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Abstract. A numerical solution for the one-dimensional (1D) hyperbolic conservation
law is presented, based on the Runge Kutta Discontinuous Galerkin Method (RKDG).
The RKDG scheme combines some properties of the finite element and finite-volume tech-
niques, resulting on a very attractive method because of its formal high-order accuracy, its
ability to handle complicated geometries, its adaptability to parallelization, and its abil-
ity to capture discontinuities without producing spurious oscillations. In this paper, we
consider some scalar conservation equations to ilustrate the method’s properties in one
spatial dimension (1-D). Finally, the 1-D shallow water equations are discretized with the
RKDG. A comparison with an exact solution is made to illustrate the capability of the
method to handle strong discontinuities with relative small number of elements.
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1 INTRODUCTION

The Runge Kutta Discontinuous Galerkin (RKDG) method has been introduced in the
90’s with a series of papers by Cockburn and Shu1–4 as an alternative to the so-called
Discontinuous Galerkin (DG) method. The Discontinuous Galerkin (DG) method was
originally introduced by Reed and Hill5 for solving linear neutron transport equations,
and studied by Jamet6 and Jonhson and Pitkaranta,7 among others. Whereas in the DG
method, the approximate solution is discontinuous only in time, with continuos finite
element in space dimensions, in the RKDG the solution is approximated in space with
discontinuous -or piecewise continuous- functions. Chavent and Salzano8 constructed an
explicit version of the DG for the one-dimensional scalar conservation law. They dis-
cretized the equation by using piecewise linear elements in space and by using the Euler
forward step method in time. The scheme was unconditionally unstable even for very
restrictive conditions on the time step and mesh size. To improve the stability of the
method, Chavent and Cockburn9 modified the scheme by introducing a slope limiter bor-
rowing the ideas introduced by van Leer10 . The scheme so obtained was proven to be total
variation diminishing in the means (TVDM) and total variation bounded (TVB). How-
ever, the scheme was only first order accurate in time and the adopted slope limiter had
to damp oscillations triggered by linear instability even in smooth regions of the solution,
thus degrading the quality of the results. These dificulties were overcome by Cockburn
and Shu,4 where the first RKDG method was introduced with the following attributes:
(i) the method retained the piecewise linear approximation of the DG method in space,
(ii) the method used an explicit TVD second order accurate Runge-Kutta discretization
developed by Shu and Osher11 for finite difference schemes. Then, Cockburn and Shu2

extended the approach to devise RKDG of higher orders. Consequentley, the RKDG
method has found rapid applications in such diverse areas of gas dynamics,12 transport of
contaminant in porous media,13 and shallow water flows14,15 among many others problems
of the water and the environment. See, for example, the review paper of Cockburn for an
extended bibliography and applications16 .

The RKDG method has several advantages that well-deserved consideration: (i) it pre-
serves the well-known capability of the classical finite element method to handle compli-
cated geometries, (ii) it handles adaptivity strategies very easily, since the grid refinement
can be done without taking into account the continuity requirement typical of conform-
ing finite element methods. (iii) it increases the degree of the aproximating polynomials
locally, thus allowing an efficient p adaptivity for each element with total independence
of its neighbors. (iv) it comunicates each element data with its inmediate neighbors only,
regardless of the order of accuracy, thus allowing for efficient parallel implementations,17

and (v) it has very good stability properties without the need for limiters in many situa-
tions11,13 .

In this paper, the scalar hyperbolic equation is considered first to ilustrate the method’s
properties in one spatial dimension (1-D). Then, the 1-D linear diffusion is analyzed,
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followed by a brief discussion of 1-D advection-diffusion applications. Finally, the 1-
D shallow water equations are discretized with the RKDG. A comparison with an exact
solution is made to illustrate the capability of the method to handle strong discontinuities
with relative small number of elements.

2 THE SCALAR HYPERBOLIC CONSERVATION LAW IN ONE SPACE

DIMENSION

The basic idea of the method can be ilustrated with the scalar hyperbolic conservation
law in 1-D

ut + f(u)x = 0 , (0, 1) × (0, T ) (1)

u(x, 0) = uo(x) (2)

subjet to periodic boundary conditions. If the mesh partition of the domain (0, 1) is
denoted by {Ij}N

j=1, where the grid size is ∆j = xj+1/2 − xj−1/2, and the center of the
element is denoted by xj = (xj−1/2 + xj+1/2)/2, the weak statement of the problem is
obtained if (1) and (2) are multiply by an arbitrary smooth function v(x), and integrated
by parts over the interval Ij.

∫

Ij

∂tu vdx =

∫

Ij

f(u)v′dx + f [u(x+
j− 1

2

, t)] v(x+
j− 1

2

) − f [u(x−

j+ 1

2

, t)] v(x−

j+ 1

2

) (3)

∫

Ij

u(x, 0)v(x)dx =

∫

Ij

uo(x)v(x)dx (4)

where x−

j+1/2 denotes the limit from the left, and x+
j−1/2 the limit from the right. Then,

the variational statement of the problem is this: find an approximate solution uh to u for
each time t ∈ (0, T ),where uh(x, t) and v(x) belongs to the finite dimensional space

V K
h =

{
v ∈ L1(0, 1) : v|Ij

∈ P K(Ij), j = 1, ..., N
}

(5)

That is, in the space dimension V K
h , uh and v are piecewise polynomials of degree at most

K. Since both functions uh and v are discontinuos at the points xj±1/2, the ambiguity
present in the last two terms of (3) involving the non-linear fluxes f [u(xj±1/2, t)] must be
replaced by numerical fluxes that depend on the values of uh at the interfaces xj±1/2

f̂j+1/2 = f̂(uh|−j+1/2 , uh|+j+1/2) , f̂j−1/2 = f̂(uh|−j−1/2 , uh|+j−1/2) (6)

that will be suitably chosen later (the idea is to define these numerical fluxes by an
upwinding mechanism, i.e., with information defined along characteristics). Thus, if the
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approximate solution uh is expanded in terms of the Legendre’s polynomials Pm as local
basis functions

uh(x, t)|Ij
=

K∑

m=0

umj(t)Pm

(
2(x − xj)

∆j

)
, ∀ j = 1, ..., N , (7)

the test functions v(x) are taken to be the same as the basis functions, i.e., v(x) = {Pl}K
l=0,

which is the esence of the Bubnov-Galerkin method, and the orthogonality property of
the Legendre’s polynomials is invoked

1∫

−1

Pm(ξ)Pl(ξ)dξ =
2

2l + 1
δml (8)

where

ξ =
2(x − xj)

∆j
, δml =

{
1 , m = l
0 , otherwise

, (9)

the weak form simplify to

dulj(t)

dt
=

2l + 1

∆j

1∫

−1

f [uh(ξ, t)] P
′
l (ξ) dξ +

2l + 1

∆j

{
(−1)l f̂+

j− 1

2

− f̂−

j+ 1

2

}
(10)

ulj(0) =
2l + 1

2

1∫

−1

uo(ξ)Pl(ξ)dξ , ∀l = 0, ..., K, and j = 1, ..., N (11)

where the properties of the Legendre’s polynomials Pl(−1) = (−1)l, Pl(1) = 1 have been
used.

2.1 Numerical Fluxes

To complete the definition of the problem, it remains to choose the numerical flux. Here, it
is cruxial to stress the point made by Cockburn16 ‘... the idea is to construct schemes that
are perturbations of the so-called monotone schemes. That is, by perturbing the monotone
scheme, it is possible to achieve high order accuracy while keeping their stabilitiy and
convergence properties...’. Consequently, when the DG-space discretization is piecewise
constant, K = 0, the integration scheme must be monotone

duoj(t)

dt
=

f̂j+ 1

2

− f̂j− 1

2

2
, ∀j = 1, ..., N (12)

uoj(0) =
1

2

1∫

−1

uo(ξ) dξ (13)
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This defines a monotone scheme if f̂(a, b) is a Lipschitz continuous, consistent, and mono-
tone flux. That is, if it is (i) locally Lipschitz, and consistent with the flux f(u), i.e.,

f̂(u, u) = f(u), (ii) a nondecreasing function of its first argument, and (iii) a nonincreas-
ing function of its second argument. There are several examples of numerical fluxes that
satisfies the above properties. Here, the local Lax-Friedrichs flux f̂LLF are considered

f̂LLF (a, b) =

{
1
2
[f(a) + f(b) − C(b − a)]

C = max |f ′(s)|, min(a, b) ≤ s ≤ max(a, b)
(14)

2.2 The TVD-Runge-Kutta algorithm for time integration

The discretized system, once the numerical fluxes are specified, can be written as follows

duh(t)

dt
= Lh(uh, t) , ∀t ∈ (0, T )

uh(0) = uh
o

The elements of Lh(uh) of V K
h are the outcome of approximating −f(u(x, t))x by the

DG-space discretization. When polynomial of degree K are used, a Runge-Kutta method
of order (K +1) must be employed.16 Then, if the TVD Runge-Kutta time discretization
introduced in Shu18 is used, the time-stepping algorithm reads as follows: if {tn}M

n=0 is
a partition of [0, T ] in M time intervals, and ∆tn = tn+1 − tn, for n = 0, ..., M . , the
simplest TVD Runge-Kutta of orden two is given by

u
(1)
h = un

h + ∆t Lh(u
n
h) (15)

un+1
h =

1

2
un

h +
1

2

{
[un

h + ∆t Lh(u
n
h)] + ∆t Lh(u

(1)
h )

}
(16)

2.3 Remarks on the stability of the method

In general, it is possible to obtain the stability of the method from the analysis of a single
”Euler forward” step. However, the stability of the complete method must be considered
at once. Cockburn16 cites the following stability limit for the linear flux f(u) = cu
(c constant) for K = 2

c
∆t

∆x
<

1

3
for K = 1, c

∆t

∆x
<

1

5
for K = 2 (17)

2.4 The TVDM generalized slope limiter

When high order polynomials are used to approximate the solution, the higher order terms
must be controlled to inhibit oscillations. Cockburn and Shu2 developed an explicit third
order TVD Runge-Kutta procedure in time combined with local projection operators in
space to control numerical oscillations. Thus, if vh represents the linear part, or projection
of uh

vh = uo,j +
2(x − xj)

∆j
u1,j (18)
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the slope limiter of van Leer that reads

vh|−j+ 1

2

= uo,j + mm(u1,j, uo,j+1 − uo,j, uo,j − uo,j−1) (19)

vh|+j− 1

2

= uo,j − mm(u1,j, uo,j+1 − uo,j, uo,j − uo,j−1), (20)

limit the amplification of the solution slope, where mm is the minmod function defined as
follows

mm(a1, ..., aν) =

{
s min1≤n≤ν |an| , if s = sign(a1) = ... = sign(aν)
0 , otherwise

(21)

Shu19 modified this slope limiter to preserve high-order accuracy at local extrema of the
function. The resulting scheme turned out not to be TVDM but total variation bounded
in the means (TVBM). For details, see Cockburn16 .

3 THE DIFFUSSION EQUATION

The original idea that supports the RKDG method discussed above can be extended very
easily to difussion, or advection-difussion dominated problems. The idea can be ilustrated
with the simple heat equation

ut − uxx = 0 (22)

which can be rewriten as a first order system

ut − qx = 0 (23)

q − ux = 0 (24)

It is possible to use formally the same RKDG method discussed above for hyperbolic
problems, resulting in the following variational statement: find uh, qh ∈ V K

h such that,
for all test functions v1, v2 ∈ V K

h

∫

Ij

v1∂tuh dx = −
∫

Ij

qh ∂xv1dx + q̂j+ 1

2

v1

∣∣∣
j+ 1

2

− q̂j− 1

2

v1

∣∣∣
+

j− 1

2

(25)

∫

Ij

v2 qh dx = −
∫

Ij

uh ∂xv2dx + ûj− 1

2

v2

∣∣∣
j+ 1

2

− ûj− 1

2

v2

∣∣∣
+

j− 1

2

(26)

However, in this case there is no upwinding mechanisms or characterist directions to
guide the design of the numerical fluxes û, q̂. Indeed, the crucial part of designing a stable
and accurate algorithm to solve the above equations is to design proper numerical fluxes.
The most natural fluxes seem to be the central average

ûj+ 1

2

=
1

2

(
u+

j− 1

2

+ u−

j+ 1

2

)
, q̂j+ 1

2

=
1

2

(
q+
j− 1

2

+ q−
j+ 1

2

)
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The appearance of the auxiliar variable q is superficial; when a local basis is chosen
within element Ij, q is afterwards trivially eliminated and the resultant scheme for u
is similar to that deviced for hyperbolic problems. Last but not least, both schemes
developed by the scalar hyperbolic problem and the difussion problem in 1-D can be
combined to gives rise to the so-called Local Discontinuous Galerkin for solving linear
and no-linear advection-diffusion problems16 .

4 COMPUTATIONAL RESULTS

The simple scalar wave equation with periodic boundary conditions is considered first

ut + ux = 0, uo(x) =

{
1 , 0.4 ≤ x ≤ 0.6
0 , otherwise

(27)

To magnify the effect of the dissipation of the method, the solution is advected 100 times
(T = 100) across the periodic domain. The scheme is let run with a CFL (Courant-
Friedrichs-Lewy condition) equal to 0.9 × 1/5 = 0.18 for K = 0, 1, and 2. It can be seen
in Figure 1 that, for N = 80 elements, the dissipation effect decreases as the degree of
the approximating polynomial increases.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1: The simple scalar wave equation, T = 100, N = 80. Exact solution (solid line), K = 0
(dash/dotted line), K = 1 (dotted line), and K = 2 (dashed line).

For the difussion equation, the following problem is adopted with periodic boundary
conditions

ut − uxx = 0 , uo(x) =





10x − 4 , 0.4 ≤ x ≤ 0.5
−10x + 6, 0.5 < x ≤ 0.6

0 , otherwise
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on the domain x ∈ [0, 1]. Figure 2 shows the evolution of the solution when the domain
is partitioned in N = 40 elements. The solution shows how the auxiliary variable, qh =
∂xuh, approximates the derivative of the solution with the same order of accuracy as u,
thus matching traditional advantages of finite element methods based on ‘equal order of
interpolation’ techniques.

x

u h

∂ xu
h

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

-25

-20

-15

-10

-5

0

5

10

uh

∂xuh

Figure 2: The diffusion equation.

The one dimensional, linear convection diffusion equation

ut + c ux − a uxx = 0 in (0, T ) × (0, 2π), (28)

where c and a ≥ 0 are both constants, is tested with the initial condition u(t = 0, x) =
sin(x) and periodic boundary conditions. The exact solution is u(x, t) = e−at sin(x − ct).
The solution is computed up to T = 2, and a comparison between the exact solution and
numerical solution is shown in Figure 3.
The one dimensional, non linear convection diffusion equation (Burgers equation) is given
by the following equation

ut + (
u2

2
)x − a uxx = 0, in (0, T ) × (0, 2), (29)

u(t = 0, x) = sin(π x),

(30)

subject to the homogeneous boundary conditions u(0) = u(2) = 0. This equation was
originally introduced by J. M. Burgers and represents a simplified model of the more
complicated Navier-Stokes equations. Figure 4 shows the evolution of a sinusoidal wave
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Figure 3: Linear convection diffusion equation: initial condition T = 0 (dashed line), exact solution
(circle), numerical solution (solid line) at T = 0.5, 1.0, 1.5, and2.0, c = 1, a = 0.01.

governed by the viscous Burgers equation with a = 10−2/π, using N = 80 elements. The
structure of the wave is shown from T = 0 to T = 2 and it can be seen that the shock
is very-well captured without the oscillations and the overshoots that hamper the quality
of the solutions of many other methods.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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0.4
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t=0 

t=0.5 

t=1.0 

t=2.0 

Figure 4: Non linear convection diffusion equation, a = 10−2/π.
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5 THE ONE-DIMENSIONAL SHALLOW WATER EQUATIONS

The aforemencioned ideas and algorithms of the RKDG method devised to solve hy-
perbolic and advection-diffusion problems carry over almost intact to more complicated
hyperbolic problems: in this case, the Shallow Water Equations (SWE).

5.1 Governing Equations

The one-dimensional SWE, in general conservative form are given by

∂U

∂t
+

∂F(U)

∂x
= S(U), in (0, L) × (0, T ) (31)

where U is the vector of conserved variables, F is the flux vector in the x direction, S

represent a source vector, and t is the time. The vectors U and F are expressed as

U =

[
h
q

]
, F =

[
q

q2/h + gh2/2

]
, (32)

where g is the acceleration due to gravity, q is the dischage per unit width = uh, h the
water depth, and u is the flow velocity in the x−direction.
The source term S is given by

S =

[
0

gh(S0 − Sf)

]
, (33)

which contains the effects of the bed slope S0 and the bed friction Sf . The term Sf can
be estimated by an empirical formulae, for example by the Manning resistance law

Sf =
n2q|q|
h10/3

, (34)

in which n is the Manning resistance coefficient.

5.2 The DG space discretization

Following Cockburn16 , for each partition of the interval (0, L), {xj+1/2}N
j=0 we set Ij =

(xj+1/2; xj−1/2), and ∆j = xj+1/2 − xj−1/2 for j = 1, · · · , N . Then, an approximation
Uh = (hh, qh)

T to U is sought that for each time t ∈ [0, T ], Uh(t) belongs to the finite
dimensional space of polynomials P K(I) in I of degree at most K. In order to determine
the approximate solution Uh, a weak formulation of the problem is obtained by multi-
plying the equation (31) with an arbitrary, smooth function v and integrating over Ij by
parts ∫

Ij

∂tU(x, t) v(x)dx −
∫

Ij

F(U)(x, t)∂x v(x)dx

+F(U)(xj+1/2, t) v(x−

j+1/2) − F(U)(xj−1/2, t) v(x+
j−1/2)

=

∫

Ij

S(U)(x, t)v(x)dx

(35)
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Next, the exact solution U is replaced by the approximate solution Uh belonging to
V K

h .
Note that the function Uh is discontinuous at the points xj+1/2, so it is necessary to
replace the nonlinear flux F by a numerical flux H that depends on the two values of Uh

at the point (xj+1/2, t), that is, by the function

H(U)j+1/2(t) = H(U(x−

j+1/2, t),U(x+
j+1/2, t)) (36)

are discussed later. Thus, the appropiate solution given by the DG space discretization
for the one-dimensional SWE is defined as the solution of the following weak formulation:

∀ j = 1, · · · , N, v ∈ P k(Ij) :∫

Ij

∂tUh(x, t) v(x)dx −
∫

Ij

F(Uh)(x, t)∂x v(x)dx

+H(Uh)j+1/2(t) v(x−

j+1/2) − H(Uh)j−1/2(t) v(x+
j−1/2)

=

∫

Ij

S(Uh)(x, t)v(x)dx

(37)

If the Legendre polynomials are chosen for the finite element basis V K
h . The approximate

solution Uh is then expanded as

Uh(x, t) =

K∑

l=0

Ul
j(t)Pl(x), (38)

where the Legendre polynomials are given by

P1(x) = 1.

P2(x) = 2(x − xj)/∆j

P3(x) =
3(x − xj)

2 − 1

2

Finally, the weak formulation (37) takes the form:

∀ j = 1, · · · , N, and l = 0, · · · , k(
1

2l + 1

)
∂tU

l
j −

∫

Ij

F(Uh)(x, t)P ′
l (x)dx

+
1

∆j

{
H(Uh)j+1/2(t) − (−1)l H(Uh)j−1/2(t)

}

=

∫

Ij

S(Uh)(x, t)Pl(x)dx

(39)
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5.3 The numerical flux

To complete the discretization in space, it remains to choose the numerical flux H. The
DG scheme will be monotone if H(UL),H(UR)) is a locally Lipschitz, consistent, and
monotone flux. For the SWE, Fraccarollo and Toro20 presented the HLL (Harten-Lax-
van Leer) scheme, based on the work of Harten et al.21 This scheme takes into account
the left and right characteristics, and results in three states that are separated by two
characteristics

HHLL(UL,UR) =





FL if λmin ≥ 0
F∗ if λmin < 0 λmax > 0
FR if λmax ≤ 0

(40)

where FL = F(UL), FR = F(UR), and F∗ are given by the equation

F∗ =
λmaxFL − λminFR + λmaxλmin(UR − UL)

λmax − λmin
(41)

The wave speeds are chosen under assumption of two-rarefaction waves,

λmin = min(uL −
√

g hL, u∗ −
√

g h∗) (42)

λmax = max(uR −
√

g hR, u∗ +
√

g h∗),

which

u∗ =
uL + uR

2
+

√
g hL −

√
g hR (43)

√
g h∗ =

uL − uR

4
+

(
√

g hL +
√

g hR)

2

The expressions for the wave speeds were obtained assuming wet bed. For the right
dry bed problem, these speeds are20

λmin = uL −
√

g hL (44)

λmax = uL + 2
√

g hL

5.4 The TVD Runge-Kutta time discretization for the SWE

Once the system has been discretized in space using the DG method, the system is
integrated forward in time using explicit Runge-Kutta procedures as described before.
When using constant approximations, first order Runge-Kutta method (explicit Euler)
is used. When using linear approximations, second order Runge-Kutta method is used
for temporal discretization, and for quadratic approximations, a third order Runge-Kutta
method is used. In order to prevent non-physical oscillations, for the space discretizations
K ≥ 1, a slope limiter is applied on every result of the Runge-Kutta method.
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5.5 Hypotetical example: Dam break problem

The analytical solution of this problem is given in Stoker22 . This test consider a wide
channel having a barrier placed across its width, where h1 and h2 are the water depth
upstream and downstream, respectively. At time t = 0, the barrier is suddenly removed.
The flow consists of a bore travelling downstream and a rarefaction wave travelling up-
stream. A long channel with zero friction and zero bed slope is then considered for testing
the RKDG scheme. A dam at position x = 0.5 divides the channel in an upstream and a
downstream section. The initial conditions of the problem are given by

U(x, 0) =

{
(h1, 0)T if x ≤ 0.50
(h2, 0)T if x > 0.50

The performance of the RKDG scheme is showed in Figure 5. In this test, the space dis-
cretization has a resolution of 10 elements with constant, linear, and quadratic elements.
For K = 1, 2 the TVBM slope limiter with M = 50 is used. As it can be seen, the shock
is captured within only two elements. Figure 6 shows a comparison between the exact
solution and the corresponding numerical solution with different partition of the domain
(N = 100 and N = 1000) at time T = 0.1. As can be seen, the solution is correctly
obtained and the shock is captured with sharp profile in both cases.
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Figure 5: Water depth for the one-dimensional dam-break problem at T = 0.1 with K = 0, 1, 2, M = 50
and N = 10: exact solution (solid line ), piecewise constant solution (triangle), piecewise linear solution
(circle), and piecewise quadratic solution (square).

6 CONCLUSIONS

In this work, a high-order RKDG finite element scheme is proposed for the numerical
solution of the one-dimensional (1D) hyperbolic conservation law. The RKDG scheme
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Figure 6: Water depth and velocity for h1 = 1. and h2 = 0.5 at time T = 0.1.

combines some properties of the finite element and finite-volume techniques, resulting on
a very attractive method because of its formal high-order accuracy, its ability to han-
dle complicated geometries, its adaptability to parallelization, and its ability to capture
discontinuities without producing spurious oscillations. The good agreement between sim-
ulated results with analytical solutions shows the ability of the method to capture the
shock fronts. Mobile bed extension will be further developments of the model.
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