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Abstract. This work presents a Boundary Element Method formulation for modeling two-dimensional 
microstructures containing cylindrical voids and inclusions. Inhomogeneities are modeled in an 
efficient way by using a single specially developed element. Trigonometric functions are used as a 
base for the element shape functions. A static condensation scheme is performed on the system of 
equations to further improve the efficiency of the formulation. The accuracy of the proposed method is 
illustrated with some examples. 
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1 INTRODUCTION 

Industrial materials, like everything in Nature, are heterogeneous when observed at a 
certain scale. The determination of the macroscopic characteristics of heterogeneous materials 
is an essential problem in many applications of engineering and science. The study of 
relationships between microstructural phenomenon and the macroscopic behavior not only 
allows predicting the behavior of existing materials, but also provides a tool for the design of 
new micro-structures, in such a way that the resulting macroscopic behavior agrees with 
desired characteristics. 

Currently, the use of numerical methods to solve differential equations such as the Finite 
Element Method (FEM), the Boundary Element Method (BEM), or the Finite Difference 
Method is fully generalized. The combination of micro-mechanics and such numerical 
methods supplies a powerful tool for materials behavior modeling. The BEM has already 
shown to be more accurate and efficient in terms of computational cost than other popular 
methods for many linear problems in Solids Mechanics, for a given accuracy level. 
Particularly in overall properties predictions, the BEM can make more efficient predictions 
(Yang & Qin, 2004) because the spatial average scheme of the internal fields of the variables 
requires only information of the micro-structure boundary. In this work, the BEM is used to 
solve the elastic problem in a microstructured material. The main goal is to develop an 
efficient Boundary Element Formulation for modeling composite materials with random 
distributions of inhomogeneities.  

In this paper the material is considered as an isotropic and homogeneous matrix containing 
cylindrical voids and inclusions. In order to reduce both, the amount of data and 
computational cost the problem is considered 2D with circular cylindrical holes and 
inclusions perpendicular to the model plane. Thus, the formulations of Henry & Banerjee, 
1991 for modeling three-dimensional elastic solids containing tubular holes and of Banerjee 
& Henry, 1992 for fiber inclusions are particularized to two-dimensions and presented in a 
general way. Each void or inclusion is modeled with a single, specially developed hole 
element or inclusion element, respectively. Thus, the microstructure discretization strategy 
becomes simply the indication of the center of each inhomogeneity, its radius and the element 
order, in addition to the conventional outer boundary element mesh. Trigonometric functions 
are proposed as a base for the element shape functions resulting in elements with 4, 5 and 6 
nodes in addition to original 3-node element proposed by Henry & Banerjee (1991). The 
integration of strongly singular kernels found in the hole/inclusion element is accomplished 
by the direct method, resulting a regularized element. A static condensation scheme is 
performed on the system of equations to further improve the performance of the formulation. 
The accuracy of the proposed method is illustrated by some examples of microstructure 
materials containing voids. 

 

2 BOUNDARY ELEMENT FORMULATION 

2.1 Boundary integral equation for a matrix with cylindrical voids 

The direct boundary integral equation for displacements (Banerjee, 1994) of an elastic 
solid can be applied to solve the Boundary Value Problem (BVP) of a microstructure with 

F.C. BURONI, R.J. MARCZAK2748

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 

domain  surrounded by an exterior boundary oΩ Γ  containing cylindrical micro-voids with 
boundary . In absence of body force this equation is expressed as (Γ Henry & Banerjee, 
1991): 
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where i  and it  are the Cartesian components of the boundary displacements and tractions, 
ij  and  are the Kelvin fundamental solution at a point 

u
G ijF ξ  due to the unit load placed at 
location x , ij ( )ξC  is a function of boundary geometry at the point ξ , and fN  is the number 
of voids. The superscripts o and f (no sum) refer to the quantities on the outer boundary of the 
matrix and on the boundary of the voids, respectively. Contrary to the conventional 
discretization of the equation (1), which requires fine meshing for each void, the present 
approach allows an efficient analysis, significantly reducing the input data amount and the 
number of degrees of freedom.  

A local coordinate system ix)  is defined with its origin coincident with the hole center. The 
symbol ( ⋅) ) is used to refer the variables in the local system. The local system origin in the 
global co-ordinate system ix  is determined by the vectors , while the axis iz ix)  are kept 
parallel to ix  as is indicated in Fig. 1.  
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Figure 1: Local and global reference system. 

 
Thus, a particular hole boundary point ix)  can be expressed as function of angle θ  

according to:
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where R is the radius of the hole. The normal vectors at ix)  are expressed by: 
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Considering the case which no internal pressure is applied in the hole, the first integral in 
the sum of the RHS of equation (1) vanishes. The second term can be mapped to the local 
system and integrated in the circumferential direction as in Henry & Banerjee (1991). For the 
n-th hole one has: 
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In this work, the analytic expressions of the tensor ijF
)

 are developed for the reference 
system ix) , resulting in the following expressions, valid for plane stress and plane strain 
states: 
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where the constants  and  are: 3C 4C
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and ν  is the Poisson’s ratio. The variable  is then defined as: r

 ( ) ( ) ( )22
1, , cos senr R R R
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 (10) 

The above expressions are particularized for plane strain hypothesis. For the plane stress case, 
ν  is replaced by /(1 )ν ν ν= + . 
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Finally, the boundary integral equation for the problem of a matrix containing fN  
cylindrical holes without internal pressure is given by: 
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2.2 Boundary integral equation for a matrix with cylindrical inclusions 

In cases where the inhomogeneity in the material matrix is an inclusion of another 
material, the boundary integral equation for displacements remains the same presented for a 
matrix with voids (see equation (11)), and fN  is replaced by the number of inclusions p . 
The boundary integral equation for each inclusion can be written as (Banerjee & Henry, 
1992):  

N
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where p denotes current inclusion. If a perfect bonding between the inclusion and the matrix 
is assumed, the displacements and tractions of the matrix boundary are related to those of the 
inclusion boundary by compatibility conditions: 

 ( ) ( ) ( ) ( ),f p f p
i i i iu x u x t x t x= = −  (13) 

Substitution of equation (13) into equation (12) yields the following modified boundary 
integral equation for the n-th inclusion: 
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Adding the p  inclusion (equations (14)) to the boundary integral equation of the matrix 
results the modified boundary integral equation for the composite matrix: 
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where 
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Note that f
ijG  and  have similar expressions. However, the material constants in p

ijG f
ijG  refer 

to the matrix while the properties of each inclusion are considered in . The same happens 
with the ij  tensor. The signs of 

p
ijG

F f
ijF  and p

ijF  are opposites taking into account the external 
normal to the boundary. In the formulation of Banerjee & Henry (1992) the ijFΘ  tensor is null 
under the argument that the Poisson’s ratio of the matrix and the inclusion are equal when the 
Young’s modulus of the inclusion is much greater than the modulus of the matrix. In the 
present work, this assumption is relaxed, posing no restrictions to the Poisson’s ratios 
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between matrix and inclusion.  
The integral terms in the sum of the RHS in equation (15) can be mapped to the local 

system and integrated in the circumferential direction. Therefore, for n-th inclusion: 
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In this work, the analytic expressions of the tensor ijG
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 are developed for the local system 
ix) , resulting in the following expressions, valid for both plane stress and plane strain: 

 ( ) ( )( ) ( )
( )

2

12
11 1 2 2

cos
, , ln , ,

, ,

R
G R C C r R

r R

θ ξ
θ ξ θ ξ

θ ξ

−
= −

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

)
) ) )

)  (20) 

 ( ) ( )( )
( )

1
21 1 2

cos sen
, ,

, ,

R R
G R C

r R

θ ξ θ ξ
θ ξ

θ ξ

− −
= 2⎡ ⎤

⎢ ⎥
⎣ ⎦

) )
) )

)  (21) 

 ( ) ( )( ) ( )
( )

2

22
22 1 2 2

sen
, , ln , ,

, ,

R
G R C C r R

r R

θ ξ
θ ξ θ ξ

θ ξ

−
= −

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

)
) ) )

)  (22) 

 ( ) ( )( )
( )

1
12 1 2

cos sen
, ,

, ,

R R
G R C

r R

θ ξ θ ξ
θ ξ

θ ξ

− −
= 2⎡ ⎤

⎢ ⎥
⎣ ⎦

) )
) )

)  (23) 

and the constants  and  are: 1C 2C
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Finally, boundary integral equation for the composite matrix with  inclusions is written: pN
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2.3 Discretization of the integral equation 

In order to solve numerically the equations (11) and (26) the boundary is discretized in 
boundary elements whose displacements and tractions are interpolated from their nodal 
values. Writing the discretized form of the boundary integral equation for each nodal point 
results in a linear algebraic system of equations. After the application of the boundary 
conditions, this system can be solved and provided an approximate solution for the unknowns 
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on the boundary (Brebbia & Dominguez, 1992).     
The displacement and traction fields on the boundary of the inhomogeneity are 

interpolated with special shape functions iM : 

 iu M Ui
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β=  (27) 

 it M Ti
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β=  (28) 

where iU β  and iT β  are the displacements and tractions of the node β  in the direction i and β  
ranges from 1 to the number of nodes of the element. The iM  functions are trigonometric 
circular functions with unitary value on the n-th node and zero on the others. These functions 
are used to interpolate both geometry and physical variables. The present formulation allows 
for the use of hole/inclusion elements with 3, 4, 5 and 6 nodes. The 3-node element employs 
the same functions proposed by Henry & Banerjee (1991): 
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The shape functions of the higher order elements proposed herein are given by: 
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for the 4-node element, 
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for the 5-node element, and 
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for the 6-node element. The shape functions given by equations (29)-(32), are plotted in Figs. 
2-5, respectively. 
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Figure 2: Circular shape functions used in the 3-node hole/inclusion element. 
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Figure 3: Circular shape functions used in the 4-node hole/inclusion element. 
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Figure 4: Circular shape functions used in the 3-node hole/inclusion element. 
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Figure 5: Circular shape functions used in the 3-node hole/inclusion element. 

The numerical implementation of the formulation employs discontinuous quadratic 
elements (Brebbia & Dominguez, 1992) to discretize the outer boundary of the microstructure 

o . The modified shape functions matrix for a discontinuous quadratic element is found to 
be: 
Γ
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and η = [ ]1; 1− +  is the normalized co-ordinate. The variables a  and  are the left and right 
node offsets, respectively, as indicated in Fig. 6. The geometry is interpolated with the 
Lagrangean shape functions [

b

]Φ , while the physical variables are interpolated with the 
modified shape functions of Eq. (34). 
 

 

Figure 6: Mapping of discontinuous quadratic element to the normalized space η .    
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the element. The shape functions matrix for the hole/inclusion element area arranged 
accordingly their number of nodes, using equations (29)-(32): 
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The boundary integral equation for the domain of the material matrix containing free stress 
cylindrical holes (see equation (11)) and inclusions (see equation (26)) is: 
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−
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∫

∑∫

∑∫
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) ) ))

C

θ

Γ −

+

j

 (44) 

Using the corresponding shape functions to interpolate the displacements and tractions fields 
for each case, equation (44) can be written in the discretized form as: 

 

[ ] { } [ ][ ] { } [ ][ ] { }

[ ] { }

[ ] { } [ ] { }

1 1

0

2
1

0 0
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1 1

j j
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n n
n n

d d

R d

R d R d

π

π π

θ

θ θ

Γ Γ
= =

=

Θ Θ

= =

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤= Γ −⎣ ⎦ ⎣ ⎦ Γ −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤− +⎣ ⎦⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡⎡ ⎤ ⎡ ⎤+ −⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢⎣ ⎦ ⎣

∑ ∑∫ ∫

∑ ∫

∑ ∑∫ ∫

U G Φ Q T F Φ Q U

F M U

G M T F M U

C

⎤
⎥⎦

 (45) 

where NE is the number of elements used to discretize the outer boundary of the material 
matrix oΓ , Nf  is the number of holes and Np is the number of inclusions in the microstructure. 
Thus, equation (45) is the discretized form of the boundary integral equation for collocation 
point on node i. The column vector {  and { }  are the displacements and tractions of 
element j (see equations (39)-(42)). The equation (45) can be rewritten, for each collocation 
point i: 

} jU jT

 

[ ] { } { } { }
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1 1
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q q
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NNF T nf
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n
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q n q n
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d d

R d
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π

π π

θ

θ θ

Γ Γ
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=

Θ Θ

= =

⎡ ⎤ ⎡⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤= Γ −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢⎣ ⎦ ⎣

⎡ ⎤⎡ ⎤ ⎡ ⎤− +⎣ ⎦⎣ ⎦⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤+ −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢⎣ ⎦ ⎣

∑ ∑∫ ∫

∑ ∫

∑ ∑∫ ∫

U G Φ T F Φ U

F M U

M T F M U

C
j ⎤Γ −⎥⎦

⎤
⎥⎦

 (46) 

where NNO is the number of nodes of the outer boundary of material matrix, NNF is the 
number of nodes for the holes elements and NNP is the number of nodes for the inclusion 
elements  in the microstructure. In this expression, the column vector {  and {  are the } jU } jT
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displacements and tractions in the node j. The definition [ ][ ]⎡ ⎤ =⎣ ⎦Φ Φ Q  is used to interpolate 
the physical unknown in the discontinuous quadratic elements and the subscript q (q=1..3) 
point out the order of node j within the respective element. The equation (46) is written in a 
more compact form:    

 
{ } { } { } { }

{ }

1 1 1 1

1

NNO NNF NNP NNOin inij ijj n nf
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NNP in n

n
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⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ j ⎤+ + =⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤+ ⎣ ⎦⎢ ⎥⎣ ⎦

∑ ∑ ∑ ∑

∑
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G M T
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 (47) 

with the following definitions: 
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and 
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The boundary integral equation for each inclusion†:  

 ( ) ( ) ( ) ( ) ( ) ( )
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0
, , , ,p p f p f

ij i ij i ij iu G R t F R u
π

Rdξ ξ θ ξ θ θ ξ θ⎡ ⎤= − +⎣ ⎦∫ θ
) ) ))

C  (56) 

is written in the discretized form as: 

  (57) { } [ ] { } [ ] { }
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i T Tip p pRd Rd
π π
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where { }U  and { }T  are the displacement and traction column vector for the inclusion. 
Equation (57) is rewritten as: 
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U
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n

where {  and {  are the displacement and traction column vector for the n-th node and 
 is the interpolation function sub-matrix corresponding to the q-th node. In a more 

compact form: 

}nU }nT
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with the following definitions: 
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and with: 
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The boundary integral equation for the inclusion domain in the discretized form is written in 
compact form as: 

  (63) { } { }
1 1

NNP NNPin innp p

n n= =

⎡ ⎤ ⎡⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢⎣ ⎦ ⎣∑ ∑F M U G M T n ⎤
⎥⎦

                                                          

Carrying the collocation process (Brebbia & Dominguez, 1992) over all boundary points, 
the following system of equations results: 

 
 
 

 
† the positive sign in the second term of the RHS is due to considerations on the normal in expressions (5)-(8).    
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{ } { } { } { } { }oo o op p of f oo o op p⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ + = +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦F U F U F U G T G T  

 { } { } { } { } { }po o pp p pf f po o pp p⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ + = +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦F U F U F U G T G T  (64) 

{ } { } { } { } { }fo o fp p ff f fo o fp p⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ + = +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦F U F U F U G T G T  

for the material matrix and: 

 { } { }pp p pp p⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦F U G T  (65) 

for each inclusion, still regarding the interface conditions. In this notation, the first superscript 
denotes the boundary where the collocation is carried out, and the second denotes the 
boundary of integration. The global equation system results: 
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 (66) 

or 

 [ ]{ } [ ]{ }=F U G T  (67) 

 
where [ ]F and [ ]G  are the known coefficient matrices of the boundary element method.  
 

2.4 Numerical evaluation of the coefficient matrix 

The accuracy of the BEM for elastostatics is critically dependent on the correct evaluation 
of the boundary integrals. In this work, the integrals of the hole elements formulation are 
evaluated numerically using the well known Gauss-Legendre quadrature rules (Stroud & 
Secrest, 1966):   

 ( ) ( )
1

1
1

n

i i
i

x dx w xψ
−

=

=∑∫ ψ  (68) 

where ( )ixψ  is the value of the kernel evaluated on the Gauss’s station ix  and i  are the 
corresponding weights for the Gauss’s points. The use of the equation (68) implies the 
mapping of the integrals (48)-(52) and (60)-(61) to the normalized space.  

w

The integral (48) contains weakly singular kernels and are calculated with the well known 
co-ordinate transformation proposed by Telles (1987). 

The integral (49) contains strongly singular kernels, which are calculated in an indirect 
way by using the rigid body displacements technique (Brebbia & Dominguez, 1992). In this 
case, the singular submatrices of  in equation (66) are evaluated by using:    ooF
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It is worth noting that the summation is carried out over the total number of nodes.  
The numerical integration of the hole or inclusion matrices (equations (50), (52) and (61)) 

also deserves special attention, as their kernels are strongly singular. The rigid body 
displacements technique cannot be used in this case because of its inherent inaccuracy when 
integrating curvilinear elements (Banerjee, 1994; Guiggiani & Casalini, 1989). In the work of 
Henry & Banerjee (1991) and Banerjee & Henry (1992) the outer collocation (fictitious 
domain) to calculate these singular integrals is proposed. In present implementation, the 
integration of these kernels is accomplished by the direct method. Details on the direct 
method can be found in the works of Guiggiani et al. (1992), Guiggiani (1998) and Marczak 
& Creus (2002). The key point in the direct method is to expand asymptotically the kernel 
singular ij  using Laurent’s Series around the image of the load point. The solution of the 
strongly singular integral is then restated as a regular integral plus one scalar term evaluated 
on the singular pole. Once the asymptotic expansions 1

K

−F  (Marczak & Creus, 2002) are 
known, standard Gauss-Legendre quadrature suffices to accomplish the numerical evaluation. 
Buroni (2006) developed the expressions for the Laurent’s expansions  that regularize the 
integrals in the equations (50), (52) and (61): 

1−F
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4 1
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F M

ν
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−
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−

−
=

−

p

p
 (70) 

where aM  is a shape function corresponding to kernel, and ( )p η ξ=  the image of the load 
point on the normalized domain η . Details on the direct evaluation of the strongly singular 
integrals in the hole or inclusion element can be found in the work of Buroni (2006). 
 

2.5 System of equations 

Considering the boundary conditions in the linear equations system (67), 1  values of 
displacements and  values of tractions are known in the outer material matrix boundaries 

1  and 2  ( 1 2 OΓ ∪ ), respectively. Now, the quantity of unknowns in the outer material 
matrix boundary is 1 2 . Thus, the system of equations has 

 unknowns and 

n
2n

Γ Γ Γ = Γ
2n n NNO+ =

2 4 2NNO NNP NNF+ + 2 4 2NNO NNP NNF+ + equations. This system can 
be rearranged in a way that all unknowns are in the same vector. Firstly, considering that the 
tractions on the inclusion boundary are unknown:   

  (71) { }
0 0 0

oo op of op o oo

po pp pf pp p po
o

fo fp ff fp f fo

pp pp p

⎡ ⎤ ⎧ ⎫ ⎡−
⎢ ⎥ ⎪ ⎪ ⎢− ⎪ ⎪⎢ ⎥ ⎢=⎨ ⎬⎢ ⎥ ⎢− ⎪ ⎪⎢ ⎥ ⎢⎪ ⎪−⎣ ⎦ ⎩ ⎭ ⎣

F F F G U G
F F F G U G

T
F F F G U G

F G T

⎤
⎥
⎥
⎥
⎥
⎦

   
Then, the boundary conditions can be introduced in equation (71) and the columns in the 
matrices , , , ,  and ooF poF foF ooG poG foG  are rearranged so that: 
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 (72) 

This gives final system of equations: 
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or 

 [ ]{ } { }=A x b  (74) 

where the following definitions were used: 
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In material modeling or in the implementation of the optimization algorithms, where it is 
necessary solve a BVP in the microstructure (each one with a different distribution of 
inhomogeneities) many times, the BEM has a special advantage: it is not necessary to 
recalculate the matrix ooA  each time, and it can be stored out-of-core with the obvious 
savings in computational efficiency. In this case, a static condensation in the system of 
equations (74) is implemented. First, one can solve the displacements and tractions in the 
boundary of the holes, and the tractions in the boundary of inclusions with: 

 ( ) { } ( ){ }1oo oo
a a

−⎡ ⎤− = −⎢ ⎥⎣ ⎦ oD B A C x b B A b
1−

 (77) 

and then one can obtain the unknowns in the outer boundary of matrix with the expression: 

 { } ( ) {
1oo

a

−⎡ ⎤= −⎢ ⎥⎣ ⎦o ox A b Cx }  (78) 

This reduces the computer memory requirements needed, since a smaller system of equations 
is generated.  

 

3 NUMERICAL APPLICATIONS  

In this section, a number of tests solved with the hole element are analyzed to make a 
preliminary assertion of the quality of the results. In all cases presented herein, the Young 
modulus is 210 GPa, the Poisson ratio is 0.3 and the plane stress hypothesis is assumed. The 
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first example consists of a square plate of dimensions l with a cylindrical hole of diameter D 
at the center (see Fig. 7). The plate is submitted to uniform normal tractions t1 and is simply 
supported on the sides CD and DA. The Figs. 8 and 9 show the results of several D/l ratios for 
3, 4, 5 and 6 nodes elements compared with results obtained with the hole modeled using 16 
discontinuous quadratic elements. In Fig. 8, the ratio between the maximum displacement in 
the x1-direction on the side AB calculated with the hole element and calculated with 
conventional element is plotted. In Fig. 9, the minimum displacement in the x2-direction on 
the side BC is considered. These figures reveal the loss of the quality in the results when 
diameter of the hole becomes close to the plate dimensions. This fact is a consequence of the 
present implementation taking no special attention with quasi-singular integrals, which 
becomes more conspicuous when collocation points are close to the hole/inclusion element. It 
is worth to mention that in numerical experiments ill-conditioned systems resulted for ratios 
D/l ≥ 0.8.        
 

A

BC

D

D l

A

BC

D

t1

 
(a) (b) 

    
Figure 7: Squared plate a single cylindrical hole.  
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Figure 8: Ratio between the maximum displacement in the x1-direction on the side AB calculated with the 3, 4, 5 

and 6 nodes hole element and that calculated with the hole discretized using 16 quadratic discontinuous 
elements.  
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In next example, the interaction between two h
the first example is analyzed, but containing
dimension l of plate is 20mm, the radius is unita
(see Fig. 11).   
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Figure 10: Squared plate w
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Figure 11: Characteristic parameters for two holes interaction.  

 
 
 Figs. 12 -15 illustrates the displacements of the left hole boundary for ratios R/d of 0.25, 
0.285, 0.375 and 0.44, respectively.  
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Figure 12: Displacements in the left hole boundary in the case of a plate with two holes. R/d = 0.25.   
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Figure 13: Displacements in the left hole boundary in the case of a plate with two holes. R/d = 0.285. 
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 Figure 14: Displacements in the left hole boundary in the case of a plate with two holes. R/d = 0.375. 
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Figure 15: Displacements in the left hole boundary in the case of a plate with two holes. R/d = 0.44. 

4 CONCLUSIONS 

A boundary element formulation for the two-dimensional analysis of microstructures 
containing randomly distributed cylindrical inhomogeneities has been presented in this paper. 
The formulation includes a new family of elements such that each void or inclusion is 
modeled with a single boundary element. Therefore, the amount of data and computational 
cost is considerably reduced and the microstructure discretization strategy becomes simpler 
when compared to the conventional BEM or other discretization based methods. The 
numerical integration of the key terms is accomplished by the direct method, resulting in a 
regularized element. In addition, a static condensation scheme has been presented to reduce 
the size of the system of equations, which is especially advisable when solving many times 
the same problem, but using different inhomogeneities distributions.  

The accuracy of the new hole/inclusion elements has been verified through several 
examples. The proposed approach has shown to be very attractive to simulate the behavior of 
micro-heterogeneous composite materials containing many voids and inclusions of different 
sizes. However, no special care was taken so far to integrate quasi-singular integrals arising 
when two holes/inclusions are very close. As a consequence, when D/l ratios larger than 80% 
are analyzed, the system of equations may become ill-conditioned, as indicated by Figs. 8 and 
9. As far as the proposed elements are concerned, there is an important improvement in the 
quality of results with the 4-node element with respect to the 3-node element without meaning 
a significant increase in the computational cost. Results for the higher order elements are even 
better, but they increase the computational cost without many improvements on the final 
results, particularly in problems dealing with a large number of holes/inclusions. 
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