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Abstract. A loosely coupled algorithm is presented that allows to combine Computational Structural

Dynamics (CSD) and Computational Crowd Dynamics (CCD) codes in order to solve, in a cost-effective

manner, pedestrian-structure interaction problems. The basic structural and crowd dynamics codes are

altered as little as possible. The surfaces of the structure where pedestrians transit are used to transfer

the required information between codes. The transfer of loads, displacements, and velocities is carried

out via fast interpolation and projection algorithms.

The loosely coupled algorithm can also be modified in order to obtain a fully coupled algorithm via

iterative loops. Experience gained from several calculations indicates that the proposed approach offers

a convenient and cost-effective way of coupling CSD and CCD codes without a complete re-write of

them.
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1 INTRODUCTION

Many pedestrian bridges or passageways are being built attempting to combine a visually

appealing structure with minimum material/weight requirements. The result does not always

result in a safe structure: the Millennium Bridge in London (5) provides a good reminder that

one must still account for possible vibrations and resonances that can render such structures

unsafe for operation (1; 2). At the same time, due to aging, environmental impact or accidents

the structural integrity of these structures can deteriorate over time. Given the drastic minia-

turization, connectivity, standardization, price reduction and proliferation of in-situ measuring

devices, monitoring the structural integrity throughout the lifetime of such structures has be-

come a reality. This implies the need to answer the question: where should these sensors be

placed in order to detect at the earliest possible stage the maximum number of different deteri-

oration mechanisms of the bridges/structures ?

The need to predict (during design) and guarantee (during its lifetime) the safe operation of

pedestrian bridges and passageways has in turn led to the need to couple computational struc-

tural dynamics codes with computational crowd dynamics codes.

Computational structural dynamics (CSD) codes have a long history (since the 1960’s) of de-

velopment and application in engineering practice. In particular for the linear elastic regime in

which bridges operate, finite element methods are well established (6) and used on a daily basis.

Computational crowd dynamics (CCD) codes have been developed since the early 2000’s, and

have been used on industrial projects during the last decade (4). Unlike elastic materials, hu-

mans are more complex: they usually have a series of targets they want to reach at a certain

time, can think, react, have different levels of emotions, will force and cultural backgrounds.

It is therefore not surprising that the development and application of computational crowd dy-

namics codes took longer to develop.

2 COUPLING ALGORITHM

The so-called loose coupling technique is used in order to link the CSD and CCD codes. The

technique is shown in Figure 1.

Figure 1 Loose Coupling of CSD and CCD Codes
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The global timestepping algorithm proceeds as follows:

Initialization:

Set: istar=1,istop=0

call CSD-code(.., istar, ..)

read in CSD-Data

initialize all CSD Arrays

call CCD-code(.., istar, ..)

read in CCD-Data

initialize all CCD Arrays

Run:

do: Loop over the timesteps

do: Until convergence

call CSD-code(.., istop, tends, tendc, ..)

call CCD-code(.., istop, tends, tendc, ..)

enddo

enddo

Here tends, tendc denote the ending times for the CSD and CCD code respectively. The

algorithm outlined above clearly leaves the possibility open to perform N-CSD-code steps, fol-

lowed by M-CCD-code steps, i.e. asynchronous timestepping. It is felt that this is of consider-

able importance in order to keep the algorithm as general as possible. As one can see, both the

CSD and the CCD codes are called as subroutines. The argument list passed contains all the

variables required for the inter-grid transfer of information.

3 CSD CODE: FEEIGEN

Given a Finite Element discretization of an elastic structure, the resulting system of equations

will be of the form (6):

Mẅ +Dẇ +Kw = f . (1)

Here M,D,K denote the mass, damping and stiffness matrices respectively, and w is the vector

of nodal displacement variables. The matrices M,K are symmetric positive definite, and can

be used to obtain a system of eigenmodes by solving the eigenvalue problem:

(

−ω2

iM+K
)

· e
i = 0 , i = 1, n . (2)

The eigenvectors satisfy the following important orthogonality properties:

e
j
Me

i = δij ; e
j
Ke

i = ω2

i δ
ij , (3)

where δij is the Kronecker-δ. The vector of unknowns w can now be written in terms of these

eigenvectors as

w = e
iai , (4)

resulting in

Me
iäi +De

iȧi +Ke
iai = f . (5)
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Assuming e
j
De

i = diiδij , one can decompose the former equation by multiplication with e
j .

This results in:

äj + djjȧj + ω2

jaj = f · e
j = f j , (6)

i.e. a decoupled system of ordinary differential equations. FEEIGEN is a simple ODE

integrator for eigenmodes. A variety of integration schemes are available, from explicit high-

order Runge-Kutta to second-order, implicit Newmark schemes. FEEIGEN obtains the forces

from the CCD code, projects these into the eigenmodes, updates the solution, and computes the

updated shape and velocity of the structure. This information is then passed to the CCD code.

4 CCD CODE: PEDFLOW

The PEDFLOW model (4) is a combination of social force and agent based models. Individu-

als move according to Newton’s laws of motion; they follow (via will forces) ‘global movement

targets’; at the local movement level, the motion also considers the presence of other individuals

or obstacles via avoidance forces (also a type of will force) and, if applicable, contact forces.

Newton’s laws:

m
dv

dt
= f ,

dx

dt
= v , (7)

where m,v,x, f , t denote, respectively, mass, velocity, position, force and time, are integrated

in time using a 2nd order explicit timestepping technique. The main modeling effort is centered

on f . PEDFLOW separates these forces into internal (or will) forces [I would like to move

here or there] and external forces [I collided with another pedestrian or an obstacle]. For more

information, as well as verification and validation studies, see (4; 3).

PEDFLOW obtains the position and velocity of the terrain from the CSD code, obtains the

reaction forces of the pedestrians, and then passes this information to the CSD code in turn.

4.1 Pedestrian Loads on the Structure

The proper understanding and the modelling of the transient forces/loads of the pedestrians

is of paramount importance (2). The vertical force can be decomposed into a static part cor-

responding to the weight of the person and a dynamic part as the sum of harmonic functions

("harmonics") with frequencies an integer multiple of the pacing or the jumping frequency,

respectively, which is the fundamental frequency of the person’s action (so called Fourier de-

composition):

Fp(t) = G+∆G1 · sin(2πfpt) + ∆G2 · sin(4πfpt− φ2) + ∆G3 · sin(6πfpt− φ3) , (8)

where G denotes the weight of the person (usually of the order of 800 N), ∆G1,2,3 the amplitudes

of the first three harmonics, fp the pacing or jumping frequency, and φ2,3 the phase shifts of

the 2nd and 3rd harmonic with respect to the 1st harmonic. While higher harmonics could be

considered, experience indicates that three are sufficient for an accurate description of the forces

(2).
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5 AN EXAMPLE

A simply supported bridge of length 20 m and width 5 m subjected to pedestrian loads is

considered in this first example. Two snapshots during the run are shown in Figures 2a,b. For

the structure, only 1-D modes (beam-modes along the length of the bridge) are considered,

i.e. torsion modes are neglected. This is clearly visible in the velocity distribution shown in

Figure 2b. Pedestrians enter the bridge from both directions with a flux of 1 ped/sec. It takes

about 25 seconds for the bridge to become populated and the structure to react to the loads.

The run was continued to 4 minutes in order to obtain proper statistics. With the given flux of

pedestrians, an average of about 50 pedestrians are on the bridge at any given time (Figure 2c).

The displacement and velocity history of three points in the centerline of the the bridge along

the x-direction (denoted by their x-position: x = 5 implying 1/4 along the bridge, x = 10 in the

middle of the bridge, and x = 15 implying 3/4 along the bridge) are shown in Figure 2d,e. Given

that FEEIGEN selects the closest point in the mesh to the desired position of these diagnostics

points, the actual position may be close but not exactly the one specified by the user. This

explains the slight discrepancy in the extreme values between the points denoted by x = 5 and

x = 15 (which should be similar). The resulting eigenforces and eigenvelocities (f j and ȧj
in Eqn.(6) above) are displayed in Figure 2f,g. One can see that, as expected, the dominant

mode is the main bending mode. Note also that due to the random motion of the pedestrians no

resonance or cyclic force, displacement or velocity pattern is discernable.

Figure 2a Force and Velocities of the Structure at T=30 sec
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Figure 2b Force and Velocities of the Structure at T=60 sec

Figure 2c Number of Pedestrians on the Bridge
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Figure 2d,e Displacements and Velocities of Three Selected Points on the Bridge

Figure 2f,g Eigenforces and eigenvelocities

6 CONCLUSIONS

A loosely coupled algorithm that allows to combine Computational Structural Dynamics

(CSD) and Computational Crowd Dynamics (CCD) codes in order to solve, in a cost-effective

manner, pedestrian-structure interaction problems has been developed and first results have

been shown. The basic structural and crowd dynamics codes are altered as little as possible.

The surfaces of the structure where pedestrians transit are used to transfer the required informa-

tion between codes. The transfer of loads, displacements, and velocities is carried out via fast

interpolation and projection algorithms.

This loosely coupled algorithm can also be modified in order to obtain a fully coupled algorithm

via iterative loops.

Experience gained from several calculations indicates that the proposed approach offers a con-

venient and cost-effective way of coupling CSD and CCD codes without a complete re-write of

them.

As every other technical endeavour, many improvements are possible. Among the most obvi-

ous we mention: link to other structural mechanics codes (e.g. nonlinear finite element codes to

take into account dampers); analysis to obtain the optimal location of sensors for lifetime mon-

itoring; and improvements in the modeling of the vertical and lateral forces pedestrians tend to

have on moving ground.

The final paper will contain further details on all algorithmic aspects of the procedures, as well

as more examples.
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