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Abstract. This works presents, the problem of estimate of states of multivariable systems, 
using complete order state observer optimal discretes. For study, it is considered the two-
phase mathematical equivalent model of the three-phase asynchronous machine, their due to  
your characteristics (sixth-order model, non linear and hardly coupled), making possible to 
generalize for application in other systems. Due to the computing time necessary for 
discretization of the model, the procedure is realized off-line, resulting in a discrete model 
containing algebraic relations. The feedback matrix (gains) it is calculated off-line, using 
technique of optimal control. The gains are calculated for various frequencies of machine 
operation, resulting at various gain matrixes operating in a gain scheduling. 
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1 INTRODUCTION 

 
This work presents a states estimator applied to multivariable systems. For multivariable 

systems analysis, it is essential to reduce the complexity of the mathematical expressions and 
to use computers for the system project and analysis. For the analysis of multivariable 
systems, the focus of state variables (state spaces) is appropriate. 

The theory of states observer designs here studied is applied to asynchronous machines 
aiming the implementation of high performance drive systems. This study can be use, not 
only in applications of control systems involving electric machines, but also in biological, 
biomedical and economical systems. 

In high performance systems it is necessary the perfect knowledge of the used variables for 
feedback. The feedback signals can be divided in three groups: (a) easy measurement (stator 
voltages and currents); (b) intermediary (speed and position); and, (c) difficult measurement 
(electromagnetic torque and the magnetic flux). 

For the (b) and (c) cases several, states estimator techniques were developed (Salvadori 
[2]) such as linear and non-linear, robust, adaptive, stochastics and deterministics estimators. 
These techniques allow, starting from easily measurable variables, to obtain another hard 
access variables. The flux acquisition is the most critical process in terms of time, and since 
the flux is the base for the strategies control with feedback it is wise to choose a reference for 
the observer's model so that the dear states are in the same reference of the actuation model 
(control), avoiding coordinates transformations. 

This work proposes an off-line sampling method of the observer's continuous model. The 
gain matrixes are calculated, also in gain scheduling form, using optimal control techniques. 

 

2 CONTINUOUS TIME MATHEMATICAL MODEL OF THE ASYNCHRONOUS 
MACHINE  

 
It is possible to represent the asynchronous machine through a linear time variant (LTV) 

electric model, where the rotor frequency ( Rw ) behaves as a variant parameter in the time. 
The continuous time dynamic electric model, in generic reference (index g), of the 
asynchronous machine is given by (1), on state space representation,  

           )()()()( tBtAt ggg
r

gg
sv+= φφ ω&  (1) 

 )()( tCt ggg
s φ=i  (2) 

where, gA  is the system matrix (4x4 order); gB  is the input matrix (4x2 order); gC  is the 
output matrix (2x4 order); gφ  is the  states matrix (4x1 order); g

sv  is the input  matrix (2x1 
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order); g
si  is the output matrix (2x1 order) and “.” represents the derive operator. 

Considering the states matrix as being composed of the stator and rotor flux, d,q  
components, model flux/flux, then, 

 [ ]Tg
rq

g
rd

g
sq

g
sdt φφφφ=)(gφ  (3) 

and, the input and output matrix, defined, respectively, as, 

 [ ]Tg
sq

g
sd

g
s vvt =)(v  (4) 

 [ ]Tg
sq

g
sd

g
s iit =)(i  (5) 

The representation of the machine equations in the form of states space (1) and (2) can be 
defined like, 
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where, sr  and rr  are, respectively, the stator and rotor resistances; sl , rl  and ml  are the 
stator, rotor and mutual inductances; σ  is the coefficient of magnetic dispersion; gω  and rω  
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are the rotor angular frequencies and the generic frequencies; and, grω  is the slipping 
(difference between the generic angular and rotor  frequencies).  

 

3 COMPLETE ORDER STATES OBSERVER 

 
Fundamentally, closed loop states observer project in consists of a combination of the real 

time simulation with correction by an error signal. The dynamic behavior of the error vector 
is determined by the autovalues of the matrix (6). If the matrix is stable, the error vector will 
converge to zero with the desired speed. The problem to project a complete order observer is 
the determination of the gain matrix of the observer, such that the error dynamics are 
asymptotically stable with adequate answer speed. Considering the model equations (1), (2), 
(3) and (4} the observer's model in closed loop, continuous in the time, it can be presented in 
the form,  

 [ ])(ˆ)()()(ˆ)(ˆ ttKtBtAt g
s

g
se

g
s

gggg iiv −++= φφ&  (9) 

 )(ˆ)(ˆ tCt ggg
s φ=i  (10) 

where, “^”  represents estimated variables; and, eK  is the gain matrix. Substituting (10) in  
(9), results in the expression, 

 [ ])(ˆ)()()(ˆ)(ˆ tCtKtBtAt ggg
se

g
s

gggg φφφ −++= iv&  (11) 

subtracting (11) of (1) and substituting (2) results, 

 )(ˆ)()()()](ˆ)([ tCKAtCKAtt gg
e

ggg
e

gg φφφφ −−−=− &&  (12) 

this way it is possible to define the behavior of the observer's error 

 )(ˆ)( tt gg φφφ −=∆  (13) 

 φφ ∆−=∆ )( g
e

g CKA&  (14) 

Choosing the appropriately eK  matrix so that the autovalues have, in the continuous plan, big 
real negative part then, the problem with the value of the initial error does not exist ( φ∆  in 

)0(t ) and that will tend quickly to zero. 
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4 SAMPLING OF THE MODEL OF THE COMPLETE ORDER STATES 
OBSERVER  

 
Considering the continuous model of states defined by (1), it is obtained the discrete model 

in the form (15), where, I  is the identity matrix whit the same order of  the sampled system 
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Then, the discrete matrixes of the system are obtained in agreement with,  

 ggggg CHcBbAIFa =+= )()()( ψψ  (16) 

And the discrete system of the machine, generic reference, with the operator “ q ” will be, 

 [ ] [ ] [ ]kGkFtkq g
s

ggg
a

g v+=+ φφ ˆˆ  (17) 

Due to the reduced available time for signal sampling and control evaluation, it was 
chosen, to off-line discretize the model resulting in matrix whose elements are constants or 
dependents, only of the rotor frequency rω in agreement with the adopted referential. 

The observer discrete model in closed loop,  

 [ ] [ ] [ ] ])[ˆ][(ˆˆ kHkKkGkFtk ggg
se

g
s

ggg
a

g φφφ −++=+ iv  (18) 

The matrixes gF  and gG  are, square with order respectively 4x4 and 4x2. Defining the 
generic axis on the stationary referential (index g = s, consequently, 0=gω , the elements 

gF14 , gF23 , gF32 , gF41  and gF43  will be function of the rotor frequency ( rω ); the elements gF12  

and gF21  will be zero; and the other elements will be constant. On the other hand the elements 
gG11 , gG22 , gG31 , gG41  will be constant different from zero and the others will be zero. 

 

5 DETERMINATION OF THE GAIN MATRIX OF THE OBSERVER USING 
OPTIMAL CONTROL LAW 

 
The determination of the gain matrix of the observer was accomplished using the laws of 

optimal control with gain scheduling. In problems of optimal control an performance index 
(J)  is defined and the designer's objective is to design a controller / observer which will 
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optimize this index. The index {J} is defined as, 

 [ ]{ }∫ +=
1

0

)()()(
t

t

g
so

Tg
s

gg
o

Tg dtRtQtJ vvφφ  (19) 

Being defined the optimal control Law, as Athams et. Al [1],  

 )()()()()( 1 tKtPHRt g
eR

Tggg
s o

ggv φφ −=−= −  (20) 

where, RP  is the semi-defined positive symmetrical matrix  and solution of the  Riccati's 
equation. 

Considering the criterion of (19) where gQ0  and gR0 are diagonal matrixes, and, 
respectively, 4x4 order semi-defined positive and, 2x2 order defined positive, for whole 

10 ttt ≤≤  for which the criterion is minimum, the optimal linear deterministic observer's 

problem is defined. The selection of gQ0  and gR0  is based on the commitment and on the 
principle that variables strongly meditated tend to be small in closed loop. If the elements of 
the matrix gQ0  are selected much larger than the elements of gR0 , then, the components 

corresponding of gφ  they will be maintained small. In another way, if gR0  is selected big,  
g
sv  will be maintained small so that the smallest control effort is used. 
The gain matrix of feedback can be projected from way to result in variants or invariants 

gains in the time [2]. In the first case, the dynamic equation is solved of Riccati (21); and, for 
the second case, the equation in permanent regime of Riccati (22}. It is necessary to solve the 
Riccati´s equation using a numeric integration method, this solution is simplified because 

),( 10 ttPR  is symmetrical.  

 
⋅

− =+−+ R
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RR

Tgg
R PQPHRHPPFFP 1)()()(  (21) 

 0)()()( 1 =+−+ − g
oR

gg
o

Tg
RR

Tgg
R QPHRHPPFFP  (22) 

Then it chooses to work with constant gains. The calculation of the matrix RP  was 
accomplished using MATLAB® (function DARE), for eight different rotoric frequencies, 
being varied of -400 for +400rad/s, in intervals of 40rad/s. With that it works with gain 
scheduling for the matrix eK , varying the gains in agreement with the variation of the rotor 
frequency. 
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6 SIMULATION RESULTS 

 
The numeric simulations were evaluated using programs specifically developed in C 

language. For the resolution of the mathematical model, the Runge-Kutta method was used (4 
order with step of 0,5µs integration). The sampling period st  was defined in 100,0µs. The 
time of simulation was of 1,0s permitting the machine obtains your maximum nominal speed 
and it reverted the rotation direction. With that the observer's behavior is verified in every 
group of operation frequencies. The components of the consideration matrix are project 
criteria. The used specifications were 3

00 0.1)2,2()1,1( −== eQQ gg ; 3
00 0.1)4,4()3,3( −== eQQ gg  e 

4
00 0.1)2,2()1,1( −== eRR gg . 

On fig 1(a) is presented the speed, in (b) is presented the electromechanical torque. The 
stator flux (simulated and observed) is presented in (c) and (d) is presented the rotoric flux 
(simulated and observed). It can be seen that the estimated values follows with high precision 
the calculated values using the Runge-Kutta method. The difference of phase and amplitude 
present on figures simulation occurs due to the late inserted by the observer. It must be 
noticed that this late is not significant for the proposed objectives. 

 

  
figure 1 – (a) Speed, (b) electromechanical torque, (c) stator flux and (d) rotor flux 
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7 CONCLUSION 

 
The simulation results allows to conclude that: (a) The strategy of dicretize the observer 

model off-line is adequate to systems where the sample period is short; (b) The use of optimal 
control law strategy to calculate the observer gains has demonstrated good results; (c) The use 
of scheduled gains avoid that the variation of the closed loop system autovalues affect its 
performance. Therefore the obtained results present good perspectives to the use of the 
proposed discrete optimum observer in multivariable systems. 
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