Mecánica Computacional Vol. XXII M. B. Rosales, V. H. Cortínez y D. V. Bambill (Editores) Bahía Blanca, Argentina, Noviembre 2003.

VIBRACIÓN LIBRE DE ARCOS SIMÉTRICOS DE DIRECTRIZ ARBITRARIA RESUELTOS POR MEDIO DE SERIES DE POTENCIAS

C.P. Filipich^{1,2}, M.B. Rosales^{1,3,4}, F.S.Buezas⁵

 ¹Departamento de Ingeniería, Universidad Nacional del Sur, Alem 1253 8000 Bahía Blanca, Argentina. e-mail: <u>mrosales@criba.edu.ar</u>
 ² Grupo de Análisis de Sistemas Mecánicos, FRBB, Universidad Tecnológica Nacional. 8000 Bahía Blanca, Argentina.
 ³IMA, Universidad Nacional del Sur ⁴CONICET
 ⁵Departamento de Física, Universidad Nacional del Sur e-mail: fbuezas@yahoo.com.ar

Palabras clave: Vibraciones naturales, Arcos, Series de Potencias

Resumen Los arcos de directriz y vinculación arbitrarias, son de uso difundido dentro de la ingeniería estructural, aplicados especialmente a construcciones civiles y aeronáuticas. Conocer y ampliar su comportamiento dinámico es siempre de interés. De allí que disponer de una tradicional herramienta como son las series de potencias, pero con un sistemático encuadre de los algoritmos, constituye un útil aporte. En este trabajo se hallan las frecuencias naturales de arcos de diversas formas, secciones y vinculaciones, resolviendo por medio de recurrencias los coeficientes de la solución en forma de series de potencias de la ecuación diferencial que gobierna el problema. Se calculan por bisección dichos autovalores a través de la anulación de un determinante de 3x3 que proviene del cumplimiento de las condiciones de borde en uno de los extremos; correspondientemente se hallan las formas modales.

1 INTRODUCCIÓN

En este trabajo proponemos una alternativa clásica, como son las series de potencias enteras, para hallar las frecuencias naturales de arcos con diversas directrices.

La propuesta consiste en dos planteos básicos. Uno de ellos es atacar las ecuaciones de vibraciones libres de arcos, que en general son sistemas lineales de ecuaciones diferenciales a coeficientes variables, imponiendo que las formas modales sean expansiones en series de potencias.

La otra propuesta reside en subdividir el arco en N tramos que puedan ser considerados como tramos rectos cuando N es suficientemente grande. Justamente cuando N tome un cierto valor N_{min} y habiendo fijado la precisión requerida y ésta no se mejore para $N > N_{min}$ el problema estará resuelto por la segunda vía.

Se considerarán arcos uniformes circunferenciales, parabólicos, catenoidales con diversas condiciones de vinculo (condiciones de borde).

En ambos casos el aporte de esta tradicional herramienta en realidad se apoya en la sistematización de los algoritmos de recurrencia . Esta metodología resultó ser muy poderosa para problemas diferenciales ordinarios altamente no lineales y como se muestra en el presente trabajo, también, lo es para problemas lineales como los que nos ocupan^{1,2}.

En el apéndice A se desarrollan sucintamente las expresiones genéricas de las series de potencias a utilizar así como los desarrollos de funciones analíticas de y = y(x).

Cabe consignar que los arcos al ser tratados como pórticos poligonales abiertos, con cualquier directriz y vinculación extrema, (pero eventualmente, con arbitraria variación de la sección transversal) podría abordarse – y con la precisión deseada- la búsqueda de los valores propios y sus correspondientes formas modales de problemas algebraicamente muy engorrosos.

El Método del Elemento Finito, por ejemplo, también permite esta forma de resolución pero creando tres incógnitas por nudo que unen tramos consecutivos y aceptando una aproximación cúbica para la forma modal de cada uno. En realidad para los problemas de vibraciones libres y pandeo, como sabemos, las soluciones son trascendentales. En nuestra propuesta, en cambio, y en cualquier caso debemos resolver una ecuación característica para el valor propio que provienen de plantear solamente tres condiciones de borde en uno de los vínculos.

Por otro lado las series de potencias con un número adecuado de términos aproxima la solución exacta y con los dígitos requeridos.

Varios ejemplos ilustraran esta propuesta y mostrarán estas ventajas.

2 PLANTEO DEL PROBLEMA

2.1 Planteo y descripción del problema para vibraciones libres de arcos (primera alternativa)

La figura 1 un esquema de un arco uniforme simétrico de directriz arbitraria

Figura 1 Geometría de arcos simétricos

Las expresiones correspondientes a la energía potencial de deformación "U" y cinética "K" frente a corrimientos u y w -esto es radial y tangencial respectivamente- cualesquiera, valen³

$$2U = EI \int_{-\alpha_0}^{\alpha_0} \Delta \chi^2 R \, d\,\phi \tag{1}$$

donde el cambio de curvatura $\Delta \chi\,$ es

$$R^{2}\Delta\chi \equiv \frac{R_{\phi}}{R}(u_{\phi} - w) + (w_{\phi} - u_{\phi\phi})$$
⁽²⁾

donde se usa la notación $(\bullet)_{\phi} \equiv \frac{\partial(\bullet)}{\partial \phi}$

La energía cinética traslacional vale a su vez

$$2K = \rho A \int_{-\alpha_0}^{\alpha_0} \left(u^2 + w^2 \right) R \, d\phi \tag{3}$$

donde se usa la notación $\begin{pmatrix} g \\ \bullet \end{pmatrix} \equiv \frac{\partial(\bullet)}{\partial t}$

Si asumimos – hipótesis corriente para arcos delgados – que la pieza es inextensible se verifica que

$$u = -w_{\phi} \tag{4}$$

que corresponde a dejar de lado la deformación axial cosea

$$R\varepsilon = -(w_{\phi} + u) = 0 \tag{5}$$

con lo cual

$$R^{2}\Delta\chi = -\frac{R_{\phi}}{R} \left(w_{\phi\phi} + w \right) + \left(w_{\phi\phi\phi} + w_{\phi} \right)$$
(6)

De esta forma y aceptando modos normales de vibración de frecuencia circular ω tendremos en definitiva que

$$2U = EI \int_{-\alpha_0}^{\alpha_0} \left(\left(w_{\phi\phi\phi} + w_{\phi} \right) - \frac{R_{\phi}}{R} \left(w_{\phi\phi} + w \right) \right)^2 \frac{d\phi}{R^3}$$

$$2K = \rho A \omega^2 \int_{-\alpha_0}^{\alpha_0} \left(w_{\phi}^2 + w^2 \right) d\phi$$
(7)

Aplicando el método de mínima energía total que se adapta a estos sistemas elásticos lineales es decir:

$$\delta W = 0 \tag{8}$$

siendo

$$W \equiv U - K \tag{9}$$

podremos hallar la ecuación diferencial gobernante en $w = w(\phi)$ a coeficientes variables para vibraciones naturales de arcos uniformes. Además – y por esto es conveniente esta metodología – al integrar por partes aparecen naturalmente las condiciones generales de borde para diversas vinculaciones.

Es engorrosa la ecuación diferencial general pero la mostraremos de la siguiente forma:

$$v_{\phi\phi\phi} + v_{\phi} + \left(\frac{R_{\phi}}{R}v\right)_{\phi\phi} + \left(\frac{R_{\phi}}{R}v\right) + \frac{\Omega^2}{R^3} \left[w - w_{\phi\phi} - \frac{R_{\phi}}{R}w_{\phi}\right] = 0$$
(10)

donde

$$\Omega^{2} \equiv \frac{\rho A \omega^{2} R^{4}}{EI} \qquad y \qquad v = v(\phi) \equiv \frac{\Delta \chi}{R}$$
(11)

Para el caso de arcos de directriz circunferencial (R=cte) que para fijar ideas serán abordados por series de potencias, la ecuación diferencial se reduce a

$$w_{\phi\phi\phi\phi\phi\phi} + 2w_{\phi\phi\phi\phi} + w_{\phi\phi} - \Omega^2 \left(w_{\phi\phi} - w \right) = 0$$
(12)

Arcos circunferenciales

Comenzamos adimensionalizando el problema introduciendo:

$$x \equiv \frac{1}{2} \left(1 + \frac{\phi}{\alpha_0} \right) \tag{13}$$

y definiendo como $(\bullet)' \equiv \frac{\partial(\bullet)}{\partial x}$ etc.

La (ec 12) se reduce a

$$w^{(6)} + 2P_2 w^{(4)} + P_4 w^{(1)} \left(1 - \Omega^2\right) + P_6 \Omega^2 w$$
(14)

donde:

$$P_n \equiv (2\alpha_0)^n$$
 (*n* = 2,4,6)

Las formas modales serán w = w(x) con $0 \le x \le 1$

Basados en el apéndice "A" proponemos para w = w(x) la siguiente serie de potencias

$$w(x) = \sum_{i=0}^{\infty} A_i x^i$$
(15)

con lo cual la derivada k-ésima da:

$$w^{(k)}(x) = \sum_{i=0}^{\infty} \varphi_{ki} A_{(i+k)} x^{i}$$
(16)

siendo $\varphi_{ki} \equiv \frac{(i+k)!}{i!}$.Como se desprende del apéndice si los coeficientes fueran variables (o el

problema no lineal) se recurre al producto de potencias que sistematiza el procedimiento y no modifica la concepción de la idea.

Entonces verificamos el cumplimiento de la ecuación diferencial (ec 14) suponiendo la igualdad de los coeficientes de cada x^i (con i = 0, 1, 2,), o sea:

$$A_{i+6} = -\frac{2P_2 \,\varphi_{4i} \,A_{i+4} + (1 - \Omega^2) P_4 \,\varphi_{2i} \,A_{i+2} + \Omega^2 P_6 A_i}{\varphi_{6i}} \tag{17}$$

Como se observa la recurrencia nos brinda valores para A_6 , A_7 , A_8 ,...de alguna manera debemos conocer las siguientes seis A_0 , A_1 , A_2 , A_3 , A_4 y A_5 . Efectivamente éstas se determinan de las condiciones de borde (o de vínculo) del arco vibrante. Con el fin de fijar ideas supongamos el arco bi-articulado es decir que para

$$\phi = \pm \alpha_0 \begin{cases} w = 0 \\ u \Rightarrow w_{\phi} = 0 \\ \Delta \chi = 0 \Rightarrow w_{\phi \phi \phi} = 0 \end{cases}$$
(18)

entonces para x = 0

$$w = 0 \Longrightarrow A_0 = 0$$

$$w' = 0 \Longrightarrow A_1 = 0$$

$$w''' = 0 \Longrightarrow A_2 = 0$$
(19)

para x = 1

$$\begin{cases} w = 0 \Rightarrow \sum A_i = 0\\ w' = 0 \Rightarrow \sum \varphi_{1i} A_{i+1} = 0\\ w''' = 0 \Rightarrow \sum \varphi_{3i} A_{i+3} = 0 \end{cases}$$
(20)

Como vemos en este ejemplo quedan por determinar $A_2, A_4 y A_5$. Se procede así: fijamos alternativamente

$$A_{2} = 1, A_{4} = A_{5} = 0$$
$$A_{2} = 0, A_{4} = 1, A_{5} = 0$$
$$A_{2} = 0, A_{4} = 0, A_{5} = 1$$

cada caso remplazado en (ec 20) respectivamente nos va dando las columnas de una matriz de 3x3. De la imposición de que el determinante sea nulo hallamos los valores propios Ω que corresponden a los parámetros de las frecuencias naturales buscadas.

Para finalizar esta sección digamos que los valores que hallamos por esta vía se comparan con los valores que hallaremos con el planteo de la próxima sección donde los arcos se subdividen en tramos rectos sin tener que recurrir a las ecuaciones diferenciales gobernantes de arcos vibrantes.

2.2 Planteo y descripción del problema para vibraciones libres de arcos simétricos considerados como pórticos abiertos de tramos rectos (segunda alternativa)

La Figura 2 muestra un esquema de un arco uniforme simétrico dividido en tramos rectos y de directriz arbitraria

Figura 2: Arcos simétricos discretizados como pórticos abiertos de tramos rectos.

- X, Y: Ejes globales
 - N : Número de barras
- N+1: Número de nodos

 (X_i, Y_i) : Coordenadas globales de los nodos (i = 1, 2, ..., N + 1)

- a_i (*i* = 1,2,...,*N*): longitud de cada barra
- x_i, y_i : Ejes locales

 $\{(EJ)_{i}, (EF)_{i}, (\mathbf{r}F)_{i}\}$: características mecánicas de cada barra

$$a_{i} = \sqrt{\left(X_{i} - X_{i-1}\right)^{2} + \left(Y_{i} - Y_{i-1}\right)^{2}}$$

$$\begin{cases}
\cos \mathbf{a}_{i} = \frac{X_{i} - X_{i-1}}{a_{i}} = c_{i} \\
\sin \mathbf{a}_{i} = \frac{Y_{i} - Y_{i-1}}{a_{i}} = s_{i}
\end{cases}$$

3 ENERGÍAS DE DEFORMACIÓN Y CINÉTICA ACEPTANDO MODOS DE VIBRACIÓN DE FRECUENCIA ANGULAR *w*

$$U = \sum_{i=1}^{N} U_i \quad ; \quad K = \sum_{i=1}^{N} K_i$$
 (21)

$$U_{i} = \frac{1}{2} \left[\int_{0}^{a_{i}} \frac{M^{2}(x_{i})}{(EJ)_{i}} dx_{i} + \int_{0}^{a_{i}} \frac{N^{2}(x_{i})}{(EF)_{i}} dx_{i} \right]$$
(22)

$$K_{i} = \frac{1}{2} (\mathbf{r}F)_{i} \mathbf{w}^{2} \int_{0}^{a_{i}} \left(v_{i}^{2} + u_{i}^{2} \right) dx_{i}$$
(23)

$$M(x_i) = -(EJ)_i v_i''$$
(24)

$$N(x_i) = (EF)_i u'_i \tag{25}$$

En donde, **w** es único para todo el pórtico y $(\mathbf{g}'_i = \frac{\partial(\mathbf{g})}{\partial x_i})$

4 ECUACIONES GOBERNANTES.

De un planteo variacional energético surgen las ecuaciones diferenciales que gobiernan el problema (ecuaciones muy difundidas en la bibliografía especifica) pero que automáticamente al integrar por partes se dispondrán de las condiciones de continuidad entre tramo y tramo.

Sea la condición de mínima energía total la siguiente

$$\boldsymbol{d}\left(\boldsymbol{U}-\boldsymbol{K}\right)=0\tag{26}$$

o sea:

$$\sum_{i=1}^{N} \left((EJ)_{i} \int_{0}^{a_{i}} v_{i}'' dv_{i}'' dx_{i} + (EF)_{i} \int_{0}^{a_{i}} u_{i}' du_{i}' dx_{i} - (E\mathbf{r})_{i} \mathbf{w}^{2} \int_{0}^{a_{i}} (v_{i} dv_{i} + u_{i} du_{i}) dx_{i} \right) = 0$$
 (28)

Integrando por partes obtenemos

$$\sum_{i=1}^{N} \left| (EJ)_{i} v_{i}' dv_{i}' \right|_{0}^{a_{i}} - \left| (EJ)_{i} v_{i}''' dv_{i} \right|_{0}^{a_{i}} + \left| (EF)_{i} u_{i}' du_{i} \right|_{0}^{a_{i}} + \int_{0}^{a_{i}} dv_{i} \left[(EJ)_{i} v_{i}'''' - (\mathbf{r}F)_{i} \mathbf{w}^{2} v_{i} \right] dx_{i} + \int_{0}^{a_{i}} du_{i} \left[(EF)_{i} u_{i}'' + (\mathbf{r}F)_{i} \mathbf{w}^{2} u_{i} \right] dx_{i} = 0$$
(29)

Para variaciones arbitrarias se debe cumplir que (i = 1, 2, ..., N)

$$v^{\prime\prime\prime\prime} - \Omega_i^2 v_i = 0 \tag{30}$$

$$u_i'' + \left(\frac{\Omega_i}{I_i}\right)^2 u_i = 0 \tag{31}$$

y además:

$$\sum_{i=1}^{N} \left\| \left(\frac{EJ}{a^2} \right)_i v_i'' \frac{dv_i'}{a_i} \right\|_0^1 - \left\| \left(\frac{EJ}{a^3} \right)_i v_i''' dv_i \right\|_0^1 + \left\| \left(\frac{EF}{a} \right)_i u_i' du_i \right\|_0^1 = 0$$
(32)

Donde hemos adimensionalizado en cada barra para $x_i = \frac{x_i}{a_i}$, $0 \le x_i \le 1$ (i = 1, 2, ..., N)

y denominamos como
$$\Omega_i^2 = \frac{(\mathbf{r}F)_i}{(EJ)_i} \mathbf{w}^2 a_i^4$$
, $\mathbf{l}_i^2 = \frac{a_i^2 F_i}{J_i}$.

5 CONDICIONES DE CONTINUIDAD EN NUDOS INTERMEDIOS.

Sea $\Delta a_i = a_i - a_{i+1}$ el ángulo relativo entre dos barras consecutivas, las tres condiciones geométricas por nudo conducen a

$$v_{i+1}(0) = v_i(1)C - u_i(1)S \quad (I)$$

$$u_{i+1}(0) = v_i(1)S + u(1)C \quad (II)$$

$$a_{i+1}v_i'(1) = v_{i+1}'(0)a_i \quad (III)$$

siendo $C = \cos \Delta \boldsymbol{a}_i$ y $S = \sin \Delta \boldsymbol{a}_i$

Las variaciones $dv'_{i+1}(0)$, $dv_{i+1}(0)$ y $du_{i+1}(0)$ deducidas de (I), (II), (III), las reemplazamos en (3) obteniendo las condiciones de equilibrio para cada nudo factoreándolas respectivamente deduciendo que para cada nudo i-ésimo debe verificarse que:

$$J_{2i+1}v''_{i}(0) = J_{2i}v''_{i}(1) \qquad (IV)$$

$$J_{3i+1}v''_{i}(0) = CJ_{3i}v'''_{i}(1) + SF_{1i}u'_{i}(1) \qquad (V)$$

$$F_{1i+1}u'_{i+1}(0) = -SJ_{3}v''_{i}(1) + CF_{ii}u'_{i}(1) \qquad (VI)$$

donde

$$J_{2i} = \left(\frac{EJ}{a^2}\right)_i ; \quad J_{3i} = \left(\frac{EJ}{a^3}\right)_i ; \quad F_{1i} = \left(\frac{EF}{a}\right)_i$$

6 SERIES DE POTENCIAS PROPUESTAS.

En el apéndice A se presenta resumidamente un esquema de las series de potencias utilizadas y algunas de sus propiedades. Sea entonces:

$$\begin{cases} v_{i} = \sum_{j=0}^{M} A_{ij} x^{j} \\ u_{i} = \sum_{j=0}^{M} B_{ij} x^{j} \end{cases}$$
(33)

En realidad $x \equiv x_i$.

Reemplazando en (30) y (31) y factoreando para cada x^{j} obtenemos las siguientes ecuaciones de <u>recurrencias</u>

$$A_{i(j+4)} = \frac{\Omega_i^2 A_{ij}}{\mathbf{j}_{4i}} \ (j = 1, 2, ..., M - 4) \tag{34}$$

$$B_{i(j+2)} = -\left(\frac{\Omega_i}{I_i}\right)^2 \frac{B_{ij}}{J_{2j}} (j=1,2,...,M-2)$$

$$(i=1,2,...,N)$$
(35)

siendo

$$\mathbf{j}_{kj} = (j+1)(j+2)...(j+k) = \frac{(j+k)!}{j!}$$
(36)

A su vez las condiciones (I)-(IV) se escriben como

(a) $A_{(i+1)0} = C \sum_{j} A_{ij} - S \sum_{j} B_{ij}$ (v)

(b)
$$B_{(i+1)0} = S \sum_{j} A_{ij} + C \sum_{j} B_{ij}$$
 (u) geométricas

(c)
$$A_{(i+1)1} = \frac{a_{i+1}}{a_i} \sum_j \mathbf{j}_{ij} A_{(j+1)}$$
 (v')

$$(d) \quad A_{(i+1)2} = \frac{J_{2i}}{2J_{2(i+1)}} \sum_{j} j_{2j} A_{i(j+1)} \qquad (v'')$$

$$(e) \quad A_{(i+3)3} = \frac{CJ_{3i} \sum_{j} j_{3j} A_{i(j+3)} + SF_{1i} \sum_{j} j_{1j} B_{i(j+1)}}{6J_{3(i+1)}} \qquad (v''')$$

$$(f) \quad B_{(i+1)1} = \frac{-SJ_{3i} \sum_{j} j_{3j} A_{i(j+3)} + CF_{1i} \sum_{j} j_{ij} B_{i(j+1)}}{F_{1(i+1)}} \qquad (u')$$

(i = 1, 2, ..., N) nudos intermedios.

Como se deduce de las recurrencias (4) y (5) A10, A11, A12, A13, B10, B11 deben ser fijadas y no

provienen de ellas. En todos los casos de vibración –aun elástica- dos A'_s y una B'_s surgen de la condición del tramo 1 para x = 0. En tanto las tres condiciones para x = 1 del ultimo tramo configuran las condiciones de las cuales hallaremos las frecuencias naturales que buscamos

Por otro lado para los nudos 1 y N+1 las expresiones de ciertas constantes dependerán de las condiciones de borde. Así:

7 VINCULACIONES.

7.1 Arco bi-articulado

Nudo 1: $u = v = v'' = 0 \Longrightarrow A_{10} = A_{12} = B_{10} = 0$, Libres: A_{11}, A_{13}, B_{11} .

Nudo N+1
$$\sum_{j} A_{Nj} = \sum_{j} j_{2j} A_{N(j+2)} = \sum_{j} B_{Nj} = 0$$

7.2 Arco bi-empotrado

Nudo 1: $u = v = v' = 0 \implies A_{10} = A_{11} = B_{10} = 0$, Libres: A_{12}, A_{13}, B_{11}

Nudo N+1: $\sum_{j} A_{Nj} = \sum j_{1j} A_{N(j+1)} = \sum_{j} B_{NJ} = 0$

7.3 Arco libre

Nudo 1: $u' = v'' = v''' = 0 \Longrightarrow A_{12} = A_{13} = B_{11} = 0$, Libres: A_{10}, A_{11}, B_{10}

Nudo N+1
$$\sum_{j} j_{2j} A_{N(j+2)} = \sum_{j} j_{3j} A_{N(j+3)} = \sum_{j} j_{1j} B_{N(j+1)} = 0$$

7.4 Arco en ménsula

Nudo 1: $u = v = v' = 0 \implies A_{10} = A_{11} = B_{10}$, Libres: A_{12}, A_{13}, B_{11}

Nudo N+1:
$$\sum_{j} j_{2j} A_{N(j+2)} = \sum_{j} j_{3j} A_{N(j+3)} = \sum_{j} j_{1j} B_{N(j+1)} = 0$$

8 EJEMPLOS NUMÉRICOS

Es extensa la bibliografía sobre vibración libre de arcos^{4,5} y existe mucha y variada información sobre este tema.

En el presente trabajo destacamos la potencialidad en la sistematización de series de potencias para simular las formas modales.

En el presente trabajo se presentan valores del parámetro de frecuencia

$$\Omega_L = \omega L^2 \sqrt{\frac{\rho A}{EI}}$$

siendo L la luz del arco (distancia entre apoyos extremos) Se calculan valores para arcos

• <u>Circunferenciales</u> (Figura 1 y Tablas 1 y 2)

$$\begin{cases} a = L/2 \\ b = R(1 - \cos \alpha_0) \\ y = \sqrt{R^2 - z^2} - R \cos \alpha_0 \end{cases}$$

• Parabólico (Figura 1 y Tablas 3 y 4) $a = L/2 \\ y = b \left[1 - \left(\frac{z}{a}\right)^2 \right] \\ \alpha_0 = -\arctan\left(\frac{2b}{a}\right) \end{cases}$
• Catenoides (Figura 1 y Tablas 4 y 5) $a = L/2$

$$y = b + \rho_0 \left[1 - \cosh\left(\frac{z}{\rho_0}\right) \right]$$

con $\rho_{\rm 0}\,$ radio de curvatura en la clave

$$\alpha_{0} = -\arctan\left[\sinh\left(\frac{a}{\rho_{0}}\right)\right]$$
$$a = \rho_{0} \operatorname{argcosh}\left(1 + \frac{b}{\rho_{0}}\right)$$

Para los arcos circunferenciales se calculan las frecuencias naturales por medio de la alternativa primera (sección 2.1) y de la segunda (sección 2). Para los otros dos arcos por medio de lo expresado en la sección 2.2.

Tabla 1: Arco circunferencial articulado-articulado solución completa (alternativa primera) 5 primeras frecuencias flexionales

ficedencias fiexionaies								
$2\alpha_0$	b/a	$\Omega_{_{L_{\mathrm{l}}}}$	$\Omega_{_{L_2}}$	$\Omega_{_{L_3}}$	$\Omega_{_{L_{\!$	$\Omega_{_{L_5}}$		
π	1	9.06696831	27.693189	55.9106753	91.2782489	135.711357		
$\pi/2$	0.4142	27.5273778	64.8071676	123.34527	192.892427	283.2059304		
$\pi/3$	0.2679	33.6261375	75.0806116	141.584110	219.259638	321.3728869		
$\pi/4$	0.1989	36.0685749	78.9990615	148.525556	229.167891	335.6345397		
$\pi/6$	0.1317	37.9236682	81.9069185	153.674846	236.471143	346.204946		

Tabla 2. Fuchi Tabla 1. For trainos (aternativa segunda) 5 primeras frecuencias frectionaies							
$2\alpha_0$	b/a	$\mathbf{\Omega}_{_{L_{\mathrm{i}}}}$	$\Omega_{_{L_2}}$	Ω_{L_3}	$\Omega_{_{L_4}}$	$\Omega_{_{L_{\! 5}}}$	
π	1	9.06746453	27.6948303	55.913752	91.2836628	135.710681	
$\pi/2$	0.4142	27.5278306	64.8089665	123.347285	192.897703	283.241097	
$\pi/3$	0.2679	33.6263953	75.0822358	141.585190	219.264361	321.533262	
$\pi/4$	0.1989	36.0687332	79.000599	148.526206	229.17255	335.680296	
$\pi/6$	0.1317	37.9237432	81.9083843	153.67515	236.475783	346.234795	

Tabla 2: Ídem Tabla 1. Por tramos (alternativa segunda) 5 primeras frecuencias flexionales

Tabla 3: Arco Parabólico empotrado-articulado (alternativa segunda) 5 primeras frecuencias flexiona-

	_		les			
$2\alpha_0$	b/a	$\Omega_{_{L_{\mathrm{l}}}}$	$\mathbf{\Omega}_{_{L_{2}}}$	$\mathbf{\Omega}_{_{L_3}}$	$\Omega_{_{L_4}}$	$\Omega_{_{L_{5}}}$
0.76101275	0.2	45.76989491	92.8888548	167.764641	252.680597	363.1803753
1.34948188	0.4	37.08217479	81.3876051	144.479583	220.632658	315.6872935
1.7521161	0.6	28.40485141	66.9565571	118.676091	182.535077	261.2695381
2.02439402	0.8	21.56530264	53.2695163	95.3828415	147.343385	211.3828019
2.21429744	1	16.56289717	42.0171799	76.2488281	118.194699	170.2280833

Tabla 4: Arco Parabólico articulado-articulado (alternativa segunda) 5 primeras frecuencias flexionales

Ω_{L_1} Ω_{L_2}	$\Omega_{_{L_3}}$	$\Omega_{_{L_{\!$	$\Omega_{_{L_{5}}}$
371165 80.25577	76 148.745001	230.404432	336.042747
011969 69.80416	39 127.981248	200.652425	291.6009481
952714 56.85330	05 104.853665	165.560388	240.7828091
036888 44.80358	25 84.0004906	133.321222	194.5974278
350929 35.07978	02 66.9698114	106.706899	156.5549448
	$\begin{array}{c c} \mathbf{\Omega}_{L_1} & \mathbf{\Omega}_{L_2} \\ 371165 & 80.25577 \\ 011969 & 69.80416 \\ 952714 & 56.85330 \\ 036888 & 44.80358 \\ 350929 & 35.07978 \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Tabla 5: Arco Catenoide empotrado-articulado (alternativa segunda) 5 primeras frecuencias flexiona-

			les			
$2\alpha_0$	b/a	$\Omega_{_{L_{\mathrm{l}}}}$	$\Omega_{_{L_2}}$	$\Omega_{_{L_{\!3}}}$	$\Omega_{_{L_4}}$	$\Omega_{_{L_{5}}}$
0.48038108	0.25525193	43.57099735	89.5273732	161.850415	244.419263	351.624097
0.58788185	0.32280591	40.55265132	85.4017927	153.737826	233.333868	334.8581843
0.75085183	0.44134446	34.93840307	77.1135539	138.124865	211.253615	303.1298052
1.01273561	0.7107391	23.6935695	57.685338	103.564555	160.116787	229.5141663
1.40699357	2.05291579	4.826209158	14.1605011	26.3813104	41.9877843	60.92550975

Tabla 5: Arco Catenoide articulado -articulado (alternativa segunda) 5 primeras frecuencias flexiona-

			les			
$2\alpha_0$	b/a	$\Omega_{_{L_{\mathrm{i}}}}$	$\Omega_{_{L_2}}$	$\mathbf{\Omega}_{_{L_3}}$	$\Omega_{_{L_{\!$	$\Omega_{_{L_{5}}}$
0.480381079	0.25525193	34.25164259	77.26901064	143.4825841	222.8289009	325.0862061
0.587881854	0.322805909	31.73800936	73.56122855	136.2645239	212.5712222	309.7235091
0.750851834	0.44134446	27.12534723	66.14221195	122.3521671	192.1869925	279.7349288
1.012735614	0.710739102	18.09982262	48.95247986	91.46140717	145.1968327	211.5454335
1.406993569	2.052915792	3.527836674	11.76096806	22.90292845	37.75841475	55.82385072

Estos valores se han comparado con el MEF con elementos viga observándose una coincidencia en los valores de los autovalores obtenidos.

9 COMENTARIOS

La finalidad de esta metodología presentada consiste en una sistematización cuantitativa simulando las formas modales por medio de series de potencias. Esta herramienta ha sido utilizada por los autores³ para abordar problemas de condiciones iniciales altamente no lineales donde se consiguió una altísima performance. En este trabajo en cambio se utiliza el desarrollo algebraico para resolver problemas de condiciones de borde. Se plantea, al tratarse de elementos estructurales con dos vínculos, un sistema que en general es de 6x6 (tres condiciones de vinculo por extremo) algebraicamente no lineal en el valor propio (frecuencias naturales) buscado. Por un simple método de bisección se encuentran las raíces que anulan el determinante característico. Modificando la cantidad de términos de las series y/o alternativamente el numero de tramos en que subdividimos los arcos se logra la precisión deseada. Esta herramienta tiene la ventaja frente al MEF en que éste crea tres incógnitas por nudo de unión entre tramos. Ello obliga, para lograr una buena precisión de los resultados, tomar un numero de divisiones suficientemente grande; esto es porque la aproximación de la forma modal de cada tramo es un polinomio cúbico cuando en realidad, en este problema de vibraciones libres, la elástica es trascendente. En la presente metodología de series de potencias simulamos la forma modal con un numero arbitrario de términos aproximándola con tanta exactitud como uno desea, sin aumentar el numero de incógnitas del problema.

10 REFERENCIAS

- [1] Filipich, C. P., Rosales, M. B., Buezas, F.S.: "Some non-lineal mechanical problems solved with an analytical solution". Latin American Applied Research ,(en prensa).(2003).
- [2] Filipich, C. P., Rosales, "Arecurrence solutions of strongly non-linear dynamical systema" XXI Southeastern Conf. Theor. and Appl. Mech. Orlando, U.S.A. (2002).
- [3] B.K. Lee y J.F. Wilson "Free vibration of arches with variable curvature" J. of Sound and Vibration 136(1) 75-89 (1989)
- [4] P.A.A Laura y M.J. Maurizi "Recent research on the vibration of arch-type structures" Shok and Vibration Digest 19(1), 6-9 (1987).
- [5] P. Chidamparam y A.W. Leissa "Vibration of planar curved beams, rings and arches" Applied Mechanics Reviews 46(9),467-483 (1993)

APÉNDICE A: Series de potencias.

Consideremos una función continua f = f(x) con $0 \le x \le 1$. Escribimos la expansión en series de potencias como

$$[f] = \sum_{k=0}^{N} a_{1k} x^{k}$$
(A.1)

y para potencias m-ésimas

$$[f^{m}] \equiv \sum_{k=0}^{N} a_{mk} x^{k} \quad (m = 1, 2, ...)$$
(A.2)

Para cumplir con la *condición de consistencia algebraica* (C.A.) se debe satisfacer la siguiente relación

$$[f^{m}] = [f^{m-1}][f]$$
 (A.3)

Después de reemplazar las series en cada factor de esta ecuación, se obtiene la siguiente expresión de recurrencia

$$a_{mk} = \sum_{p=0}^{k} a_{(m-1)p} a_{1(k-p)} \qquad o \qquad a_{mk} = \sum_{p=0}^{k} a_{(m-1)(k-p)} a_{1p}$$
(A.4)

Ahora expandimos una función analítica $h = \hat{h}(y) = \hat{h}(y(x)) = h(x)$ en series de Taylor

$$\hat{h}(y) = \sum_{m=0}^{M} \boldsymbol{a}_m y^m \tag{A.5}$$

donde a_m son conocidas. En particular, indicamos

$$[1] = \sum_{k=0}^{N} \boldsymbol{d}_{0k} \boldsymbol{x}^{k}$$
(A.6)

donde $a_{0k} = \mathbf{d}_{0k}$ y \mathbf{d}_{0k} son los deltas de Kronecker. Si sustituimos la ecuación (A.2) en la ecuación (A.5) (con $y(x) \equiv f(x)$), podemos escribir

$$[h(x)] = \sum_{k=0}^{N} \boldsymbol{j}_{k} x^{k} \qquad \boldsymbol{j}_{k} = \sum_{m=0}^{M} \boldsymbol{a}_{m} a_{mk}$$
(A.7)

Esta expresión será usada para cualquier función analítica. Ahora si tenemos una función racional $\hat{F}(y)$

$$\hat{F}(y) = \frac{\hat{g}(y)}{\hat{h}(y)} = \frac{g(x)}{h(x)} = F(x)$$
(A.8)

siendo $\hat{g}(y)$ y $\hat{h}(y)$ funciones analíticas y $\hat{h}(0) \neq 0$ y $\hat{g}(y) = \sum_{m=0}^{M} \boldsymbol{b}_{m} y^{m}$ y \boldsymbol{b}_{m} conocidas. Entonces se puede escribir

$$[g(x)] = \sum_{k=0}^{N} \boldsymbol{e}_{k} x^{k} \text{ (a)} \quad \Rightarrow \qquad \boldsymbol{e}_{k} = \sum_{m=0}^{M} \boldsymbol{b}_{m} a_{mk} \text{ (b)}$$
(A.9)

Si denominamos

$$[F(x)] = \sum_{k=0}^{N} I_k x^k$$
 (A.10)

Ahora la C.A. debe aplicarse

$$F(x)][h(x)] = [g(x)] \tag{A.11}$$

$$\left(\sum_{k=0}^{N} \boldsymbol{I}_{k} \boldsymbol{x}^{k}\right) \left(\sum_{k=0}^{N} \boldsymbol{j}_{k} \boldsymbol{x}^{k}\right) = \sum_{k=0}^{N} \boldsymbol{e}_{k} \boldsymbol{x}^{k} \quad \text{donde} \quad \boldsymbol{e}_{k} = \sum_{p=0}^{k} \boldsymbol{j}_{p} \boldsymbol{I}_{(k-p)}$$
(A.12)

Los I_k son desconocidos y los conjuntos j_k y e_k son conocidos. Es evidente que $I_0 = e_0 / j_0$. Ahora la relación de recurrencia para I_k es

$$\boldsymbol{I}_{k} = \frac{\boldsymbol{e}_{k} - \sum_{p=1}^{k} \boldsymbol{j}_{p} \boldsymbol{I}_{(k-p)}}{\boldsymbol{j}_{0}} \quad \text{donde} \quad \boldsymbol{j}_{0} \neq 0 \quad \text{y} \quad k = 1, 2, \dots, N$$
(A.13)

Debe notarse que $\mathbf{j}_0 \neq 0$ para que F(0) exista.

También las expansiones pueden efectuarse alrededor de x_0 . En nuestro caso siempre $x_0 = 0$.