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Abstract. It is studied in the present work the natural convection of the air (Pr = 0.7), in a 
rectangular cavity in order to evaluate the heat gain of the domain. It is considered a 
rectangular cavity whose upper surface is kept at a cold isothermal temperature and the 
remaining walls at constant convection. To discretize the computational domain, the Galerkin 
finite element method is applied. The flow is considered to be two-dimensional, turbulent, 
incompressible, and unsteady. In the turbulence model, it is implemented the large eddy 
simulation (LES) with two sub-grid scale models: vorticity transfer theory (VTT) and second-
order structure-function (F2). The streamfunction ψ, the temperature θ, and the velocity 
vectors are obtained. The average Nusselt numbers Num are also calculated on the vertical 
surfaces as a function of some geometrical and physical parameters. 
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1 INTRODUCTION 
 

Transient natural convection flows occur in many technological and industrial 
applications. On natural convection process the buoyancy forces appear due to density 
variation and this can influence the heat transfer. Therefore, it is important to understand the 
heat transfer characteristics of natural convection in an enclosure. 

On the other hand, some studies on the reduction of the energy consumption have been 
carried out in the last years. The goals of these works have been to lower costs and improve 
the efficiency of domestic, industrial, and commercial equipments. 

It is known that the major part of the electrical energy produced in a country is addressed 
to the domestic use and that one third of it is spent with refrigeration systems. Hence, it is 
important to study the domestic coolers that are strongly responsible, together with showers, 
for the electrical energy consumption in our homes. Therefore, it is appealing to verify the 
temperature field in a room submitted to a turbulent flow that gains heat from an external 
environment. 

In the present work, a two-dimensional numerical simulation in a cavity with a cold upper 
wall is carried out for a turbulent flow. The turbulence study is a complex and challenging 
assumption. There are few works in the literature that deals with natural convection in closed 
cavities using the turbulence model LES. The motivation to accomplish this work relies on 
the fact that a great amount of problems in engineering that can use this geometry. Two 
turbulence models are implemented here together with the finite element method.  

A large eddy simulation (LES) seems a promising approach for the analysis of the high 
Grashof number turbulence that contains three-dimensional and unsteady characteristics. A 
direct simulation of turbulence gives us more accurate and precise data than experiments; it is 
essentially unsuitable for the high Grashof number flows because of computational 
limitations. It is known that the LES enables an accurate prediction of turbulence, but spends 
much less CPU time than the direct simulation. 

In the literature, a large number of theoretical and experimental investigations are reported 
on natural convection in enclosures. 

Bispo et all1 (1996) studied turbulent natural convection in a cavity simulating an 
evaporator. On the upper horizontal surface, isotherm temperature was imposed and on the 
other surfaces, a constant convection boundary condition was defined. 

Cesini et all4 (1999) have analyzed the natural convection heat transfer from a horizontal 
heated cylinder enclosed in a rectangular cavity. In that work, conductive heat transfer 
through the upper horizontal wall was imposed. The flow was considered laminar. 

Peng and Davidson13 (1999) used the finite volume method with the k-ω model to study 
flows with thermal stratification using turbulence models for low Reynolds numbers. 
Smoothing functions were applied to eliminate the problem of mesh dependency giving rise 
to correct asymptotic behavior near the wall. The geometry was a cavity with aspect ratio      
A = 5 and Rayleigh number Ra = 5 x 1010 with a heating wall temperature Th = 77.2 [oC] and 
cooling wall temperature Tc = 31.4 [oC]. 

Peng and Davidson14 (2001) studied the turbulent natural convection in a closed enclosure 
whose vertical lateral walls were maintained at different temperatures. Both the Smagorinsk 
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and the dynamic models were applied to the turbulence simulation. Peng and Davidson14 
(2001) modified the Smagorinsk model by adding the buoyancy term to the turbulent 
viscosity calculation. This model will be called the Smagorinsk model with buoyancy term. 
The computed results were compared to experimental data and showed a stable thermal 
stratification under a low turbulence level ( Ra = 1.58 × 109 ). 

A study on the streamfunction and temperature distributions in a refrigerator was 
developed by Cortella et all5 (2001) using the finite volume method. The computational code 
was based on the vorticity-streamfunction formulation by incorporating the turbulent model 
LES, where the turbulent fluxes were estimated according to the vorticity transfer theory 
(VTT).  

It was performed in the work of Oliveira and Menon10 (2002a), a numerical study of 
turbulent natural convection in square enclosures. The finite volume method together with 
large eddy simulation was used. The enclosure lateral surfaces are kept to different isothermal 
and the upper and lower surfaces are isolated. The flow is studied for low Rayleigh numbers 
Ra = 1.58 × 109. Three turbulence LES models were used.  

A natural convection heat transfer study in closed rectangular enclosures was 
accomplished by Oliveira and Menon11 (2002b) considering a turbulent regime and a k-ω 
turbulence model. The local and average Nusselt numbers were evaluated for Rayleigh 
numbers between 105 to 1010. The Prandtl number was 0.71 and the aspect ratios were A = 5, 
2, 1 and 0.5. 

Brito et all3 (2002) studied the natural convection heat transfer in a rectangular enclosure 
with an internal cylinder considering the turbulent regime. The flow was taken to be two-
dimensional, incompressible, and unsteady. A large eddy simulation with sub-grid modeling 
and the second-order structure-function model (F2) was used. The local Nusselt number Nu 
was evaluated for Rayleigh number Ra = 1.58 × 109, Prandtl number Pr = 0.7, and an aspect 
ratio A = 1. 

Brito et all2 (2003) conducted a numerical analysis on the turbulent natural convection in a 
single horizontal square cavity where the vertical lateral walls were isothermal, while the 
lower and upper horizontal walls were adiabatic. There was a conductive square body within 
the cavity. The objective of the heat transfer analysis was the investigation of the Nusselt 
number distribution on the vertical walls for various Rayleigh numbers. Comparisons were 
made not only with experimental and numerical results found in Tian and Karyiannis17,18 
(2000), Oliveira and Menon10 (2002a), but also with the numerical studies by Lankhorst8 
(1991) and Cesini et all4 (1999). 

In the present work, it is considered a model that could be applied to fridges. The objective 
of the heat transfer analysis is to investigate the Nusselt number distribution on the walls of 
the rectangular closed cavity by using two turbulence models and two computational meshes. 
Four cases are studied numerically. The first case (case 1) is obtained using LES with 
vorticity transfer theory sub-grid scale model (VTT). In case 1, 2,934 linear triangular 
elements and 1,543 nodes are used. Although case 2 has the same turbulence model, the mesh 
is different with 5,294 elements and 2,749 nodes. Cases 3 and 4 have the same meshes as in 
cases 1 and 2, respectively, but the turbulence model LES is used with the second order 
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structure function sub-grid scale model (F2). The rectangular cavity with aspect ratio             
A = H/L = 2.0, is cooled on the top wall and gains heat from the environment through the 
vertical and bottom walls. As an initial step for designing a more economic fridge, a constant 
convection coefficient h is taken for the vertical walls and a higher one for the bottom wall. 
The room temperature is given by T∞. The lower horizontal surface S2 has constant 
convective conditions in which h2 = 20 [W/m2 °C] and T∞ = 1 [°C] whereas the upper one is 
an isothermal surface with Tc = -1 [°C]. The lateral vertical surfaces S1 and S3 have the same 
constant convective conditions where h1 = 10 [W/m2 °C] and T∞ = 1 [°C]. Comparisons are 
made not only with experimental and numerical results found in Tian and Karyiannis17, 18 
(2000), Oliveira and Menon10 (2002a), but also with the numerical studies by Lankhorst8 
(1991) and Cesini et all4 (1999). 
 
2 PROBLEM DESCRIPTION  
 

Figure (1) shows the geometry with the domain Ω. It will be considered a rectangular 
cavity. The upper horizontal surface S4 is isothermal with temperature Tc.= -1 [°C]. The 
convective boundary conditions on the vertical surfaces S1 and S3 have h1 = 10 [W/m2 °C] 
and T∞ = 1 [°C]. The convective boundary conditions on the bottom horizontal surface S2 
have h2 = 20 [W/m2 °C] and T∞ = 1 [°C]. The initial condition in Ω is: T = 0 with ψ = ω = 0. 
All the physical properties of the fluid are constant except the density in the buoyancy term 
where it obeys the Boussinesq approximation. It is assumed that the third dimension of the 
cavities is large enough so that the flow and heat transfer are two-dimensional. 

Figures (2a) and (2b) show the meshes used in the numerical simulations of the present 
work. Two meshes are used in order to verify their refinement effect on the average Nusselt 
numbers on the surfaces. One with 2,934 linear triangular elements and 1,543 nodes and 
another with 5,294 nodes and 2,749 nodes. 

 
2.1 Problem Hypothesis 
 

The following hypotheses are employed in the present work: unsteady regime; turbulent 
regime; two-dimensional flow; incompressible flow; constant fluid physical properties, except 
the density in the buoyancy terms. 

 
3 TEORY OF SUB-GRID SCALE MODELLING 
 

The governing conservation equations are: 
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where xi are the axial coordinates x and y, ui are the velocity components, p is the pressure, T 
is the temperature, ρ is the fluid density, ν is the kinematic viscosity, g is the gravity 
acceleration, β is the fluid volumetric expansion coefficient, δ2j is the Kronecker delta, α is 
the thermal diffusivity, and S the source term. The last term in Eq. (2) is the Boussinesq 
buoyancy term where T0 is the reference temperature. 
 

  
 
 

 

 
 
 

Figure 1: Cavity geometry. Figure 2a: Mesh arrangement 1 
for cases 1 and 3. 

Figure 2b: Mesh arrangement 
2 for cases 2 and 4. 

 
In the large eddy simulation (LES), a variable decomposition similar to the one in the 

Reynolds decomposition is performed, where the quantity ϕ is split as follows: 
 

 'φφφ += , (4) 
 

where φ  is the large eddy component and 'φ  is the small eddy component. 
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The following filtered conservation equations are shown after applying the filtering 
operation to Eq. (1) to (3). This is done by using the volume filter function presented in 
Krajnovic7 (1998). The density is constant. 
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In Equations (5) to (7), jiuu  and Tu j  are the filtered variable products that describe the 
turbulent momentum transport and the heat transport, respectively, among the large and sub-
grid scales. 

According to Oliveira and Menon10 (2002a), the products jiuu  and Tu j are split into other 
terms by including the Leonard Lij tensor, the Crossing tensor Cij,, the Reynolds sub-grid 
tensor Rij, the Leonard turbulent flux Lθj, the Crossing turbulent flux Cθj and the sub-grid 
turbulent flux θj. The Crossing and Leonard terms, according to Padilla12 (2000), can be 
neglected. After the development shown in Oliveira and Menon10 (2002a), the following 
conservation equations are obtained: 
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where, Pr is the Prandtl number with α = ν/Pr. The tensors τij and θj that appear in Eq. (9) and 
(10) are modeled in the forthcoming topics. 
 
3.1 Sub-grid scale model 
 

Many sub-grid scale models use the diffusion gradient hypothesis similar to the 
Boussinesq one that expresses the sub-grid Reynolds tensor in function of the deformation 
rate and kinematic energy. According to Silveira-Neto15 (1998), the Reynolds tensor is 
defined as: 
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where, νT is the turbulent kinematic viscosity, δij is the Kronecker delta and ijS  is deformation 
tensor rate given by: 
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Substituting ijS  in Eq. (9): 
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In a similar way, the energy equation is obtained: 
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where the turbulent thermal diffusivity is calculated as: 
 

 TTT Prνα = , (15) 
 

and PrT is the turbulent Prandtl number. 
The sub-grid models propose the following expression for the turbulent viscosity νt: 
 

 qcνT l= , (16) 
 

where c is a dimensionless constant, ℓ and q are the scale lengths and the velocity, 
respectively. 

The parameter ℓ is related to the filter size and it is usually used in the two-dimensional 
case with a rectangular element as: 

 

 ( ) 21
21   ∆∆=∆=l , (17) 

 

where ∆1 and ∆2 are the filter lengths in x and y directions. 
 
3.1.1 The second-order structure-function sub-grid scale model (F2) 

 

In cases 3 and 4, the element turbulent viscosity is calculated at the element centroid 
regarding the velocities of the neighboring element centroids. As a two-dimensional 
numerical simulation is performed, an adaptation of the velocity structure function F2, which 
is used in the turbulent viscosity νT, is needed. In a 3D model, the velocities of the 
neighboring elements are calculated within a sphere of a previously calculated radius R. As 
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for the 2D model, these same velocities are calculated within a circle of radius R. Each 
element from the neighborhood has its centroid located in a distance smaller or equal than the 
value R of a circumference reaching those neighboring elements. R is given by R = γ (a + b + 
c)/3, where a, b, and c are distances of the centroid to the element vertexes and γ is adopted as 
1,9. 

The turbulent viscosity νT is calculated as follows: 
 

 
( ) ( )t,,xFC104.0t,,x 2

23
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, (18) 
 

where Ck = 1.4 is the Kolmogorov constant (Kolmogorov6, 1941). The variable ∆ is the 
geometric average of the distances di from the neighboring elements to the point where νT is 
calculated and is given by: 
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and ( )t,,xF2 ∆
r  is the structure function of second order velocities. 

According to Kolmogoroy6, 1941 law that establishes that the structure function of second 
order velocities is proportional to (εr)2/3, where r is the distance between two points, the 
structure function can be calculated as: 
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where ( )t,edxu iii
rr

+  and ( )t,edx iii
rr

+υ  are the velocities at the point “i” of the neighboring 
centroid placed at a distance di from the target point, ( )t,xu r  and ( )t,xrυ  are the velocities at 
this point of the element, N is the number of points from the neighborhood, t is the time and 

ier  the vector on the di direction. 
 
3.1.2 Vorticity transfer theory of sub-grid scale model (VTT) 
 

In cases 1 and 2, the turbulence model implemented can be classified as a large eddy 
simulation (LES), according to Cortella et all5 (2001), where the turbulent fluxes are 
estimated on the basis of the vorticity transfer theory (VTT). In accordance with this 
approach, the turbulent kinematic viscosity is computed as: 
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where ω is the vorticity and ∆ is the average dimension of the element given by: 
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where, xr  is the position vector of the center of the reference element and dk ( k = 1 to N ), the 
distance from the center of the reference element to the center of the neighbor element. More 
details on this model can be seen on the work of Métais e Lesieur9 (1996). 

For isotropic turbulence, the dimensionless constant C = 0.2 can be satisfactorily used 
according to Cortella et all5 (2001). The turbulent thermal diffusion is estimated from the 
turbulent kinematic viscosity, by assuming: 

 

 4.0Pr TTT =αν= . (23) 
 

 
4 INITIAL AND BOUNDARY CONDITIONS 
 

From this section on, the upper bars that mean the average values T  and u  will be 
omitted.  

Figure (1) pictures the enclosure on which the initial conditions are imposed: 
 

 u(x,y,0) = 0, v(x,y,0) = 0, T(x,y,0) = 0 , in Ω, (24) 
 

The boundary conditions imposed are: 
 

 u = v = 0, T∞ = 1, h1 = 10, on S1, (25) 
 

 u = v = 0, T∞ = 1, h2 = 20, on S2, (26) 
 

 u = v = 0, T∞ = 1, h1 = 10, on S3, (27) 
 

 u = v = 0, T = Tc = -1, on S4, (28) 
 

Besides that, the flow field can be described by the streamfunction ψ and the vorticity ω 
distributions given by: 
 
 yu ∂∂ψ= , x∂∂ψ−=υ , ( ) ( )yux ∂∂−∂∂υ=ω , (29) 
 
where u and υ are the velocity components in the x and y directions , respectively. Hence, the 
continuity equation given by Eq. (1), is exactly satisfied. Working with dimensionless 
variables, it is possible to deal with Rayleigh number Ra, Prandtl number Pr and the 
enclosure aspect ratio A given by: 
 

 ( )[ ] 923
ch 1058.1HTTgPrRa ×=ν−β=  , 7.0Pr =αν=  , 0.2LHA == , (30) 

 

where T∞ and Tc are the room temperature and the temperature on S4, respectively. H is a 
characteristic dimension. 
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5 NUMERICAL METHOD 
 

Equations (8) to (10) are solved through the finite element method (FEM) with a linear 
triangular element. The discretization uses the Galerkin formulation. The system of equations 
is solved with the Gauss Quadrature. The problem solution follows the steps below: 

(10) through Eq. (29) the streamfunction field ψ is solved; (20) the wall vorticity is 
determined in matricial form, according to Silveira-Neto et all16 (2000); (30) the boundary 
conditons for vorticity are applied; (40) the vorticity in the interior is calculated according to 
Eq. (29); (50) the temperature field is solved through Eq. (10); (60) the local Nusselt is 
obtained using Eq. (31); (70) the time is increased with the time step ∆t and the iteration with 
unity and then it turns to the first step (10) starting all over again till it reaches the stop 
criterion. The local Nusselt number Nu is defined as: 

 

 ( ) ( )cw TTHnTNu −∂∂= ∞
. (31) 

 

where n is the unit vector normal to the surface or boundary where the local Nusselt number 
Nu is calculated. 

 
6 NUMERICAL METHOD VALIDATION 

 

In order to compare the results with the ones found in the literature and then to validate the 
computational code in FORTRAN, two cases are taken from Brito et all3 (2002) and Brito et 
all2 (2003). Brito et all3 (2002) and Brito et all2 (2003) use the same turbulence model LES as 
the one used in the present work. In the first comparison, the study of the natural turbulent 
flow in a square enclosure with different temperatures for various Rayleigh numbers is carried 
out in Brito et all3 (2002). The second comparison is made in the Brito et all2 (2003)´s work 
considering a laminar flow in a rectangular enclosure with an internal cylinder. 

In the first comparison, it is also used the large eddy simulation (LES). The results in Brito 
et all3 (2002) are compared not only to the experimental and numerical ones in Peng and 
Davidson13 (2001), but also to the numerical ones in Lankhorst8 (1991). A good agreement is 
verified. It is also made a comparison between the results from Brito et all3 (2002), for the 
average dimensionless temperature and the experimental ones given by Tian and 
Karayiannis17, 18 (2000). 

The second comparison is made in Brito et all2 (2003) whose results are compared to the 
ones in Cesini et all4 (1999). Cesini et all4 (1999) considered a two-dimensional laminar flow. 
For the numerical simulation made by Cesini et all4 (1999), a dimension z is adopted in such a 
way that the flow can be considered two-dimensional. Cesini et all4 (1999) study a rectangular 
enclosure where the horizontal surface has a constant convection heat transfer whereas the 
horizontal lower surface is submitted to isolation. The vertical surfaces are isothermal having 
a low temperature Tc. On the other hand, the cylinder surface has a high temperature Th. In 
the second comparison, the maximum deviation is 11.88 % with Rayleigh number equal to 
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3.4 × 103 using a mesh with 5,790 elements and 3,011 node points. The minor deviation is 
7.53 % to Rayleigh number equal to 3.0 × 104.  
 
7 RESULTS 

 

The objectives of the present numerical work are: verify the influence of the mesh 
refinement and of the different turbulent models LES with sub-grid scale modelling on the 
domain considered here.The flow is considered turbulent with Ra = 1.58 × 109 and Pr = 0.7. 
The geometry parameters used in the four cases mentioned previously are: H = 1; L = 0.5; T∞ 
= 1; Tc = -1; A = H/L = 2.0; h1 = 10 and h2 = 20. 

Figure 3 presents the local Nusselt number Nu on surface S1 with Ra= 1.58 × 109 for all 
cases. It is noted from Fig. (3) that Nu varies along S1, but with similar results for the cases 
despite the meshes and the turbulence models. Only in case 2, for Y ≈ 0.8, there is a higher 
peak on the local Nusselt number. The Nusselt numbers Nu obtained on the vertical surface 
S1 are lower than the ones on the horizontal surface S4, due to on S4 a constant convection is 
imposed instead of an isothermal temperature. 

Figures 4, 5, 6, and 7 present the results for the average Nusselt numbers Num on S1, S2, S3 
and S4 versus time t for cases 1, 2, 3, and 4, respectively. Figures 4 and 5 use the same 
turbulence model LES with vorticity transfer theory (VTT). In case 2, Fig. 5, the mesh 
refinement make Num be higher along the time, mainly on the horizontal surface S4. 

 

Y = y/H
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Figure 3: Local Nusselt number on S1 for Ra = 1.58 x 109 and t = 600 t0. 
 

This was already expected in a certain way because the mesh refinement gives more 
accurate results. On the other hand, the variation of Num the time happens due to the fact that 
in LES, the results do not reflect an average amount, but all the physical instabilities in the 
flow. 
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Figure 4: Num versus t for case 1. 
 

 

Figure 5: Num versus t for case 2. 
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Figure 6: Num versus t for case 3. 
 

 

Figure 7: Num versus t for case 4. 
 

 

Figures 4, 5, 6 and 7: Average Nusselt number Num on S1, S2, S3 and S4 for Pr = 0.7, Ra = 1.58 × 109 and            
t = (400-600)t0. 

 
Figures 6 and 7 present Num versus time t for all the surfaces in the rectangular cavity. The 

turbulence model with the second-order structure-function sub-grid scale (F2) is used. It is 
observed that the behavior of the curves is similar to the one in Fig. 4 and 5. Comparing Figs. 
6 and 7, that is, cases 3 and 4, respectively, the mesh refinement gives again different and 
bigger values for Num. 

Contrasting now the results for Num obtained with different sub-grid-models according to 
Figs. 5 and 7, it is noted that Num for S1, S2 , and S3 are quite similar. Num on S4, for a period 
of time t = 2.83 x 10-3 to 3.23 x 10-3, showed to have the largest difference. 

Figure 8 brings the streamfunction ψ, the average temperature Tm distributions and the 
velocity vectors for Ra = 1.58 × 109 and Pr = 0.70 for case 1. There are three major 
recirculations inside the cavity. A hotter fluid region appears near the horizontal bottom wall 
due to the heat gain from the outside that is imposed by the constant convection boundary 
condition.  

Figure 9 brings the streamfunction ψ, the average temperature Tm distributions and the 
velocity vectors for Ra = 1.58 × 109 and Pr = 0.70 for case 2. With the mesh refinement, the 
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recirculation regions are more defined and the fluid region with higher temperature is larger 
than the one in Fig. 8. 

Figure 10 brings the streamfunction ψ, the average temperature Tm distributions and the 
velocity vectors for Ra = 1.58 × 109 and Pr = 0.70 for case 3. The mesh used here is the same 
as in case 1. The turbulence model is LES with F2. The positions of the fluid recirculations 
change in relation to cases 1 and 2 in Figs. 8 and 9. From Fig. 10, it is observed a fluid region 
on the lower right side with higher temperatures. 
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Figure 8: Case 1 - Streamfunction ψ for t = 600 t0 (∆ψ = 100), average temperature Tm (∆Tm = 0.01) for t = 
(400-600)t0 and velocity vectors for t = (400-600)t0. 
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Figure 9: Case 2 - Streamfunction ψ for t = 600 t0 (∆ψ = 100), average temperature Tm (∆Tm = 0.01) for t = 
(400-600)t0 and velocity vectors for t = (400-600)t0. 

 
Figure 11 brings the streamfunction ψ, the average temperature Tm distributions and the 

velocity vectors for Ra = 1.58 × 109 and Pr = 0.70 for case 4. The results from case 4 are quite 
similar to the ones in  case 3 in relation to ψ, Tm, and the velocity vectors. 
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8 DISCUSSION 

 

In this work, the turbulent natural convection in a rectangular enclosure is studied with 
boundary conditions of isothermal temperature and constant element convection.  

Two kinds of sub-grid scale models are used: large-eddy simulation (LES) with the 
vorticity transfer theory of sub-grid scale model (VTT) according to Cortella et all5 (2001) 
and  
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Figure 10: Case 3 - Streamfunction ψ for t = 600 t0 (∆ψ = 100), average temperature Tm (∆Tm = 0.01) for                
t = (400-600)t0 and velocity vectors for t = (400-600)t0. 
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Figure 11: Case 4 - Streamfunction ψ for t = 600 t0 (∆ψ = 100), average temperature Tm (∆Tm = 0.01) for                
t = (400-600)t0 and velocity vectors for t = (400-600)t0. 

 
LES with the second-order structure-function sub-grid scale model (F2) (more details in 
Silveira-Neto15, 1998) The conservation equations are discretized by the Galerkin finite 
element method with linear triangular elements. 
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Two cases are used for validation of the computational domain of the present work. In 
Brito et all3 (2002) and Brito et all2 (2003), the same turbulence model LES, together with the 
finite element method, is used in the present work. 

For Ra = 1.58 × 109, it is not found a meaningful change of the average Nusselt number 
Num on all the surfaces. Only on the upper horizontal surface S4 there is a little difference on 
the average Nusselt number Num. It can be noted through an animation of the streamfunction 
ψ and the time average temperature Tm that this complex flow does not reach the steady 
regime, as expected. 

The streamfunction, average temperature distributions and velocity vectors are presented 
for Rayleigh number Ra = 1.58 × 109 and Prandtl number Pr = 0.7 for t = (400-600)t0. 
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