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Abstract. The free transverse vibrations of axially functionally graded (AFG) beams with two classic 

boundary conditions are studied. The distinctive qualities of this class of advanced materials acquire 

greater importance when the resistant element is in vibratory environments in which the inertial effect 

can be decisive. The classical Bernoulli-Euler theory is adopted to describe the flexural behavior of the 

beam. Due to the analytical difficulties, governing equations with variable coefficients, their solution is 

normally approached by approximate methods. This has motivated the subject to be approached mainly 

from a mathematical perspective, emphasizing the analysis on the numerical and analytical tools that 

lead to its solution. This mathematical approach also includes the distribution of the constituent 

materials. In the present work the composition of the FG material according to engineering criteria 

based on the structural behavior of the beam is proposed. The problem is solved by applying the 

approximate methods of Rayleigh-Ritz. A variety of numerical examples are evaluated with different 

variations in material composition. Dynamic stiffening effect is achieved and discussed. The results 

agree with particular situations of the model, available in the scientific literature. 
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1 INTRODUCTION 

In recent years, the use of advanced materials whose properties vary gradually in some of its 

dimensions (FGM) has increased. Such materials were used for the first time by Japanese 

researchers who presented themselves as a thermal barrier material in the mid-1980s, Niino et 

al. (1987). In present paper, beams of materials whose properties vary functionally along the 

axis (AFG) are studied. A review of the literature reveals that most of the initial work on 

functionally graded beams has considered the gradation of material properties in the thickness 

direction. There have been far fewer researchers who considered the variation of material 

properties in the axial direction (AFG). Probably because the problem becomes more 

complicated as variable coefficients appear in the governing differential equations. This 

difficulty has led most of the studies have as main objective the development of mathematical 

and numerical tools for their solution. In the conformation of the FG material have been 

considered generally distributions that follow some mathematical concept: symmetric, 

asymmetric, parabolic, etc. In fact, the few analytical solutions obtained have been for AFG 

beams of arbitrary specific gradients: mention must be made of the thorough works of 

Professor Elishakoff and his colleagues, Elishakoff (2005), Wu, Wang and Elishakoff (2005)), 

making use of the semi-inverse method. Li et al. (2013) obtained closed form solutions for 

uniform AFG beams whose bending stiffness and distributed mass density are assumed to obey 

a unified exponential law. Among the numerous works that analysed the problem and proposed 

procedures for its solution, mention must be made of the following: Shahba and Rajasekaran 

(2012) studied longitudinal and transverse free vibration and buckling of AFG Bernoulli-Euler 

beams using the differential transform element method (DTEM) and differential quadrature 

element method of lowest-order (DQEL). Chen et al. (2017) introduced a numerical method to 

transform the differential equation into a set of linear algebraic equations with the displacement 

function being expanded using Taylor series or Chebyshev polynomials and Xie et al. (2017) by 

means of a spectral collocation approach based on integrated polynomials. Šalinić et al. (2018) 
presented a complete analysis for longitudinal and transverse vibrations of bars and beams 

AFG Bernoulli-Euler and solved them by means of the symbolic-numeric method of initial 

parameters (SNMIP). Cao et al. (2018) and Cao and Gao (2019) implemented the asymptotic 

development method (ADM). In the present paper, we study the influence of the distribution of 

constituent materials on the natural frequencies of Bernoulli-Euler beams with different 

boundary conditions. A material of high rigidity and low weight and another of lesser rigidity 

and greater weight are considered. The distribution criteria that are taken from the materials 

are not governed by purely mathematical laws, but are related to the structural behavior of the 

beams under study: e.g. bending moments, elastic deformation, modal forms. The well-known 

Rayleigh-Ritz method (Ilanko and Monterrubio, 2014) is employed and its suitability to apply 

to these types of problems has been demonstrated (Rossit et al. 2017, 2018), and the 

agreement of its results is verified with particular cases available in the literature.  

2 ANALYTICAL APPROACH 

In order to find the natural frequencies of the system,  , one assumes that the beam 

deflection  v x,t  may be expressed in the form: 

      Cosv x,t V x t  (1) 

According to the classical Bernoulli-Euler beam theory, the energy functional J  for a 

vibrating beam of length L (see Figure 1) is given by: 
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                1 12 22 3

0 0
2J V x E x I x V x L dx x A x L V x dx          (2) 

where x x L  is the dimensionless coordinate, ( )V x  is the deflection, ( )A x  is the cross 

section and ( )I x  its second moment of area, ( )x  and ( )E x  are the FGM density and 

Young´s modulus. ( )"  indicates the second derivative with respect to the spatial variable x . 

 

Figure 1: AFG beam with two different boundary conditions. 

As the material and geometric characteristics of the beam may be general, one can define: 

                0 0 0 0
; ; ;

E h b
E x E f x x f x h x h f x b x b f x      (3) 

with        0 0
; ;

A I
A x A f x I x I f x 

A b h
f f f    and 3

I b h
f f f  . 

The subscript “0” refers to the cross section of the beam adopted as the reference section. 
Substituting Eq. (3) into Eq. (2), the functional can be expressed: 

                   1 12 22

0 0
0 0

/ 2
E I A

J V x E I L f x f x V x dx f x f x V x dx        (4) 

  2

0 0 0 0L A E I   (5) 

To apply the Ritz method, it is necessary to approximate the spatial component of the 

solution: 

      
1

N

a j jj
V x V x C x


   (6) 

where j
  are coordinate functions that satisfy the essential boundary conditions, j

C  are 

arbitrary constants. N is the number of terms in the approximation. 

Following Ritz’ procedure, the functional is minimized with respect to every arbitrary 

constant: 

   0 , 1,2...,
a j

J V x C j N       (7) 

Then a linear system of equations is formed: 

    0j
C R  (8) 

which results in the following eigenvalue equation: 

 2R=K - M  (9) 

 
1

0
ij E I i j

k f f dx    ; 
1

0
ij A i j

m f f dx    (10)  

are the elements of matrices K and M, respectively.  

Then, the eigenvalue problem can be expressed as: 

 
-1 2 -1 2- - 0 , , .KM I Β I Β KM        (11) 

3 NUMERICAL RESULTS AND DISCUSSION 

3.1 Comparative Study 

First, the efficiency of the approach is checked by comparing its results with values available 

in the literature. Comparison is made with the exact results obtained by Li et al. (2013) for a 
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particular case of stiffness and mass distribution: 

    0 0;4x 4x
E x = E e x = e   (12) 

for the clamped-pinned (C-P) beam and the clamped-clamped (C-C) beam. In the present 

approach Eq. (6) for the C-P case is taken as: 

     2 1

1 1
(2 5 3)

NN
j

j j j
x x x x 

 
    (13) 

which verify the essential conditions and also the natural condition. And for the C-C case: 

     2 1

1 1
( 2 1)

NN
j

j j j
x x x x 

 
    (14) 

where all the boundary conditions are essential. Table 1 shows the accuracy of present results.  

AFG 1
  2

  3
  4

  Solution 

C-P beam 
11.1828 48.2609 103.096 177.570 R-Ritz M. 

11.1828 48.2607 103.075 177.375 Li et al. (2013) 

C-C beam 
24.7896 64.7097 124.225 204.531 R-Ritz M. 

24.7896 64.7094 124.196 203.304 Li et al. (2013) 

Table 1: Frequency coefficients for AFG beams (N=17). 

3.2 Proposed cases 

In the following, different cases of distribution of the constituent materials of an AFG beam 

will be analysed in order to evaluate the incidence of that distribution in its dynamic behavior, 

through the values of its natural frequencies. 

In the calculations, the AFG material made of steel and aluminum oxide Al2O3 (alumina) 

proposed by Su et al. (2013) is used. Their Young modulus and density are: 

 3 3=210GPa , =7800kg/m ; =390GPa , =3960kg/m , = =0,3.
St St Alum Alum St Alum

E E     (15) 

The relationships between material properties are: / 1.857
Alum St

E E   for Young's modulus 

and / 0.508
Alum St

    for the density. Note that the alumina, more rigid, is lighter than steel. 

In the present study, it is proposed to study two cases of boundary conditions (C-P beam 

and C-C beam) analyzing material distributions that follow laws related to the structural 

behavior of the beams. 

As it was said, in general, the material distribution of the vibrating AFG beam has been 

approached from a mathematical perspective rather than an engineering concept. That is why 

in the descriptions of the variation of the constituent materials, terms such as symmetric, 

asymmetric, parabolic predominate. As is known, the dynamic behavior of a resistant structure 

depends on the relationship between the elastic deformation energy and the kinetic energy. 

Increasing that ratio, natural frequencies of the structure rise. This is important, especially in 

the case of the first natural frequency, to move it away from the usual frequencies that affect 

the structures and avoid the dangerous situation of resonance. Therefore, distributions will be 

considered where a larger proportion of alumina will be placed in the sectors where the flexural 

effort is greater (to increase the elastic energy) and in those in which the displacement is 

greater (to decrease the kinetic energy), Figure 2. 

 

Figure 2: First modal shape of a C-P and a C-C beam. 
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In all evaluated cases, in order to facilitate comparisons, the weight of the beam is 

considered in relation to the uniform steel beam, which is taken as reference material 
b

W ; and 

consequently, the frequency coefficient   is taken as: 

  2

0 0st st
L A E I   and 

0 0
0

L

b st
W g bhdx / g b h L    (16) 

3.2.1 Clamped-pinned beams (C-P) 

The first two cases studied are the classic variations of the constituent materials in the AFG 

beams considered in the scientific literature (Shahba et al. (2011), Gilardi et al. (2018)).  

Case 1: Asymmetric polynomial variation law.  

A generic material proper ty  R x  is assumed to vary along the beam axis x: 

        1a) ; 1b)n n

St Alum St Alum St Alum
R x R R R x R x R R R x       (17) 

where n is the inhomogeneity parameter, with 0n  . 

Case n 1
  2

  3
  4

  5
  b

W  

1a) 

0.5 23.5503 76.1715 158.911 271.753 414.696 0.672 

1 20.9379 68.0893 142.275 243.45 371.612 0.754 

2 18.5267 60.9005 127.561 218.473 333.634 0.836 

1b) 

0.5 18.9174 61.3303 128.098 219.208 334.656 0.836 

1 20.9028 68.0117 142.168 243.326 371.476 0.754 

2 23.5626 76.2409 158.888 271.53 414.186 0.672 

Table 2: Frequency coefficients for a C-P beam of AFG material – Case 1. 

For the AFG Clamped-Pinned beam, Case 1, Figure 3.A) presents the variation of Young´s 

modulus and Figure 3.B) shows the variation of mass density along the beam axis x.  

Table 3 presents the first five frequency coefficients obtained for the distribution laws of Eq. 

(18). The calculations have been made for 20N  , as for all remaining cases. 

Case 2: Symmetric quadratic variation law. Again, two compositions are considered: 

          2 22a) 4 ; 2b) 4
St Alum St Alum St Alum

R x R R R x x R x R R R x x         (18) 

Figures 4.A) and 4.B) show the variation of Young´s modulus and mass density for the 

AFG Clamped-Pinned beam, Case 2, along the beam axis x. Table 3 shows the first five 

frequency coefficients for the distribution laws of Eq. (18). As can be seen, the symmetric 

distribution raises all frequency values when the distribution of the material is such that the 

central area of the beam contains higher alumina proportions. The increase is greatest for the 

first frequency. On the other hand, when the central zone consists mostly of steel, all 

frequencies are lower than all the non-symmetric cases considered. 

A)  B)  

Figure 3: AFG Clamped-Pinned beam. Case 1: A) Young´s modulus B) mass density. 
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A)  B)  

Figure 4: AFG Clamped-Pinned beam. Case 2: A) Young´s modulus; B) mass density. 

Case 1
  2

  3
  4

  5
  b

W  

2a) 25.2453 77.5621 160.062 272.557 415.124 0.672 

2b) 17.9158 59.934 126.249 216.904 331.871 0.836 

Table 3: Frequency coefficients for a C-P beam of AFG material – Case 2. 

It is also of interest to note that in case 2a), the weight of the beam coincides with the 

smallest of all the variants taken into account. 

From now on, distributions of the constituent materials governed by laws related to the 

structural behavior of the beam will be considered: 

Case 3: Distribution of the constituent materials with the proportion of alumina following 

the law of variation of the bending moment caused by a uniform distributed load 

     21 5 4
St Alum St

R x R R R x x      (19) 

where, it is appropriate to remember, represents absolute value. 

With this distribution law, it is not possible that in the section of maximum positive bending 

moment the cross section is completely constituted by alumina. 

To achieve this, it is necessary to normalize the expression giving rise to the following case 

analysed as Case 4. 

Case 4: Distribution of the constituent materials with the proportion of alumina following 

the normalized law of variation of the bending moment caused by a uniform distributed load 

       21 5 4 1 (56 / 45)
St Alum St

R x R R R x x x       (20) 

Case 5: The proportion of alumina in the composition is proportional to the transverse 

displacement of the first modal form, normalizing the maximum: 

      St Alum St máx
R x R R R y x y    (21) 

 
           

       
Cosh Cos Sinh Sin , 0.58079 1.50940,

3.92738 and Cosh Cos / Sinh Sin

máx
y x kx kx kx kx y y

k k k kk

     

        

 


 (22) 

Case 6: The proportion of alumina in the composition follows the law of variation of the 

bending moment caused by a load equivalent to the first modal shape 

        1 1
0

St Alum St
R x R R R g x g    (23) 

       1 1
0.00021 0.00007 , 0 0.12973g x y x dx dx x g     . (24) 

Again, it is necessary to normalize the expression so that the section of the maximum 

positive bending moment is entirely alumina. 
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A)  B)  

Figure 5: AFG Clamped-Pinned beam. Cases 3 to 7: A) Young´s modulus; B) mass density. 

Case 7: The proportion of alumina in the composition follows the normalized law of 

variation of the bending moment caused by a load equivalent to the first modal shape 

       1
6.33586 7.70804

St Alum St
R x R R R g x x     (25) 

The distributions of Young's modulus and the mass density of the composition of Clamped-

Pinned are indicated in Figure 5 A) and B), for cases 3 to 7. The first five frequency 

coefficients, for each of the cases described above, are shown in Table 4. Observing the values 

in Table 5, it is noted that the objective of increasing the first frequency is achieved in cases 4 

and 7, although in a non-significant way with respect to case 2a). Even the weight increases 

slightly. In order to evaluate the dynamic stiffening that is achieved with the use of FG 

materials, Table 5 shows the first five frequency coefficients for a Clamped-Pinned 

homogeneous steel beam ( 1
b

W  ) (Karnovsky and Lebed, 2000). It is clear that all the cases 

considered raise the frequency values and decrease the weight of the beam, achieving efficient 

stiffening. 

Case 1
  2

  3
  4

  5
  b

W  

3 21.2089 63.7631 132.410 228.541 349.494 0.805 

4 25.5231 73.8760 153.438 265.237 404.041 0.692 

5 24.3564 72.2013 149.694 255.174 358.025 0.719 

6 22.0703 65.1126 136.337 235.826 359.713 0.782 

7 25.4014 72.5072 152.461 263.419 400.232 0.698 

Table 4: Frequency coefficients for an AFG beam with Clamped-Pinned ends – Cases 3 to 7. 

1
  2

  3
  4

  5
  

15.4182 49.9649 104.248 178.270 272.031 

Table 5: Frequency coefficients for a homogenous beam with Clamped-Pinned ends.  

Stiffening efficiency 
i

  is defined as the following coefficient (Laura et al., 2001): 

 (AFG) / ( ) /
i i i b

St W       (26) 

Table 6 shows the stiffening coefficients 
1  obtained for the first frequency in all the cases 

analysed. The highest levels of stiffening efficiency correspond to cases 2a), 4 and 7, achieving 

case 4 and case 7 the highest values of the first frequency. 

3.2.2 Clamped-Clamped AFG beam (C-C) 

The distributions of Young's modulus and the density of the composition of each case are 

indicated in Figure 6 A) and B). 
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Case 1, Eq. (17) 

n 0.50 1 2 

1a) St-Alum 2.273 1.801 1.437 

1b) Alum-St 1.468 1.798 2.274 

Case 2, Eq. (18) 
2a) St-Alum-St 2.437 

2b) Alum-St-Alum 1.390 

Cases 3 to 7, Eqs. (19)-(25) 
Case 3 Case 4 Case 5 Case 6 Case 7 

1.709 2.393 2.196 1.831 2.361 

Table 6: Frequency coefficients for an AFG beam with Clamped-Pinned ends – Cases 1 to 7.  

Case 8: First, the two classic quadratic symmetric distributions of the constituent materials 

described in the Eq. (18) are considered. Non-symmetric cases - Eq. (17) - are not taken into 

account by virtue of the symmetry of the C-C beam. 

Again, distributions of the constituent materials governed by laws related to the structural 

behavior of the beam will be taken into account. Based on what was observed for the C-P 

beam, just normalized expressions are used: 

Case 9: Distribution of the constituent materials with the proportion of alumina following 

the normalized law of variation of the bending moment caused by a uniform distributed load 

       2 21 6 6 1 4 4
St Alum St

R x R R R x x x x        (27) 

Case 10: The proportion of alumina in the composition is proportional to the transverse 

displacement of the first modal form, normalizing the maximum 

      St Alum St máx
R x R R R y x y    (28) 

 
           

       
Cosh Cos Sinh Sin , 0.50 1.58815,  

4.73004  and Cos Cosh / Sin Sinh

máx
y x kx kx kx kx y y

k k kk k

     

        

 


 (29) 

Case 11: The proportion of alumina in the composition follows the normalized law of 

variation of the bending moment caused by a load equivalent to the first modal shape 

        2
 

St Alum St
R x R R R g x c x    (30) 

         -30 2

2
3.84230 1.28077 10 , 28.8713 28.8713 11.1866g x y x dx dx x c x x x          (31) 

The first five frequency coefficients, for each of the cases described above, are shown in 

Table 7. 

A)  B)  

Figure 9: AFG Clamped-Clamped beams. Cases 8 to 11: A) Young´s modulus; B) mass density. 

Again, it is observed that the cases corresponding to the distribution of the material 

following the law of bending moments - cases 9 and 11 -, show the highest coefficients for the 

first vibration frequency. In order to evaluate the dynamic stiffening that is achieved, Table 8 
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shows the first five frequency coefficients for a Clamped-Clamped homogeneous steel beam 

( 1
b

W  ) (Karnovsky and Lebed, 2000). 

Case 1
  2

  3
  4

  5
  b

W  

8 a) 35.6800 95.1011 184.971 304.885 454.898 0.672 

8 b) 26.7892 74.3683 146.558 243.111 364.011 0.836 

9 36.5655 86.1039 170.108 265.123 289.068 0.699 

10 33.3763 85.7577 167.725 276.561 413.111 0.742 

11 36.2679 84.8553 170.345 290.331 438.783 0.701 

Table 7: Frequency coefficients for an AFG beam with Clamped-Clamped ends – Cases 8 to 11. 

1
  2

  3
  4

  5
  

22.3733 61.7061 120.903 199.859 298.556 

Table 8: Frequency coefficients for a homogenous beam with Clamped-Clamped ends. 

Case 8 a) 8 b) 9 10 11 

1  2.374 1.432 2.337 2.009 2.312 

Table 9: Coefficients 
1  for an AFG beam with Clamped-Clamped ends – Cases 8 to 11. 

In the same way as for the AFG C-P beams, the stiffening efficiency coefficient 
i

 , Eq. (26), 

is calculated for the AFG C-C beams. Table 9 shows this coefficient for the first natural 

frequency. Similar to what happened with the C-P beam, the cases in which the constituent 

materials have a quadratic symmetric distribution (case 8) or are distributed following bending 

stress laws (cases 9 and 11) are those with the best level of stiffening efficiency. Again, the 

highest levels of the first transverse vibration frequency are obtained in cases 9 and 11. 

4 CONCLUSIONS 

The structural advantages of the use of FG materials in the design of beams have been 

ratified. In fact, they allow the development of singular value performances in vibratory 

environments, which have an interest in numerous technological applications of civil 

engineering, electronics, spatial engineering, etc., when stiffness and low weight are sought. 

In the investigations on the subject, the distributions of the constituent materials have been 

considered following laws elaborated with mathematical criteria. In this document, material 

distributions are proposed that follow laws which represent the variation of some parameter 

related to the structural behavior of the beam. With this, the first transverse vibration frequency 

has risen, removing the structural element from the damage caused by those actions rich in low 

frequency components. The authors are confident that the use of preponderantly structural 

criteria in the distribution of the components of the FG materials will contribute to further 

increase the remarkable performance of the resistant structures constructed with these 

materials, enhancing their revolutionary impact in that broad field of engineering. 

Once again, the classic Rayleigh-Ritz method demonstrates its versatility and precision to 

solve elasto-mechanics problems. 
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