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Abstract. This paper deals with the simulation of microstructure evolution in steels, specif-
ically eutectoid steels, where competitive diffusive (pearlitic) and diffusionless (martensitic)
transformations may take place.

Diffusion-controlled transformations are modelled by using the classical Johnson-Mehl-
Avrami-Kolmogorov law for isothermal transformations, while the martensitic transformation
is assumed to obey either the Koistinen-Marburger or the Yu laws.

The non-isothermal evolution of diffusive transformations is derived from the isothermal
transformation kinetics either by invoking the additivity rule, or by integrating the rate form of
the Johnson-Mehl-Avrami-Kolmogorov law in time. The ability of both techniques to build con-
tinuous cooling transformation (CCT) diagrams from isothermal transformation (IT) diagrams
is evaluated.

Microstructure evolution is coupled with the thermal analysis, performed using the finite
element method.

A finite element analysis of a quench problem is finally carried out to evaluate the perfor-
mance of the model.
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1 INTRODUCTION

This paper aims to modelling the evolution of the microstructure in a material undergoing heat
treatment. This stage of the study is focused on monophasic transformations on eutectoid steels
during continuous cooling processes.

An eutectoid carbon steel, initially austenitic, transforms either to pearlite or martensite de-
pending on the cooling rate. The austenite→pearlite transition is driven by the diffusion of
carbon atoms, and hence it is time-dependent. On the other hand, austenite→martensite trans-
formation is diffusionless.

The transformation kinetics is described by means of isothermal-transformation (IT) dia-
grams (also known as TTT-diagrams), usually obtained by dilatometry. Diagrams for general
cooling and heating conditions are derived from IT-diagrams making appeal to the Scheil’s ad-
ditivity rule: a general thermal history is described as a series of isothermal steps. Strictly
speaking, the additivity rule holds only for isokinetic reactions, i.e., reactions where the nu-
cleation rate is proportional to the growth rate. Nevertheless, in practice it has been applied
satisfactorily to more general transformations.1–3

Some researchers4,5 criticized the broad use of the additivity rule, and proposed more sophis-
ticated models. These works are based on the integration of the rate form of the Johnson-Mehl-
Avrami-Kolmogorov (JMAK) law, which defines diffusion-controlled transformations under
isothermal conditions.

In this paper, the JMAK law itself (i.e., not its rate form) is used together with the addi-
tivity rule in order to model non-isothermal transformations. We compare this model with the
JMAK-rate model proposed by Lusk and Jou4 for computing diffusion-controlled transforma-
tion under continuous cooling. We show that the method based on the additivity rule is simpler
and provides better accuracy than the rate-based one. Last, but not least, the model based on the
additivity rule is cheaper to compute.

Regarding the diffusionless martensitic transformation, we apply the widely used Koistinen-
Marburger law. However, as it will be demonstrated, this law is not able to model complete
transformations. So, an alternative law proposed by Yu,19 capable of modelling such transfor-
mations, is also tested.

Finally, the present model will be applied for simulating the Jominy end-quench test, com-
paring our results with available experimental and numerical data.

2 MODELLING OF DIFFUSION-CONTROLLED TRANSFORMATIONS

The evolution of the transformed constituent is described by using the Johnson-Mehl-Avrami-
Kolmogorov (JMAK) law, which is the most commonly used model for describing diffusive
transformations kinetics. This law defines the volume fractionp of the product constituent at
time t for an isothermal transformation at temperatureT as

p = P [1− exp (−bta)] , (1)

wherea, b andP are parameters that depend on the temperatureT held all along the transfor-
mation.
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The coefficientsa = a(T ) and b = b(T ) are determined by knowing two points in the
IT-diagram of the material being modelled for the given temperatureT . The parameterP =
P (T ) is the maximum fraction of product constituent that can be formed along the isothermal
transformation at temperatureT . If P = 1 the transformation is said to be complete. In general,
P has to be determined experimentally by measuring the fraction of each constituent present
at the end of each isothermal transformation. For proeutectoid constituents (ferrite, cementite),
the value ofP can be deduced from the equilibrium diagram using Hultgren extrapolation.1,6

In order to track the evolution of the microstructure during a non-isothermal diffusion-driven
transformation, two alternatives will be explored: the use of the additivity rule, and the integra-
tion of the rate form of the JMAK equation (1) in time, as detailed below.

2.1 The additivity-rule (AR) model

According to the additivity rule, we can represent any non-isothermal transformation as a series
of stepsi = 1, 2, . . . where the temperature is maintained at a constant valueTi during a period
∆ti.

Let pi be the fraction transformed at the end of the isothermal stepi, carried out at temper-
atureTi, which is taken as the initial fraction for the next isothermal stepi + 1 developed at
temperatureTi+1. The fraction at the end of this step is determined by

pi+1 = Pi+1 (1− exp (−bi+1(t
∗
i + ∆ti+1)

ai+1)) , (2)

wherePi+1 = P (Ti+1), ai+1 = a(Ti+1), bi+1 = b(Ti+1), ∆ti+1 is the duration of the step
i + 1, andt∗i is a fictitious time defined to be the time needed to obtainpi during the isothermal
transformation at temperatureTi+1, i.e.

t∗i =

(
1

bi+1

ln
Pi+1

Pi+1 − pn

)1/ai+1

. (3)

2.2 The JMAK-rate model

Mathematically, it can be shown4,5 that the transformation described by equation (1) is isoki-
netic only if a does not depend on temperature. If it is not the case, the additivity rule is no
longer valid in a strict mathematical sense. Therefore, the evolution of the transformed phase
during non-isothermal processes should not be modelled as a series of isothermal steps but com-
puted by integrating the rate form of the JMAK equation, written as the autonomous differential
equation

ṗ = b1/aa(P − p)

(
ln

P

P − p

)1−1/a

∀t > 0, (4)

p(0) = p0, (5)

where the superimposed dot indicates time derivative.
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Regarding the initial condition,p0 should be null but it is often assigned a small value in
order to facilitate the numerical integration of equation (4), particularly when explicit methods
are used.

In order to integrate equation (4), the following single-step algorithm will be used:

pi+1 − pi

∆ti+1

= b
1/ai+θ

i+θ ai+θ(Pi+θ − pi+θ)

(
ln

Pi+θ

Pi+θ − pi+θ

)1−1/ai+θ

, (6)

where, for any variableλ,

λi+θ = λi + θ(λi+1 − λi) (7)

with 0 ≤ θ ≤ 1. Particularly,θ = 0 gives the explicit, conditionally stable, first-order accurate
forward-Euler (fE) method;θ = 1 gives the implicit, unconditionally stable, first-order accurate
backward-Euler (bE) method, andθ = 0.5 gives the implicit, unconditionally stable, second-
order accurate Crank-Nicolson (fE) method. For the implicit methods, equation (6) is nonlinear
and has to be solved numerically using iterative methods.

2.3 Generating CCT-diagrams from a IT-diagram

Let us consider the pearlite portion of the IT-diagram of a SAE 6150 steel, as defined by Lusk
and Jou,4 with:

a = 3.76 + 0.0235(600− T ), (8)

b = 4.3099× 10−10 exp
(
−4.2355

(
exp

(
4.9374× 10−5(602.55− T )2

))2
)

, (9)

whereT is given in degrees Celsius. The C-curves corresponding to 1% and 99% of transformed
phase are plotted with solid lines in Figure 1.

Lusk and Jou’s CCT-diagram was obtained for an unspecified exponential cooling history.
Here, in an attempt to approach Lusk and Jou’s conditions, the following exponential cooling
law is imposed

T = Ts − exp(ct)− 1

exp(ctf )− 1
(Ts − Tf ), (10)

whereT is given in degrees Celsius,t in seconds,c = 5.× 10−4, Ts = 660oC,Tf = 430oC, and
tf is the time spent to cool fromTs to Tf , varying between102.2 to 104 sec. Further, in order to
compare with Lusk and Jou’s results, the transformation is assumed to be complete (i.e.,P = 1)
in the whole range of temperatures considered.

The time step∆t, defining either the duration of each isothermal step when the additivity
rule is applied or the time step used for integrating equation (4), is set totf/4000.

Figure 1 shows the CCT-diagram computed on the basis of the given IT-diagram using both
the model based on the additivity rule and the JMAK-rate model.
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Figure 1: IT-diagram and derived CCT-diagrams

When equation (4) is solved withp = 10−4 as initial condition (the value10−4 is recom-
mended in several articles by Lusk and coworkers7–10), a certain difference with the results
obtained by using the AR model is observed. The difference is similar to that observed in,4

which had motivated these authors to criticize the applicability of the additivity rule for trans-
formations kinetics wherea depends on temperature. However, taking strictlyp(0) = 0, the
solution of equation (4) is in excellent agreement with that obtained by the additivity rule.

Now, in order to test accuracy with respect to the time step size, the AR model and the
rate-JMAK model integrated with fE, bE and CN methods were applied to predict the pearlite
fraction at the end of the exponential cooling history given by equation (10) withtf = 5 min,
that is

T = 660.− 1421.207 (exp(0.0005t)− 1) , (11)

whereT is given in degrees Celsius andt in seconds.
The computed pearlite fractions are plotted on the left of Figure 2.
In order to evaluate the evolution of the error as the time step increases, considering that an

exact analytical solution does not exist, the exact valuepexact is approximated by the average
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of the different numerical solutions for an extremely fine time step (0.01 sec),pexact ≈ pave =
0.36360496.

As shown on the right of Figure 2, compared to fE- and bE-rate-JMAK models, the AR
model has the same convergence rate but its error is two-orders-of-magnitude smaller than the
former ones. The CN-rate-JMAK model converges faster than fE- and bE-rate-JMAK models,
but its accuracy remains poorer than that of the AR model for typical time step sizes (0.1 to 1
sec), and as poor as fE- and bE-rate-JMAK models for larger time steps.
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Figure 2: Pearlite fraction after 5 min for the cooling history given by equation (11), as a function of the time step
used for tracking the fraction evolution.

Regarding computational cost, the fE-rate-JMAK and AR models are the cheaper ones, since
the function for updatingp is explicit. On the other hand, using bE- and CN-rate-JMAK models,
the evolution ofp is governed by a nonlinear equation to be solved numerically by an iterative
process. Additionally, as demonstrated by the influence of the initial valuep0, at the beginning
of the transformation very small variations ofp correspond to large variations oft, and in such
case equation (6) must be solved with a very strict convergence criterium (we adopt here10−12

for the variation ofp), which increases the computational cost.
Therefore, regarding accuracy and computational cost, we conclude that the AR model re-

sults the best scheme for numerical modelling of non-isothermal transformations, even if the
transformation is not isokinetic.

3 MODELLING OF MARTENSITIC TRANSFORMATION

Contrary to diffusion-controlled transformations, the martensitic transformation is diffusionless
and takes place only in non-isothermal processes. The formation of martensite during cooling
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begins at temperatureMs, and its volume fraction is usually computed using the Koistinen-
Marburger law:

m = γ̄ (1− exp (−k(Ms − T ))) , T < Ms, (12)

whereγ̄ is the residual volume fraction of austenite atMs, andk characterizes the evolution
of the transformation with temperature, usually taken equal to 0.011 for steels. In this work,γ̄
represents the austenite not already transformed into pearlite once the temperatureMs is reached
during the cooling process.

We choose to track the evolution of the martensite fraction by applying equation (12) straight-
forwardly, as done by Murthy et al,11 Boyadjiev et al,12 Bokota and Iskierka,2 Alberg and
Berglund,13 Prieto et al,14 Costa et al,15 Casotto et al,16 and contrary to the proposal of Bammann
et al,7 Holmberg,17,17 Prantil et al18 who solve the rate form of equation (12).

Alternatively, we apply the parabolic law proposed by Yu,19 which defines the martensite
volume fraction as:

m = γ̄

(
1−

(
T −Mf

Ms −Mf

)2
)

, T < Ms, (13)

beingMf the transformation finish temperature.

4 THE HEAT EQUATION

Temperature distribution in the domain of interestΩ is governed by the heat conduction equa-
tion

ρḢ − ∇ · (κ∇T ) = 0, ∀x ∈ Ω, ∀t > 0, (14)

subject to the initial condition

T = T0(x), ∀x ∈ Ω, t = 0, (15)

and the following boundary conditions on the closure∂Ω:

T = T̄ (x, t), ∀x ∈ ∂ΩT , ∀t > 0, (16)

κ∇T · n = q̄(x, t), ∀x ∈ ∂Ωq, ∀t > 0, (17)

κ∇T · n = h(T )(Tenv − T ), ∀x ∈ ∂Ωc/r, ∀t > 0, (18)

In the above equations,H is the enthalpy per unit mass,ρ is the material density, andκ the ther-
mal conductivity; regarding boundary conditions,∂ΩT , ∂Ωq and∂Ωc/r denote non-overlapped
portions of∂Ω, n the unit normal vector pointing outwards∂Ω, T̄ andq̄ prescribed values of
the temperature and the heat flux, respectively,h is the heat convection or radiation coefficient,
andTenv the temperature of the external environment.

Bulk properties, likeρ,H andκ, are defined by the mixture law

λ = mλm + pλp + γλγ, (19)

whereλi is the property restricted to constituenti (i = m, p, γ), andγ = 1 − m − p is the
volume fraction of austenite. Each propertyλi may be thermodependent.
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4.1 Discretization of the thermal problem

First, the equation (14) is integrated in time using the Euler-backward implicit time-stepping
scheme. The temperatureT at timet = t0 + ∆t is determined by the equation:

ρ
H−H0

∆t
−∇ · (κ∇T ) = 0, (20)

where the superindex0 denotes quantities referred to the previous time instantt0, assumed to
be known.

Finally, the fully-discrete version of the heat equation is obtained by applying the finite
element method (FEM) for spatial discretization. The unknown temperature fieldT is approxi-
mated as follows:

T (x, t) = Ni(x)Ti(t), ∀x ∈ Ω, ∀t > 0, (21)

whereNi is the shape function associated to nodei andTi the unknown temperature at this
node.

Introducing this approximation into the weak form of equation (20), with the shape functions
playing the role of the weighting functions (i.e., Galerkin formulation), we obtain

Hi −H0
i

∆t
+ KijTj − Fi = 0, (22)

whereHi is the enthalpy vector,Kij is the conductivity (or stiffness) matrix, andFi is the
external heat flux vector, each one defined as

Hi =

∫

Ω

ρHNi dV, (23)

Kij =

∫

Ω

κ∇Ni · ∇Nj dV, (24)

Fi =

∫

∂Ωq

q̄Ni dS +

∫

∂Ωc/r

h(Tenv −NjTj)Ni dS. (25)

The above integrals are computed numerically. At each integration point, the constituents
fractions are computed using the strategy developed in the previous section.

The non-linear system of algebraic equations (22) is solved using the Newton-Raphson
method.

Remark: The time step used for integrating the heat equation, say∆tHE, does not need to
be equal to that defined as the duration of the isothermal steps when the additivity rule is used,
say∆tAR. In fact, while reducing∆tAR improves the accuracy for tracking microstructure
evolution, the decrease of∆tHE may cause numerical unstabilities as it is the case in presence
of thermal shocks,20 and hence in the modelling of rapid cooling processes.

Taking these considerations into account, we decide to uncouple the choice of∆tHE and
∆tAR, being always∆tHE ≥ ∆tAR.
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5 APPLICATION

Let us consider the Jominy end-quench test, as treated by Hömberg.17 The material is an eu-
tectoid carbon steel C1080, whose IT-diagram is observed in Figure 3. This diagram is digital-
ized by taking a series of points(t, T ) on two C-curves. Intermediate values are obtained by
piecewise-cubic Hermite interpolation based on the gathered points.

Surveyed points

Figure 3: IT-diagram for C1080 steel.

Then, taking one point on each curve for a given temperatureT , the parametersa(T ) and
b(T ) of the JMAK law are computed. The so-determined values ofa andb are plotted in Figure
4.

Average values are adopted for the mass density (ρ = 7200.kg/m3), the thermal conductivity
(κ = 34.W/(moC)) as well as for the specific heat (cp = 680.J/(kgoC)) used to define the
sensible part of the enthalpy of each constituent. The total enthalpyH is defined as

H = cpT − Lpp− Lmm, (26)

whereLp = 77000.J/kg andLm = 84000.J/kg are the latent heats released during pearlitic
and martensitic transformations, respectively.

For martensitic transformation, we assumeMs = 224oC andMf = 100oC, values that have
been estimated from the IT-diagram in Figure 3.

The domain of interest consists of a cylindrical specimen, with radiusR = 1.25 cm and
length L = 6.25 cm, which is initially fully austenitic at homogeneous temperatureT 0 =
720.oC, and suddenly cooled by applying a water jet to the lower end, according to the convec-
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Figure 4: Parameters for the Johnson-Mehl-Avrami-Kolmogorov law computed from the IT-diagram for C1080
steel.

tion heat exchange law:

qwj = hwj(T )(Twj − T ), (27)

with Twj = 25.oC, and

hwj(T ) = −1670. + 108.T − 0.0977.T 2 (28)

given inW/(oC m2) for T in oC.17

Additionally, the specimen exchanges heat with the environment through its lateral surface.
This heat flux is mainly radiative and is defined as21

qls = εσ(T 4
env − T 4), (29)

whereε = 0.8 is the emissivity od the surface,σ is the Stefan-Boltzmann constant, andTenv =
25.oC is the environment temperature. We make this boundary conditions fit equation (18) by
defining the non-linear radiative heat transfer coefficient

hls(T ) = εσ(T 2
env + T 2)(Tenv + T ). (30)

The upper end is supposed to be adiabatic.
Linear tetrahedra finite elements are used for the spatial discretization of the cylinder, as

shown in Figure 5. Considering that the specimen as well as the boundary conditions are sym-
metric with respect to the axis of the specimen, just the cylinder generated by a small sector of
the cross section is modelled. Even if an axisymmetric model is best suited for this particular
problem in terms of computational cost, a 3D model is used keeping in mind future industrial
applications.

The heat equation is integrated in time using a time step∆tHE = 0.5 sec, while the duration
of each isothermal step is∆tAR = 0.1 sec.
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Figure 6 shows the distribution of the different constituents along the axis of the specimen,
as computed using the different models. First, let us consider the case of martensitic transfor-
mation defined by widely used KM equation (12). At the quenched end (z = 0), the material
is mainly martensitic (≈ 89%), with a small fraction of retained austenite (≈ 11%). From this
end to a section located atz ≈ 7. mm, the material present the three constituents: martensite,
austenite and pearlite. The remaining material is predicted to have a fully pearlitic microstruc-
ture. Compared to experimental results22 as well as to previous numerical results,17 the marten-
site fraction is understimated at the quenched end. However, the so-estimated width of the
martensitic region is closer to the experimental result22 than that of Ḧomberg.17

The underestimation of the martensite fraction is associated to the use of the KM formula.
In fact, equation (12) evaluated at the lowest temperature attainable during the cooling pro-
cessTmin = Twj = Tenv = 25oC givesm(Tmin) ≤ 88.80% = mmax, that is the maximum
martensite fraction attainable under the present conditions.

The Yu law19 for martensite evolution enables the modelling of the complete austenite de-
composition into martensite by introducing the temperatureMf such thatm(Mf )/γ̄ = 1. The
current model using Yu law for martensitic transformation gives the better results in terms of
agreement with the experimental measures.22 In this case, no austenite is retained at the end of
the process. Note that the pearlite fraction is practically identical to that computed using the
KM law for martensite evolution.

6 CONCLUSIONS

The additivity rule has been found to be the best method to track the evolution of the microstruc-
ture evolution during cooling processes. The AR model was not only the most accurate scheme

Victor D. Fachinotti, Alberto Cardona and Andr´es A. Anca

911



0 2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

martensite (ASM, 1977)

no austenite

present model,
Yu's law

pearlite
martensite

Distance from the quenched end [mm]

C
o
n
s
ti
tu

e
n
t 
v
o

lu
m

e
 f
ra

c
ti
o
n

martensite (Hömberg, 1996)

0

austenite

present model,
KM law

pearlite

{

martensite

{

Figure 6: Volume fraction of the different constituent along the axis of the specimen.

for typical time step sizes but also one of the cheaper. Further, the AR model has proved to
work not only for isokinetic transformations.

The evolution of the microstructure has been coupled with the solution of the heat equa-
tion in the three-dimensional space, giving a complete tool for the thermal analysis of cooling
processes.

The time steps for integrating the heat equation and the microstructure evolution can be
chosen independently.

The model has been applied to simulating the Jominy end-quench test, showing qualitatively
satisfactory results compared to experiments. Differences with the experiments are mainly due
to the use of the Koistinen-Marburger law for describing martensitic transformation. With this
law, the modelling of a complete transformation is unfeasible for the range of temperatures of
interest. This has been overcome by using the Yu law, which takes into account the temperature
for which the transformation finishes.

The extension of the present model to general heat treatment processes will also be studied
in in future works.
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[5] T. Réti and I. Felde. A non-linear extension of the additivity rule.Computational Materials
Science, 15:466–482, 1999.
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