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Abstract. A battened beam is composed of chords and battens. The model of a structure composed

by this type of beams is done, generally, by modeling each batten and chord sectors between battens

using beam finite elements, and this implies models with a large number of degrees of freedom. In

the previous stages of design or to do simple verifications is convenient to have a simplified analytical

solution to assimilate the lattice beam to an equivalent solid beam. To do this we consider a pattern

of bars that repeats many times along the beam and using variational techniques it is possible to find

an approximated continuous formulation for the displacements of the beam. The shear effects must be

taken into account to reproduce adequately the case of very stiff battens where the influence of the shear

effect is important. The purpose of this work is to obtain a simplified stiffness matrix for a finite element

of a battened beam. These finite elements can be incorporated into a finite element program to obtain

approximate solutions in frames. Comparisons are made with the complete finite element solution that

show a very good approximation.
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1 INTRODUCTION

Lattice structures are very useful since they can cover large spans without intermediate sup-

ports. In addition, their low weight and ease of folding and assembly make them ideal for

aerospace applications. This type of structures began to be studied with intensity in the 1970s

(Noor, 1988). They are also used in antenna support structures (Guzmán, 2014; Martín, 2017)

and currently in the design of new materials (Helou and Kara, 2018) whose microstructure

exhibits a repetitive pattern of interconnected bars.

The methods of analysis of lattice structures can be grouped into four classes (Noor, 1988):

1) direct methods, 2) discrete field methods, 3) periodic structure methods and 4) continuous

medium analogy.

In a direct method the structure is analyzed by finite elements and each bar is modeled

individually. In the discrete field methods it is assumed that the structure has a certain regularity

and equations of equilibrium or energy are writing at a typical node of the lattice beam and the

resulting difference equations are solved directly or using truncated Taylor series expansions

to replace the difference equations by differential equations. In periodic structure methods,

finite elements are combined with transfer matrices to reduce the degrees of freedom involved,

although the solution is purely numerical. Finally, using the analogy of the continuous medium,

the lattice beam is replaced by an equivalent continuous model.

Currently the modeling of the lattice beams is carried out by finite elements using one el-

ement per bar, which leads a large number of degrees of freedom. This makes the analysis

of these structures computationally expensive, especially if the analysis is non-linear, as rec-

ommended by current regulations. Then it is convenient to replace the lattice beam with an

equivalent solid beam to reduce the degrees of freedom.

The behavior of a lattice girder is quite similar to that of a solid beam, although it exhibits

greater shear deformation due to the flexibility of the lattices.

A first simplification could be to approximate the lattice beam by a solid beam with the same

inertia and area, but this ignores the shear strains, that can be large for flexible lattice beams.

Considering the shear deformations of the lattice beam as a solid beam can gives good results

but in some cases this approximation does not reflects the true behavior of the lattice beam, as

we will see in the examples.

Among the local references we can mention (Filipich and Bambill, 2003; Filipich et al.,

2010; Guzmán et al., 2019; Guzmán, 2014; Martín, 2017; Maurizi et al., 2004), where various

structures are analyzed in lattice, in particular, applied to antenna masts.

Previously, in the reference (Jouglard and Peker, 2019), battened beams were analyzed using

a discrete field method to obtain a system of equivalent differential equations whose solution

was obtained analytically and good approximations to the stiffness matrix were obtained. How-

ever, the distortion produced by shear deformations, which are important in the case of very

rigid battens, was not considered.

This was improved in the reference (Jouglard, 2020), where equivalent differential equations

were derived considering shear distortion and good approximations were obtained for the stiff-

ness matrix and vertical displacements and rotations. In that work, the Rayleigh-Ritz method

(Rektorys, 1980) was used with polynomial approximations of the displacements, although a

linear variation was considered for the horizontal displacements that is insufficient to obtain a

good approximation of the displacements and were corrected in this work.

The paper is organized as follows, firstly we present the equivalent beam model and the

deduction of the equivalent stiffness matrix for the battened beam. Finally, we show some
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numerical examples.

2 MODEL DESCRIPTION

Let us consider a battened beam composed of two longitudinal bars (chords) of length L and

evenly spaced vertical battens. We define a local x, y coordinate system with origin at the left

edge.

Figure 1: Beam model

Assuming that the supports of the beam are undeformable so their movements can be de-

scribed by two translations and one rotation that we will refer to the midpoint of each end. We

will call ∆1,∆2,∆3 the translation according to x, translation according to y and rotation of

the left end, respectively, and ∆4,∆5,∆6 the corresponding generalized displacements of the

right end. In correspondence with the generalized displacements ∆i of each end, we will have

generalized forces Si acting in the same directions, as shown in Figure 1.

Furthermore, we consider that the two chords are equal and have area Al and inertia Jl. The

vertical battens of height h are spaced a distance d and have area Ap and inertia Jp. The chords

have modulus of elasticity El and the battens Ep.

Figure 2: Beam sector

The internal joints are assumed rigid and therefore during the deformation a node k of the

beam moves with translations uk, vk in the x, y directions and undergoes a rotation θk in the

plane. We will call usk, vsk, θsk to the nodal displacements of the node k of the upper chord and

uik, vik, θik for the node k of the lower chord (see Figure 2).

If the chords are flexible, a shear distortion effect can occur, as shown in Figure 3. This effect

is equivalent to that of shear deformation in solid beams and is represented by an additional

shear rotation.
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Figure 3: Shear distortion

We will assume that the displacements and rotations of each node can be approximated by

means of continuous functions us(x), vs(x), θs(x) for the upper chord and ui(x), vi(x), θi(x)
for the lower chord.

Then the nodal displacements of node k are

usk ≈ us(xk)

vsk ≈ vs(xk)

θsk ≈ θs(xk)

uik ≈ ui(xk)

vik ≈ vi(xk)

θsk ≈ θi(xk)

(1)

If we analyze the nodal rotations at the upper chord we can distinguish three rotation angles

(Figure 4): θs which is the physical rotation of the node in the plane of the beam, 2) φs which is

the flexural rotation due to transverse displacements and 3) ψs which is the rotation by distortion

or shear.

Figure 4: Nodal rotations

The angle φs between the horizontal and the tangent of the transverse displacements vs(x)
can be approximated, for small displacements, by the derivative of the displacement function

vs(x) resulting

φs =
dvs

dx
(2)

The distortion angle ψs, which would be the equivalent of shear distortion in a solid beam,

is obtained by the difference between the flexural and the physical rotations as:
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ψs =
dvs

dx
− θs (3)

Note that, as shown in Figure 3, the function vs(x) does not represent the true displacements

of the chord, but only the vertical displacements at the nodes.

3 ENERGY OF DEFORMATION

The deformation energy of a system is made up of the sum of the energies of its deformable

parts. Therefore, for a battened beam, its deformation energy U will be composed of the defor-

mation energies Us and Ui of the upper and lower chords and by the deformation energy Up of

the battens

U = Us + Ui + Up (4)

where these energies will be obtained by adding the deformation energies of each bar and we

will assume that each bar is slender, that is, the shear deformations in each bar can be neglected,

and we will consider that all joints are rigid.

3.1 Energy of deformation of the battens

We will call Upk to the deformation energy of a batten located at a distance xk from the left

support. The deformation energy will be the sum of the energies of each batten and assuming

that there are a large number of battens and that the separation d is small with respect to the

length L we have:

Up =
∑

k

Upk ≈
1

d

∫ L

0

Upk(x)dx (5)

Then considering only bending and axial deformations the energy of deformation of the

battens is

Up =

∫ L

0

[

EpAp

2dh
(vi − vs)

2 +
6EpJp

dh3
(ui − us)

2

+
6EpJp

dh2
(ui − us)

(

v′s + v′i − ψs − ψi

)

+
2EpJp

dh

(

(v′s − ψs)
2 + (v′s − ψs)(v

′

i − ψi) + (v′i − ψi)
2
)

]

dx

(6)

3.2 Energy of deformation of the chords

We will call Usk, Uik to the deformation energy of an upper and lower chord sector located

between joints at distance xk and xk+1 from the left support. Then considering only bending

and axial deformations the energy of deformation of the upper chord is

Us =

∫ L

0

[

ElAl

2
(u′s)

2 +
ElJl

2
(v′′s )

2 +
6ElJl

d2
(ψs)

2

]

dx (7)

Analogously for the lower chord we have

Ui =

∫ L

0

[

ElAl

2
(u′i)

2 +
ElJl

2
(v′′i )

2 +
6ElJl

d2
(ψi)

2

]

dx (8)
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Where we have assumed that displacements at joint k + 1 of the upper chord can be approx-

imated from displacements at joint k as

usk+1 ≈ usk + u′skd (9a)

vsk+1 ≈ vsk + v′skd+ v′′sk
d2

2
(9b)

v′sk+1 ≈ v′sk + v′′skd (9c)

ψsk+1 ≈ ψsk (9d)

This implies that, for an infinitesimal length d, the longitudinal displacements us(x) are as-

sumed linear, the transverse displacements vs(x) are assumed quadratic and the shear distortion

ψs(x) is assumed constant. A similar approximation has been made for the lower chord.

4 STIFFNESS MATRIX DERIVATION USING THE RAYLEIGH-RITZ METHOD

To obtain the equivalent stiffness matrix of the battened beam that relates the generalized

forces Si acting in the extremes with the generalized displacements ∆i at each end (see Fig-

ure 1) we must find the solutions us(x), vs(x), ψs(x) and ui(x), vi(x), ψi(x) to the differential

equations of equilibrium for an unloaded beam and subjected to generalized displacements ∆i

in the supports.

Alternatively, we can use the Rayleigh-Ritz method to obtain an approximate solution. This

method requires knowledge of the total potential energy V of the system

V = Us + Ui + Up −WS (10)

where WS is the work of the generalized forces given as

WS =
∑

Si∆i = S1∆1 + S2∆2 + S3∆3 + S4∆4 + S5∆5 + S6∆6 (11)

In this method approximated displacement functions are proposed, which depends on un-

known constants ci and the total potential energy V (ci) is minimized with respect to these

constants.

4.1 Approximated displacements

We propose the next displacements approximations of the joints of the battened beam

ψs(η) = c1

us(η) = (c5 + c6η + c3η
2)L

vs(η) = (c9 + c10η + c11η
2 + c12η

3)L

ψi(η) = c2

ui(η) = (c7 + c8η + c4η
2)L

vi(η) = (c13 + c14η + c15η
2 + c16η

3)L

(12)

where not all the constants ci are free, because these functions must satisfy the boundary

conditions. The details of the solution procedure can be found in reference (Jouglard, 2021).

5 STIFFNESS MATRIX OF THE BATTENED BEAM

The stiffness matrix K relates the generalized displacements ∆i with the generalized forces

Si in matrix form as

K ·∆ = S (13)
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The coefficients kij of the stiffness matrix are obtained as

kij =
∂2U

∂∆i∂∆j

∣

∣

∣

∣

∆k=0

=
∂2U

∂∆j∂∆i

∣

∣

∣

∣

∆k=0

= kji (14)

After substitution of the displacements (12) in the potential energy V and deriving with

respect to the constants ci we obtain the stiffness coefficients kij = kji

k11 = −k14 = k44 = 2
ElAl

L

k22 = −k25 = k55 =
8EpJp

5dhL
α2
3 +

24ElJl

L3
α4 +

8ElAl

3L
α2
2

k23 = k26 = −k35 = −k56 =
4EpJp

5dh
α2
3 +

12ElJl

L2
α4 +

4ElAl

3
α2
2

k33 = k66 =
2EpJpL

5dh
α2
3 +

2ElJl

L
(3α4 + 1) +

ElAlh
2

6L
α5

k36 =
2EpJpL

5dh
α2
3 +

2ElJl

L
(3α4 − 1) +

ElAlh
2

6L
α6

(15)

where the non-dimensional coefficients α3, α4, α5, α6 are

α3 = 3(1− 2α1)− 2

(

L

h

)

α2

α5 = 4

(

L

h

)2

α2
2 + 3

α4 = (1− 2α1)
2 + 4α2

1

(

L

d

)2

α6 = 4

(

L

h

)2

α2
2 − 3

(16)

and the coefficients α1, α2 are given by

α1 =

(

1

2

)

5s1 + 3s2 + 12

(5s1 + 12)(r21 + 1) + 3s2
(17a)

α2 =
18r2

(5s1 + 12)(r21 + 1) + 3s2
(17b)

and where the non-dimensional coefficients s1, s2, r1, r2 are

s1 =
ElAlh

3d

EpJpL2

s2 =
Alh

2

Jl

r1 =
L

d

r2 =
Lh

d2

(18)

6 NUMERICAL EXAMPLE

In this example we analize a battened beam of length L = 8 m, height h = 1 m and

separation between battens d = 0.5 m. This beam has been modeled by finite elements using

one finite element per batten and chord sector. The chords and battens are cylindrical bars .

To study the influence of the ratio of stiffness between chords and battens we have considered

three cases: 1) flexible battens, 2) equal stiffness for chords and battens and 3) stiff battens. For
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the first case we have adopted cylindrical chords of 4 in diameter and cylindrical battens of 0.5

in diameter. For the second case all bars are considered cylindrical with 4 in diameter. And for

the last case the chords have 0.5 in diameter and the battens have 4 in diameter.

We have imposed a unit vertical displacement ∆2 = 1 mm on the left support and the other

displacements ∆i are assumed nulls. The deformed shape of the lattice beam can be seen in

Figure 5 for the extreme cases of flexible and stiff battens:

(a) flexible battens (b) stiff battens

Figure 5: Deformed shape

In the case of flexible battens (Figure 5a) the deformed shape is similar to that of a solid beam

and in the case of stiff battens (Figure 5b) the deformed shape is dominated by shear where the

battens only move vertically and remain almost undeformed.

If we compare the vertical displacements with those obtained by finite elements we obtain

the results shown in Figure 6:

(a) flexible battens (b) stiff battens

Figure 6: Nodal vertical displacements

We note the good correlation between the vertical displacements at joints obtained by finite

elements and indicated by dots and the proposed displacements represented by the solid line.

If we compare the physical rotation θs at the joints with those obtained by finite elements we

obtain the results shown in Figure 7. Again there is a good correlation between the physical

rotations at joints obtained by finite elements and the proposed ones.

Although, in these two extreme cases the results of the proposed approximation are very

good, when the stiffness of the battens is equal to the stiffness of the chords there are some

differences in nodal displacements and rotations as shown in Figure 8:

The main reason for these discrepancies is the adopted variation for the shear distortion

rotation ψ which has been considered constant in the equivalent beam model and in Figure 9 is

compared with the exact shear distortion obtained from the finite element model.

Note that the exact shear distortion rotation is almost constant in the central part of the beam

but increases near both ends. Also in this figure we have shown the flexural rotation which in

the ends is equal to the shear distortion since the physical rotations are null in both ends.
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(a) flexible battens (b) stiff battens

Figure 7: Nodal physical rotations

(a) nodal displacements (b) nodal rotations

Figure 8: Displacements and rotations for equal stiffness of chords and battens

Figure 9: Comparisons of nodal rotations

7 CONCLUSIONS

An equivalent finite element stiffness matrix for a battened beam has been presented. The

formulation lets to a considerable reduction in degrees of freedom and shows an excellent agree-

ment with finite element results in extreme cases, that is, with very stiff or very flexible battens,

but some differences appear when the battens and chords have the same stiffness. The main

reason is the poor approximation of the shear distortion, that has been considered constant in

the model. This can be improved adopting a higher degree polynomial (at least six degree) for

the shear distortion but it can be cumbersome and difficult to solve. Another possibility is to

derive an analytical solution, like that shown in reference (Jouglard and Peker, 2019).
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