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Abstract. In a computational model for outdoor sound propagation, the relevant propagation 
phenomena, among which are refraction and diffraction, must be implemented. All numerical methods 
applied in this field so far have disadvantages or limits. The Finite Element Method has to discretize 
the domain and hence is restricted to closed or at least moderate sized domains. 
The Boundary Element Method can hardly consider inhomogeneous domains and the computation 
effort increases exponentially for large systems. Geometric acoustics algorithms like ray tracing 
consider sound as particles and are hence not able to represent wave phenomena. 
It is the aim of this work to combine the advantages of the BEM and of the ray method: In the near-
field where obstacles and complex geometries occur - and so diffraction and multiple reflection are 
expected - the model uses the BEM. Then, a ray model is coupled to compute the sound emission at 
large distances, because this model can take into account refraction resulting from wind or temperature 
profiles. The ray model requires point sources as input data. However, a boundary element calculation 
always delivers the pressure or its normal derivative along the boundary. Hence, for the coupling of 
both models it is necessary to convert the BEM results into equivalent point sources. The Method of 
Fundamental Solutions (MFS) is found suitable for this purpose. 
To couple the BEM and ray model, the acoustic half-space is divided into a BEM domain and a ray 
domain by defining a virtual interface. Along this interface, the pressure is computed with the BEM. 
The idea behind the MFS is to place a number of sources with unknown intensities around the domain 
of interest. These intensities are then computed in order to fulfill prescribed boundary conditions at 
discrete points on the boundary of the domain. The MFS can be either applied with fixed source 
positions or with an optimization algorithm, which finds the optimal source positions by minimizing 
the residual along the boundary in a least-squares sense. Both types of the MFS are used in this work. 
The verification of this new coupling procedure is shown for a two-dimensional problem consisting of 
a of a noise barrier in a homogeneous atmosphere, for which a reference solution is known. 
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1 INTRODUCTION 

The Method of Fundamental Solutions (MFS) has so far been applied to various acoustic 
problems. A review of the developments and application of the MFS for scattering and 
radiation problems is given by Fairweather et al (2003). The performance of the MFS for 
acoustic wave scattering is analyzed by Alves et al. (2005) In the literature, many different 
names have been used for this method, as e.g. multipole radiator synthesis or equivalent 
source method. 

The advantages of the MFS are basically its properties as a meshless method: It does not 
require the discretization of the model and no integration has to be performed. Optionally, an 
optimization algorithm can be used to optimize the position of the sources in order to 
minimize the residual at the prescribed boundary points, see Fairweather et al (2003) and 
Cisilino et al. (2001). The Method of Fundamental Solutions can either be applied for fixed 
source positions or with an optimization algorithm to find the source position where the 
residual is minimal. The second approach is usually referred in the literature as the MFS with 
moving sources. 

The methods of computational acoustics can basically be divided into two groups, the 
wave based methods and methods of geometrical acoustics. The first type consider the 
characteristic of sound propagation as traveling waves, and so include all wave phenomena 
like diffraction and interference. They are based on any kind of wave equation, which can be 
the scalar wave equation in the time domain or the Helmholtz equation in the frequency 
domain. These methods are usually implemented using the Finite Element Method (FEM) or 
the Boundary Element Method (BEM). Whereas in the geometrical acoustics approach the 
wave character is neglected and sound propagation is considered as propagation of sound 
particles. The travel path of a sound particle is called sound ray. Most of these methods 
require point sources as input data.  

 

 
Figure 1: Sketch of the hybrid method (BEM-Ray tracing). 

 
For an application with a noise barrier or a noise protection dam around the source and 

receivers at the far-field, the BEM is used for the near-field around the source, where the 
geometry might be complex and where diffraction and multiple reflections occur. For the far-
field over large propagation range, a ray method is applied which includes the effect of 
refraction in the atmosphere due to a vertical profile of sound speed. This sound speed profile 
can either result from a temperature profile or - using the effective sound speed approach - 
also from a wind speed profile. Figure 1 shows the coupling scheme for the hybrid method 
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consisting of BEM and ray tracing. Some typical example problems for this application are 
shown in figure 2. Thus, to make use of both kinds of methods in one problem calculation, it 
is necessary to transform the sound field values (e.g. pressure) as output from the wave-based 
method into equivalent point sources as input for the ray method. This will be done by using 
the MFS in the following. 

 

 
Figure 2: Typical problems considered in outdoor sound propagation. 

 

2 THE MFS FOR ACOUSTIC PROBLEMS 

Acoustic problems in the frequency domain are governed by the Helmholtz equation: 

 
where p is the acoustic pressure and k is the wave number, which is the quotient of the 
angular frequency and the sound speed. In the following, 2D-problems are considered. A 2D 
fundamental solution for eq. (1) is known to be 

 
which describes the pressure at xi caused by a unit source at ξj . ( )1

0H  is the Hankel function of 
zero order and first kind. Here, i denotes the imaginary unit (not to mix with the index i for 
the field points!), k is the wave number and r is the distance from the source point Sj at 
position ξj to the field point Ri at position xi. If a half-space over rigid ground is considered, 
the fundamental solution changes into 
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where r’ is the distance of the mirror source '
jS to the field point Ri (see figure 3). 

 

 
Figure 3: Geometry of source-receiver-distance in the case of a half-space. 

The idea behind the MFS is to place a number of sources around the domain of interest 
MFSΩ , with their positions and intensities set in order to fulfill the given boundary conditions 

along the boundary MFSΓ  of the domain MFS (see figure 4). Each source j at position ξj 
outside the domain MFS contributes a pressure field which is described by the fundamental 
solution ( ),i jG x ξ . The approximate solution is yield by collocation on a number of points xi 

on the boundary MFSΓ . For a given boundary point xi the pressure value p(xi) is given by the 
linear superposition of all contributions j = 1, 2, . . . ,N, weighted by the intensity coefficients 
aj for each source: 
 

 
This equation is used as boundary conditions by inserting the known boundary values ip  

at boundary points i on the right hand side. Doing this for all M boundary points results in a 
system of linear equations 

 
where the matrix entries Aij consist of the fundamental solutions ( ),i jG x ξ at point i due to a 
source with unit intensity at point j, so 

 
the solution vector x contains the unknown source intensity coefficients aj , and vector b 
contains the known boundary values. 
 

S. HAMPEL, A.P. CISILINO, S. LANGER2808

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 

 
Figure 4: General sketch for interior MFS problem. 

 
The number of sources N does not have to be equal to the number of prescribed boundary 

points M, but can also be smaller. In this case a non-square matrix arises from the equations 
shown above. This system of equations represents a linear least-squares problem which can 
be solved using a Single Value Decomposition (SVD) algorithm. For further information 
about SVD and its numerical implementation see e.g. Press et al (1992). 

3 APPLICATION WITH FIXED SOURCE POSITIONS 

Here, the MFS with fixed source positions is applied to the described coupling problem. 
Figure 5(a) shows the configuration for the BEM calculation, with the primary source and 
obstacles in the near-field. The problem is solved using a two-dimensional approach. The 
near-field is approximated in the MFS by a number of equivalent (or secondary) sources (•), 
see Figure 5(b). The denotation in this figure is chosen according to Figure 4. 

For the MFS the pressure at the boundary points (○) has to fulfill the pressure values 
yielded by the BEM calculation. The vertical line of boundary points can be considered as the 
left border of the MFS domain where the ray tracing calculation will be used. The x-position 
of these vertical lines is xS for the sources and xΓ  for the boundary points, respectively. 

The problem of the dam on the left hand side of the point source is considered (Figure 
2(c)). Figure 6 shows the condition number of the matrix A versus the number of sources for 
three different source positions. The number of boundary points is fixed at M = 600, and they 
are placed in a vertical line at xΓ = 10.5m and height up to 60m. Obtained results show that the 

positions of the sources xS have a strong influence on the matrix condition. If the sources are 
too far away from the boundary points compared to the distance between two sources or two 
boundary points - which is the case for xS = 5.0m -, the system will be ill-conditioned (i.e. 
high condition numbers). On the other hand, if the sources are too close to the boundary, the 
matrix entries will become infinite as the fundamental solution G in equation 6 is singular for 
r→0. In brief, the condition number of matrix A depends on the number of sources and their 
relative positions with respect to the boundary points. 
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Figure 5: Sketch of the configurations for the considered coupling problem with fixed source positions. 

 
Figure 6: Condition number of the system matrix depending on the number of sources; Three different source 

positions xs = 5.0m, 10.0m and 10.4m; xΓ  = 10.5m. 

Figure 7 shows the relative error as a function of the receiver distance for the case of an 
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homogeneous domain. The relative error was computed by comparing the pressure results 
obtained using the two-step methodology (BEM-ray method) to the reference solution given 
by a BEM calculation. The number of boundary points and the source positions are the same 
as in Figure 6 in order to evaluate the effect of the matrix condition number on the actual 
quality of the result. The number of source points was chosen to N = 200. It can be seen that 
the error curves associated to source positions close to the boundary (i.e. xS = 10.0m and xS = 
10.4m) show a nice behavior. On the other hand, the error for the source position xS = 5.0m 
diverges and delivers unusable results. This is a consequence of the very high condition 
number of about 1016 (see figure 6). Results in Figure 7 also show that the error is always zero 
at xΓ = 10.5m, since the boundary conditions in the MFS were imposed in this position. Just 
beyond this position the error increases because the approximated pressure field is not smooth 
in the near-field. At some distance from the source, the pressure field smoothes for xS = 10.0m 
and xS = 10.4m and the proposed procedure approaches the reference solution very good. The 
error is almost constant over the whole range and even up to 10 km (not shown in Fig. 7) the 
relative error is lower than two percent. 

 

 
 

Figure 7: Relative error at internal points for the three different source positions xs = 5.0m, 10.0m and 10.4m. 

4 REDUCED MFS MODEL WITH OPTIMIZED SOURCE POSITIONS 

For an optimization algorithm it is usually very challenging to find the global minimum of 
a residual, if it has many local minima and maxima. The pressure field with complex pressure 
values and a non-trivial geometry shows to have a residual field which oscillates strongly in 
space. So for these cases a gradient-based optimization algorithm will fail, if the initial source 
positions are not chosen accidentally very close to the optimal positions. 

To avoid these problems, an approach is proposed in the following, which separates the 
complex pressure signal into its amplitude and phase information. It is shown that with this 
separation the optimization algorithm can be successfully applied to find the optimal source 
position. By optimizing the solution with respect to the amplitude only, the residual becomes 
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quite smooth and therefore the problem is much easier to solve for the optimization algorithm. 
The time-harmonic characteristic will be added and adjusted in a second step. To consider 
only the amplitude for optimization, the MFS algorithm is changed, so that the fundamental 
solution is replaced by its absolute value and as boundary condition the pressure amplitudes 
are used: 

 

 
Figure 8: Sketch of the configurations for the considered coupling problem with optimization. 

The optimization algorithm leads to the source positions corresponding to the minimum 
residual at the boundary points i = 1 . . .M (Netlib Software Library, 2005). 

Here, as boundary points of the MFS problem, points are chosen in the far-field of the 
primary source (see Figure 8). Since the coupling problem and both of the computational 
domains (BEM and ray tracing) do not have defined boundaries, these points are not 
boundary points in the classical sense. However, the declarations “boundary points” and 
“boundary conditions” are still used here according to Figure 4. The reason for placing these 
points in the far-field is that this is the actual area of interest. 

As solution vector x, the real values of aj are obtained. To get the missing phase 
information, the complex intensities ja are written in the Eulerian form 

 
where φj is the phase angle. This phase angle follows from an additional complex boundary 
condition, e.g. at a point xBC in the far-field, where the exact pressure pBC for the 
homogeneous case is known from the BEM calculation. 

 
This condition ensures that at the phase of the pressure contribution from source j coincides 
with the phase of the boundary condition at xBC. From the phase angle φj, the complex 
intensity can be derived using eq. (8). 
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Figure 9: Relative error of the pressure amplitudes at internal points. 

Figure 9 shows the relative error of the pressure amplitudes at internal points for the 
problem of a sound barrier of height hB = 4m at x = 10.5m, a point source at xS = 0 and hS = 
0.5m. Only five points were chosen to fit the pressure amplitude: At xBC = 40m, 70m, 200m, 
700m and 1000m. The first curve is for only one source point (N = 1), the second is for two 
sources (N = 2). For N = 1 it can be seen that the relative error at the boundary points 
increases with distance. This is because the residual was defined not in terms of relative, but 
absolute values. The points closer to the source have higher pressure values and therefore are 
‘weighted stronger’ when considering the residual over the whole range. The optimal source 
position found by the optimization algorithm is at (x* = 1.585m, z* = 5.010m) for N = 1 and 
( *

1x = 12.139m, *
1z = 1.951m), ( *

2x = 8.618m, *
2z = 2.511m) for N = 2. The total residuals are 

3.841·10−3 (N = 1) and 1.695·10−11 (N = 2), respectively. To get to this residual it takes about 
120 iterations and a computation time of a few seconds on an average personal computer. It 
was found that a good starting point for the source(s) when using optimization is on top of the 
barrier, in this case at xB = 7.5m, hB = 4m. 

In Figure 10 the approximate solution received with the reduced separated model is 
compared to the reference solution. It can be seen that for short distances behind the barrier 
(Figure 10) there is a phase error, which disappears for increasing distances. This behavior 
arises when the difference between r and r’ is not negligible compared to the wave length. So 
the distance range where the approximate results contain the phase shifts from the reference  
solution will be smaller for lower frequencies and lower source heights, where the area of 
destructive interference between direct and indirect sound path is closer to the source. 
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Figure 10: Comparison of the real part of the approximation (reduced MFS model) with the reference solution: 
10 to 100m. 

5 SUMMARY 

It is shown in this paper that the MFS can be successfully applied to couple a wave-based 
method and ray tracing method for solving outdoor sound propagation. The pressure 
distribution, which is a result from a wave-based method, e.g. the BEM, can be well-
approached by a number of equivalent point sources, which are required as input data for 
most ray methods. Two ways are presented to use the MFS: The first one assumes fixed 
source positions whereas the second variant applies an optimization algorithm to find the 
optimal positions for the equivalent sources. The verification is done for a problem two-
dimensional problem for which a reference solution is known. Error analyses are performed 
for both MFS types and the results encourage using them for this coupling purposes. 

The described coupling algorithm allows combining the advantages of the BEM and the 
ray tracing method: The BEM takes into account the diffraction at edges exactly, whereas the 
ray method can easily handle refraction in the atmosphere due to a sound speed profile. 
Hence, this study can hopefully be a step to a stronger use of numerical simulations in the 
design process of acoustic and noise protecting measures. 
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