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Abstract. The main objective of this paper is to present an error estimator applied to
the adaptive refinement process in acoustic dynamic analysis. A posteriori error estimator
based on Fribergs formulations is developed, and the numerical solutions is obtained using
triangular hierarchical finite elements. The procedure is tested using analytical solutions of
2-dimensional acoustic cavities. The acoustic frequencies and mode shapes are compared
with the analytical solutions for different initial mesh. The influence of mesh distortions
is also evaluated.

marce
1346



1 INTRODUCTION

There is a large bibliography on the error analysis applied to Finite Element method, a
good introduction about this subject can be found in Noor.1 There is two main techniques
from which was developed a great number of particular methods to specific problems, one
of this is called recovery method also known as ZZ or Z2 or Zienkiewicz Zhu. This method
is the base for different versions in different applications2,9 of the finite element method,
its basic principle can be found on papers by Zienkiewicz and Zhu.4–7 Another method
is the residual method and its principle can be found in Babus̆ka.10,11 Both methods are
considered a posteriori, it means that this techniques use information obtained during the
solutions process, in addition to some assumptions about the results, and both are local
methods computed on elements of the discretized domain.

The error analysis of the Finite Element method applied to external acoustic problems
received great attention in the last decade, and I. Babus̆ka gave significant contributions
to this topic.13–18 Part of that work was published by F. Ihlenburg,19 where an additional
bibliography can be found. The most important result from that research was the discover
of the numerical pollution on infinite domain acoustic problems. The pollution error comes
from non local influences on the local error.2,13

On the other hand, in eigenvalue problems, contributions from N.-E. Wiberg et. al.9 in
vibrations and Fuenmayor et. al.20 in internal acoustics has utilized a h-adaptive proce-
dure based on a error estimator derived from the recovery method. The results published
by Fuenmayor to internal acoustics problem proved that the procedure is effective, but it
conducts to a high degree of mesh refinement.

This work applies to internal acoustic problem a error estimator developed to p version
of Finite Element method. The error estimator was presented by O. Friberg21 and it is
based on the energy norm. This estimator was derived from the property of the matrices
obtained from hierarquical shape functions where the new eigenpair can be evaluate from
previous results.21,22,26 This particular aspect from what the error estimator was obtained
means that the estimator uses the whole information of the matricial system, not only
local information as the traditional estimators do.

This document presents results from the application of the Friberg’s error estimator
on internal acoustic problem and the influence of the mesh properties on the reliability
of the finite element solutions at the end of adaptive process. A comparison between
theoretical modes and post-processed eigenvetors achieved at the end of the iterative
routine is presented too.

2 FORMULATION OF THE PROBLEM

The Equation (1) is the Helmholtz equation and it describes the two-dimensional
acoustic domain:23,24

∇2P − 1

c2

∂2P

∂t2
= 0 (1)
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P represents the pressure oscillation from equilibrium, and c is the acoustic velocity.
Multiplying the Equation (1) by a weight function , using Galerkin and applying Green,
the Helmholtz equation can be written in the weak formulation as:

∫

Ω

(
∂P

∂x

∂v

∂x
+

∂P

∂y

∂v

∂y

)
dΩ +

∫

Ω

v
1

c2

∂2P

∂t2
dΩ =

∮

Γ

v
∂P

∂n
dΓ (2)

Assuming that the solution can be written as a product of two functions of time and
space, discretizating the domain and approximating the solution by shape functions, the
generalized formulation can be expressed on typical eigenvalue problem:

[Hf ] {P} − ω2

c2
[Ef ] {P} = 0 (3)

In this expression [Hf ] and [Ef ] will be called respectively the volumetric and compress-
ibility matrix. The shape functions employed to approximate the solution are conventional
shape functions in area coordinates and the hierarchical shape functions are those sug-
gested by Peano.26 The boundary condition are of the null pressure over the boundary
P = 0.

3 ERROR ESTIMATOR

The error estimator is based on the properties of the hierarchical matrix which comes
from the approximation by the finite element technique using hierarchical shape func-
tions. The hierarchical shape functions are polynomials of order p which are a subset
of polynomials of order (p + 1), so that the matrix produced by finite element method
from approximation polynomials of order p is also a subset of a matrix from the (p + 1)
polynomials. Using the energy norm and this hierarchical property a error estimator was
derived by P. O. Friberg.21 The error estimator which is applied to the Equation (3) can
be expressed by:

ηk
i,j =

{[Hn+1,n − λn
i En+1,n] {P n

i }}2

ki [Hn+1,n+1 − λn
i En+1,n+1]

(4)

where ηk
i,j is the estimate error to i th frequency obtained by increasing the hierarchical

order from n to n + 1 on the j th degree of freedom of the k th element. For a n × n
system, λn

i represents the calculated eigenvalue and {P n
i } the correspondent computed

eigenvetor. The term ki is determined by ki = {P n
i }T [H]n,n{P n

i }.
From Equation (4), if the mesh has q elements the estimate error for the i th frequency

is the sum of the estimate error of each degree of freedom for each one of the q elements:
ηi =

∑q
k=1

∑m
j=1 ηk

i,j, considering m degrees of freedom for the k th element.

4 NUMERICAL RESULTS FOR INTERNAL CLOSED ACOUSTIC
CAVITY

This section presents the numerical results from the p adaptive procedure using the
error estimator give by Equation (4). To do that, natural frequencies and mode shapes of
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Figure 1: Mesh F110, 110 elements, 71 nodes, mean element quality αmed = 0.928, hmed = 0.635, 90
elements with α = 0.99, 20 elements with α = 0.693.

a rectangular cavity are analyzed at the end of the adaptive process. The results comes
from a cavity that has L=3,048m height , and H=6,096m length, and it is fulfilled with
a fluid that exhibits a density ρ0=999,21Kg/m3 and a sound velocity c=1524m/s. The
boundary condition is null pressure on the borders, and it is the same as presented on
the reference Y. S. Shin and M. K. Chargin28 where the others properties and dimensions
comes by. To show the influence of the element quality on the results, two mesh with
different degree of distortion is included.

The quality of one element can be defined as:29

αi =
4
√

3Ai

l21 + l22 + l23
(5)

where l1, l2 and l3 are sides of the triangular element and the variable Ai represents the
element area. The mesh quality can be expressed by:

αmed =

∑q
i=1 αi

q
(6)

To express the refinement degree of the triangular mesh with q elements the characteristic
dimension hmed is employed:

hmed =

∑q
i=1

(
1
3

∑3
j=1 lj

)

q
(7)

The mesh F110, Figure (1), and mesh F105d, Figure (2), show two mesh qualities and
different distribution of the distorted element on the discretized domain. This two meshes
have almost the same number of nodes and elements and its main characteristics can be
found on Figures (1) and (2) and on Table (1).

The analytical solution of the internal acoustic problem as above formulated is ex-
pressed by:24

ω(m,n) = c

√(mπ

L

)2

+
(nπ

H

)2

(8)
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Figure 2: Mesh F105d, 105 elements, 68 nodes, mean element quality αmed =0.675, hmed = 0.733 m, 91
elements with α =0.729, 14 elements with α =0.408.

In this equation the variables c, L and H are respectively the speed of sound in the fluid,
length and height of the cavity, m = 1, 2, 3 . . .∞ and n = 1, 2, 3 . . .∞. The mode shapes
are described by the expression:23

Pm,n(x, y) = sin
(mπx

L

)
sin

(nπy

H

)
(9)

Knowing the exact frequency ω(m,n) it’s possible to determine the finite element solution
error, this error will be called computed error or actual error to distinguish it from the
estimate error calculated by Equation (4).

The finite element solution is obtained at the end of the iterative process in which the
error is under a prescribed value for a frequency range. In all cases reported here the
upper frequency limit is 1110 Hertz and the error acceptable should be under 1,0%.

To the mesh F110 the iterative process can be seen on Figures (3) and (4). The Figure
shows the evolution of the analytic and computed frequencies in function of the mode
number in each iteration of the p adaptive process. The Figure (4) presents the behavior
of the actual or computed error and estimate error associate to frequency against the
mode number to the same process.

It should be emphasized that the error estimator employed is a eigenvalue estimator, it
only give a guarantee that the frequency or eigenvalue error is under a specified value, but
it does not assure settling the eigenpair. For instance, on the Figure (3) the modes 15, 16
and 17 have very close frequencies, if the difference between two neighbor frequencies is

mesh nodes elements αmed hmed Eq. of system

F110 71 110 0,928 0,635 41
F105d 68 105 0,675 0,733 39

Table 1: Properties of the employed meshes.
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(a) First iteraction. (b) Second iteraction.
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(c) Third iteraction. (d) Fourth iteraction.

Figure 3: Computed and actual frequencies as a function of the mode number. Mesh F110.

under the specified error value, then it could occur a change in the aigenvalue order. But
independently of the order, the error of the frequencies will be under desired value.
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Figure 4: Estimate and actual error as a function of the mode number. Mesh F110.

4.1 The Internal Closed Acoustical Cavity Using Different Mesh Quality

Triangular elements in area coordinate are used in the numerical approximation to the
2-dimensional acoustic problem. The elementary matrix is computed in area coordinate

xyz
ENIEF 2003 - XIII Congreso sobre Métodos Numéricos y sus Aplicaciones

xyz


marce
1352



with a subsequent coordinate transformation to global domain. This coordinate transfor-
mation is supposed to be linear (Jacobian of transformation is constant), but it is linear
only if the elements were not deformed or if the angles did not change.11 Therefore the
triangular elements always exhibit a degree of distortion with error on result except for
perfectly equilateral elements.

The Figures (5-A), (5-B) and Figure (7) are included to disclose the influence of the
mesh quality on the adaptive process efficiency. The Figure (5) exhibits the frequency
evolution as a function of the number of equations of the system for successive iterations.
This graphics are drawn for the 2 th, 7 th and 14 th modes, this shape modes are shown
on the Figures (8) and (9) for the meshes F110 and F105d.

The graphics (5-A) and (5-B) show very close behavior during the iterative process
although the quality coefficient of the mesh αmed has been changed from 0.928 to 0.675.
This Figure also shows that the curves for each mode shape evolution are similar. The
Figure (5) does not reveal the necessary resolution to compare the influence of the mesh
on error estimator once the greatest error is under 1.0%.

The estimate error is the work variable of the adaptive process, so it is chosen in
conjunction to actual error to compare the behavior of the iterative process of the two
meshes. To show up the influence of the mesh quality, the graphic of error as function of
number of equations of the system are displayed on Figure (6) for the 2 th, 7 th and 14 th
mode shapes for each one of the meshes. On this graphics the intersection point of error
estimate curve and computed error curve represents the limit of confidence of the error
estimate procedure. Under this confidence point the error estimator loses the ability to
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Figure 5: Frequencies versus number of equations of the system. Modes 2, 7 and 14 for the meshes F110
(a), and mesh F105d on graphic (b).
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Figure 6: Estimate and actual error versus number of equations of system. Modes 2, 7 and 14 meshes
F110 and F105d.

identify properly the error.
Comparing the evolution of the mode shapes of the mesh F110 in Figure (6) and

the equivalent graphics of the mesh F105d one can observe that the latest has a higher
confidence points than the former. The mesh distortion looks like to become the results a
little more inaccurate. But, to the chosen mode shapes show on Figure (6) the confidence
point for the two meshes seems to be very close.
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Figure 7: Estimate and actual error relative to the frequencies versus mode number. Fourth iteration,
mesh F105d.

The error graphic of latest iterative process to the mesh F105d, showed on Figure
(7), is more enlightenment. In this figure the estimate error curve is under the actual
error curve, and for the higher frequencies of the range of interest the actual error curve
overcome the prescribed error that is fixed in 1.0%. The adaptive process attempts to
put the error under a determined value so if the routine is unable to estimate the correct
order of the error there is no confidence in the process. In this case is more suitable to
consider that the mesh F105d do not show a discretization quality enough to warrant a
error under 1.0% for frequencies below 1110 Hz.

The analysis made on Figure (6) results from the post processing the eigenvectors, and
gathering the similar ones in each iteration to put the results on figure (6). So this figure
arise from some some physical interpretation of the results taken from adaptive process
allowing to validate and evaluate its accuracy and its utility. But, the adaptive routine
does not do this, so in Figure (4) throughout the iterations might occur changing in the
order of the shape modes due a error in the closest eigenvalues or due a big error in a
eigenvalue.

The Figure (8) and Figure (9) show up the shape modes 2, 7, and 14 taken from the
eigenvectors at the end of the iterative process to the meshes F110 and F105d. This
shape modes are included post-processed with the analytical shapes modes to show the
ability of the p-formulation to detail the shape modes. The analytical shape modes are
obtained from the Equation (9). As pointed out, the error indicator is a eigenvalue error
estimator, but it computes the eigenvalue error using the eigenvectors, so the result is the
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(a) (b)

(c)

Figure 8: Mode 2 post-processed for mesh F105d (a) and mesh F110e (b). Exact solution on graphic (c).

improvement of the eigenvectors accuracy too. The eigenvector post-processing enhances
the shape mode description as it uses the expression:

P = P1N1 + P2N2 + P3N3 + a1N4 + a2N5 + . . . + anNn (10)

where Ni represents the physical and hierarchical shape functions, Pj is the nodal pressure,
and ai the hierarchical coefficients. Pj and ai are taken from the eigenvector. In practical
problems the shape mode of interest are those of low order, hence the eigenvector post-
processing gives enough accuracy to depicts this shape mode.

5 CONCLUSIONS

This work shows that the error estimator developed by Friberg can be used on p
adaptive procedure to the dynamical internal acoustic problems. This error estimator
is applied to the hierarchical finite element approximation to a 2-dimensional problem.
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Figure 9: Modes 7 and 14 post-processed for Mesh F105d and mesh F110e. Exact solution from Equation
(9) the last two graphics.
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The results proved that the error estimator exhibits capability to recognize the error and
improve the solution accuracy at the end of iterative routine.

The influence of the mesh quality on error estimator is also presented. The distortion
of the elements conducts to a lost of accuracy on the error estimate. This lost of accuracy
is observed for a small prescribed error and for very distorted elements.

The post-processed shape modes also demonstrate the ability of the hierarchical shape
functions on describe it.
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