drone position. Two techniques are employed: visual odometry and computer vision. Edge detection is

one important step for computer vision and it is performed by neural network implemented on FPGA.

After image segmentation, a correlation between the satellite image – or reference image – and the image

obtained by the drone is computed. Finally, the positioning by visual odometry and computer vision are

combined using a new formulation of particle filter, called non-extensite particle filter. Our results show

better results in comparison with other edge identification procedures, implying a more precise trajectory

correction.
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1 INTRODUCTION

The use of Unmanned Aerial Vehicle (UAV) has found many fileds of applications, such as

agriculture (Psirofonia et al., 2017) and cattle (Chamoso et al., 2014), rescue services (Naranjo

et al., 2016), environmental (Messinger and Silman, 2016), surveillance (Motlagh et al., 2017),

just to mention some.

One important issue in the UAV research is the autonomous navigation, where signals from

a Global Navigation Satellite System (GNSS) with Inertial Navigation System (INS) are com-

monly employed. However, the GNSS signal may fail, one needs to resort to alternative tech-

niques to the mentioned one. Image processing-based schemes offer vaible solutions for UAV

positioning.

Visual odometry (VO) and computer vision (CV) are two approaches based on image pro-

cessing which can be applied for the UAV autonomous navigation (Conte and Doherty, 2009).

A formulation for computer vision uses image edge identification catched by the UAV and

satellite. Satellite data is a geo-referenced image. Edge extraction is performed by an artificial

neural network (ANN) (Haykin, 1998). An automatic topology for the ANN can be found by

solving an optimization problem (Anochi and Campos Velho, 2014; Anochi et al., 2015). The

correlation between the segmented images is calculated to compute the UAV location. Here,

the ANN is implemented on a hardware device: FPGA (Field Programmable Gate Array).

The two positioning schemes – VO and CV – are combined using a new version of the

Particle Filter (PF): the non-extensive particle filter (NExt-PF). The distrubution derived from

the Tsallis’ thermstatistics (Tsallis, 1988, 1999) is used as the likelihood operator for the new

PF. The new Bayesian filter can quantify the uncertanty of the trajectory estimated by data

fusion from the image processing procedures.

2 AUTONOMOUS NAVIGATION BY IMAGE PROCESSING

In this section, two approaches applied for UAV autonomous navigation, visual odometry

(VO) and computer vision (CV), are briefly presented.

2.1 Visual Odometry

A method for finding the UAV location on the basis of the previous drone position and orien-

tation is the Visual odometry (VO) (Nister et al., 2004; Scaramuzza and Friedrich, 2011). Only

the monocular VO is employed in this paper for the UAV positioning of outdoor movement. In

its classical application, the VO consists of extracting interest points and trcking them in the

image sequence. By matching the interest points between two successsive drone images, taken

after a period of time (∆t), one can estimate the UAV position.

Four procedures are needed to carry out the visual odometry:

1. Image Sequence,

2. Detecting Points,

3. Matching between Points,

4. Movement.

For the Image Sequence step, two images are captured by drone at the two instants t − ∆t
and t. The time period ∆t is selected for allowing a large ovelapping between the two captured

images. The Detecting Points step determines the interest points for the images. The data
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structure for the interest points is storaged in an attribute vector – the descriptor procedure. The

SURF (Speeded Up Robust Features) is a well known descriptor (Bay et al., 2008). Matching

between Points is another step applied to match the interest points using an attribute vector.

Some similarity metric is used for the matching. Finally, the Movement step calculates the UAV

location from the corresponding pairs of the interest points. We use the eight point algorithm to

compute the fundamental matrix F which for all pairs of corresponding interest points (x, x′)
is such as:

(x′)T F x = 0 . (1)

The Singular Value Decomposition (SVD) of F can then be used to determine the UAV motion.

Thus, we have

SVD(F ) = KT R [t]x K
−1 (2)

where K is the matrix of the intrinsic sensor parameters linked to the vehicle, R is the rotation

matrix, and [t]x is the representation of the cross product of the translation vector.

2.2 Computer Vision

Figure 1 shows the procedure used by the computer vision (CV) formulation. The reference

image is a georeferenced satellite image, and the aerial image is the one catched by the drone.

Several steps are used in the CV formulation. First of all, the images are mapped into a gray

scale. After that, a median filtering process is applied (Gonzalez and Woods, 2017). Then, the

multi-layer perceptron (MLP) neural network (Haykin, 1998) is used to extract edges from the

images.

Figure 1: Sumarizing the computer vision UAV positioning system.

The MLP is a supervised feedforward neural network. The MLP-NN has an input layer –

receiving data by the user –, one or more hidden layers – where artificial neurons are computa-

tional units –, and one output layer – this last layer can or cannot be composed of computational
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neurons. The learning process for the MLP-NN has two phases. In the first phase, the input

information is propagated up to the output layer. The error between the target values – used

for training – and the neural network output is computed and back-propagated for updating the

weight values: this is the back-propagation algorithm for identifying the neuron connection

weights (Haykin, 1998). The binary patterns for edge and non-edge for a 3× 3 pixel window is

shown in Figure 2.

Figure 2: Edge and non-edge patterns for MLP-NN learning phase.

It is not easy to find a good architecture for the ANN. The best architecture to the supervised

neural network can be found by minimizing a functional (Anochi and Campos Velho, 2014) by

meta-heuristic methods such as Multi-Particle Collision Algorithm (MPCA) (Luz et al., 2000).

The MPCA is a meta-heuristic inpsired from phenomena occuring inside of a nuclear reactor.

During a neutron traveling, it can have a collision with an atomic nucleus. After collision, the

neutron can be absorbed or scattered. In the MPCA formalism, a set of candidate solutions

are generated for each iteration, where the absorption means a better generated solution will be

adopted, otherwise the scattering operator is activated – the candidate solution will be searching

in a distant location in the search space.

2.3 Neural network implemented on FPGA

During the development of the computer vision (CV) strategy for UAV positioning, the

greater computational effort was verified for the edge identification procedure with MLP-NN.

Other edge extractors can also be used, such as Sobel or Canny algorithms (Davies, 1990), but

the two cited algorithms for edge extraction produce less precise UAV position. However, Sobel

and Canny’s operators performed 4 and 5 UAV position estimation per second, respectively. The

edge extraction by MLP-NN with optimal topology perform only one UAV position estimation

at each 6 seconds.
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The MLP-NN produced a more precise UAV position estimation, but it was the slowest

algorithm among the studied edge extractors. The artificial neural networks can be implemented

in software or on hardware (Omondi and Rajapakse, 2006). One idea to speed up the edge

extraction by MLP-NN was to use a co-processor – FPGA (Field Programmable Gate Array).

There are 512 binary patterns considering the mentioned 3 × 3 (pixel matrix) window for

edge and non-edge – see Figure 2. Therefore, the results for edge detection by MLP-NN were

codified using Look Up Table (LUT) strategy on FPGA for enhancing the computational per-

formance. The LUT has a binary index for the inputs ranging to zero up to 511. The output

value from the LUT can be “0” (non-edge) or “1” (edge).

The hardware consisted of a computer RaspBerry Pi Model B-1 (processador ARM1176JZF-

S: single core 32-bits, 700 MHz, memory 512MB SDRAM (Synchronous Dynamic Random

Access Memory), 2 USB (Universal Serial Bus) gates, video gate HDMI (High-Definition Mul-

timedia Interface), GPU (Graphics Processing Unit) Broadcom VideoCore IV 250 MHz, and

LOGI PI board with FPGA Xilinx Spartan 6 LX9. The link between the RaspBerry CPU and

the LOGI PI board is performed by Serial Peripheral Interface (SPI), a protocol developed for

communication of microprocessors and connected devices. The RaspBerry computer and LOGI

PI board are shown in Figure 2.3

Figure 3: Right: Raspbeery Pi computer. Left: LOGI PI board with FPGA embedded.

3 DATA FUSION BY NON-EXTENSIVE PARTICLE FILTER

Particle filters or sequential Monte Carlo methods can be used to estimate the probability

density function (PDF) by sampling some candidate solutions – particles – with associated

weights (Gordon et al., 1993). The estimation with Particle Filter (PF) computes a posterior

distribution from resampling the ensemble obtained by multiplying likelihood operator and the

prior distribution. As the PF does not require assumptions of linearity or Gaussianity, it is

applicable to general nonlinear problems.

Two important properties are verified by the PF: the Bayes’ rule, and the Markov property.

The Bayes’ rule for conditional probability gives:

P (A|B) =
P (B|A)P (A)

P (B)
. (3)

The probability P (B) can be considered as a normalization factor. The Markov’s process then

is identified by:

p(wn|wn−1, . . . , w2, w1) = p(wn|wn−1) . (4)
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For the current application, the distribution wn represents the vector with the entries being

the distributions associated to the UAV position estimations by VO and CV: the data fusion.

The algorithm for the PF implementation can be summarized below.

1. Define the prior distribution:

{

w
(i)
0|n−1

}N

i=0
∼ pw0

(w0)

here, the initial distribution is a Gaussian one, with zero mean and σ2 = 5: pw0
(w0) =

N (0, 5));

2. Calculate:

r(i)n = p(yn|wn|n−1) = pet(yn − h(wn, tn)) pwn
(wn)

where yn express observations, being h(.) the observation operator, and pet representing

the likelihood operator:

pet(z) =

{

Nz(0, 1) (Gaussian distribution, commonly applied)

Tz(0, σq) (Tsallis’ distribution, applying NEx-PF)

the standard deviation σq is defined in Section 3.1, and the inovation z is computed by:

z = yn − h(wn, tn) .

3. Normalization:

r̃(i)n =
r
(i)
n

∑M
j=1 r

(j)
n

;

4. Resampling: remove M particles with low probability:

If : Pr{w(i)
n|n = w

(j)
n|n−1} = q̃(j)n ≤ wRef , i = 1, . . . ,M ;

where wRef is a reference probability, with M < N .

Resampling:

- Generate M ordered numbers: uk = M−1 [(k−1)+ ũ], with: ũ ∼ U(0, 1) (uniform

distribution),

- Resampled particles are obtained by producing mi copies of particle w(j):

mj = number of uk

uk ∈

[

j−1
∑

s=1

r̃(s)n ,

j
∑

s=1

r̃(s)n

]

5. Time up-dating: compute the new particles:

w
(i)
n+1|n = f(w

(i)
n|n, tn) + µn , with: µn ∈ Nz(0, 1)

being f(.) the dynamical system, and: w
(i)
n+1|n ∼ p(w

(i)
n+1|n|w

(i)
n|n), being i = 1, 2, . . . , N ;

6. Set: tn+1 = tn +∆t, and go to step-2.
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3.1 Non-extensive Likelihood Operator

A generalized thermostatistics has been proposed by C. Tsallis (Tsallis, 1988) by introducing

the non-extensive entropy:

Sq =
k

q − 1

[

1−
N
∑

i=1

pqi

]

(5)

where pi is a probability of the state-i, and q is the non-extensivity parameter. In thermodynam-

ics, the parameter k is called the Boltzmann’s constant. Tsallis’ entropy reduces to the the usual

Boltzmann-Gibbs-Shanon formula in the limit q → 1.

Similar to the extensive entropy, the equiprobability condition implies in a maximum value

for the non-extensive entropy function, leading to a special type of distributions (Tsallis, 1999).

Three expressions for the Tsallis’ distribution are described below.

q > 1 :

pq(x) = α+
q

[

1−
1− q

3− q

(x

σ

)2
]−1/(q−1)

(6)

q = 1 :

pq(x) =
1

σ

[

1

2π

]1/2

e−(x/σ)2/2 (7)

q < 1 :

pq(x) = α−
q

[

1−
1− q

3− q

(x

σ

)2
]1/(q−1)

(8)

where α±
q are given by:

α+
q =

1

σ

[

q − 1

π(3− q)

]1/2 Γ
(

1
q−1

)

Γ
(

3−q
2(q−1)

) ,

α−
q =

1

σ

[

1− q

π(3− q)

]1/2 Γ
(

5−3q
2(1−q)

)

Γ
(

2−q
1−q

) ,

σ2 =

∫ +∞

−∞
x2[pq(x)]

qdx
∫ +∞

−∞
[pq(x)]qdx

.

The distributions above applies if |x| < σ[(3 − q)/(1 − q)]1/2, otherwise pq(x) = 0. For

distribitions with q < 5/3, the standard central limit theorem applies, implying that if pi is

written as a sum of M random independent variables, when M → ∞, the probability density

function for pi is the normal (Gaussian) distribution. However, for 5/3 < q < 3 the Levy-

Gnedenko’s central limit theorem applies, resulting for M → ∞ in the Lévy distribution as the

probability density function for the random variable pi. The index in such Lévy distribution is

α = (3− q)/(q − 1) (Tsallis, 1999).

4 NUMERICAL RESULTS

The UAV images were obatined by helicopter RMAX (Yamaha Motor Company), used for

testing in the Linköpin University (Sweden) – see Figure 4. The helicopter flew with aver-

age speed of 3 ms−1 and about 60 m over the surface (altitude). The UAV camera captures
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image from the Nadir with frequency of 25 Hz, resolution of 0.12 m/pixel with 288× 360 pix-

els — pixel represents an area ∼ 1540 m2. The flight extention was about 1 km, and 1443

images/points were catched during the experiment.

Figure 4: Drone: Helicopter RMAX Yamaha.

The SURF algorithm was employed to identify the interest points in the visual odometry, and

the RANSAC (RANdom SAmple Consensus) (Fischler and Bolles, 1961) was used for remov-

ing false corresponding points. A supervised neural network was applied for edge identification

from the objects in the scene, according to the patterns shown in Section 2.2. Table 1 shows the

MLP-NN architecture determined by the MPCA meta-heuristic method.

MLP-NN features parameter

Neurons in the input layer 9

Neurons in the output layer 1

Number of hidden layers 1

Neurons in the hidden layer 18

Activation function tanh

Rate of momentum 0.85

Learning rate 0.73

Table 1: MLP-NN architecture computed by the MPCA meta-heuristic.

The neural network described in Table 1 was implemented in software (CPU: RaspBerry Pi)

and on hardware (FPGA: Xilinx Spartan-6). The FPGA is imbedded in the LOGI PI board con-

nected to the RaspBerry Pi. The time for execution for different algorithms for edge extraction

is shown in Table 2. The FPGA implementation was able to reduce the computational effort for

the MLP-NN processing. However, the execution time using MLP-NN by FPGA is more than 7

times slower than the Canny algorithm implemented in software (CPU). Indeed, the processing

time inside the FPGA is much faster than the time shown in Table 2, almost the whole time is

spended moving data from the CPU-FPGA and returning the result FPGA-CPU.
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Algorithm Time (seconds)

Sobel – CPU 0.083

Canny – CPU 0.074

Optimal MLP-NN – CPU 1.684

MLP-NN by LUT – FPGA 0.587

Table 2: Execution time for edge detection algorithms in the Raspberry PI with LOGI PI (FPGA).

The data fusion for the UAV positioning combining the visual odometry and computer vision

was carried out by the nox-extensive particle filter. A parameteric study was done to identify

the best value for the non-extensivity parameter q. Numerical simulations were executed with

100 sampled values in the interval q ∈ [0, 3]. The initial set of 1000 particles was worked with

random values from a Gaussian distribution with zero mean and variance equal to one (N (0, 1)).
Our numerical simulations indicates q = 2.57 (Braga et al., 2018).

Table 3 shows the average error for the experimental flight. It is clear the improvement by

using data fusion. However, the application of NExt-PF for data fusion with non-extensivity

parameter q = 2.57 produced a better result than standard particle filter. Our results show the

impact of the likelihood operator in the final UAV position estimation. The NExt-PF was more

precise than standard PF and/or considering visual odometry or computer vision individually.

Method Average error

VO 6.7755

CV 4.4458

NExt-PF: q = 1.00 3.5313

NExt-PF: q = 2.57 2.8339

Table 3: Average error for drone positioning using different methods for image edge extraction.

The trajectory executed by the UAV is shown in red color in Figures 4a – showing the tra-

jectory estimation by visual odomatry (VO) – and 4b – displaying the the trajectory estimation

by non-extensive entropy with q = 2.57. The starting point is marked with black circle, and the

ending point is marked with white circle. Clearly, the VO strategy shows a drift error (cumula-

tive error), and the trajectory correction with NExt-PF is a better strategy.

5 FINAL REMARKS

Image processing was employed for drone autonomous navigation. Visual odometry and

computer vision were implemented and a data fusion approach combining the two techniques

was applied using the non-extensive particle filter. The use of particle filters allows one to

compute the confidence interval (Braga et al., 2018), by calculating the uncertainties associated

to the present estimation problem.

Our computer vision implementation requires edge identification for convoluting reference

and UAV segmented images. The edge identification has influence to determine the UAV posi-

tion – see Table 3. A better positioning estimation was obtained with data fusion using optimal

neural network for edge extraction. However, the neural extractor was the slowest procedure on

software implementation.

The neuro-computer implementing the optimal MLP-NN was carried out on FPGA. The

FPGA processing was effective to reduce the CPU processing time about 35%. But, the total

FPGA execution time, including processing time and data transfer time, is greater than process-
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(a)

(b)

Figure 5: Drone true (red color) and estimated (blue color) trajectories with: (a) estimation by VO, (b) estimation

by NExt-PF with q = 5.47.

ing time spent by less precise Sobel or Canny algorithms. Our result shows the direction for

the technology to be employed, by using a hardware encapsulating CPU and FPGA in the same

chip, as found in the ZYBO ZYNQ 7000 system1.
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