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Abstract: Eigenvalues, singular values and condition number of matrices, play an important
role in many fields of applied mathematics to engineering. Among the plethora of applications
of eigenvalues in mathematics and engineering we can mention numerical analysis, structural
design, quantum mechanics and system dynamics (physical and biological models). For some
applications it may be desirable to choose the parameters of a model in order to optimize an
objective function and/or to verify constraints that involve eigenvalues or singular values of a
certain matrix. In general, the elements of the matrix depend in a nonlinear fashion on the
optimization parameters. The purpose of this contribution is to introduce recent formulations
of eigenvalue and singular value optimization as well as techniques to include condition
numbers within the optimization problem. A chemical engineering design problem is
presented to illustrate the proposed techniques.
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1. INTRODUCTION
Among the plethora of applications of eigenvalues in mathematics and engineering, it can

be mentioned numerical analysis, structural design, quantum mechanics and system dynamics
(physical, chemical and biological models). Singular values and condition number of matrices
are also defined in terms of eigenvalues.

In problems involving eigenvalues, in general it is not just the case to calculate the
eigenvalues of a given matrix A. It is more typical that the elements of matrix A depend on an
amount of variables, say y, and that the values of such variables are desired to be the solution
of some optimization problem involving the eigenvalues of A(y) as objective functions and/or
constraints. For a comprehensive survey on the subject, which also includes an historical
account of the development of the field, see Lewis and Overton1.

Few contributions dealing with the general unsymmetric, non-linear case have been
presented. Much of the work in nonlinear eigenvalue optimization, from both theoretical and
algorithmic points of view, has been produced in the mechanical (structural) engineering
field2.

It is not the aim of this paper to make a review of the field of eigenvalue optimization but
to introduce several engineering pertinent nonlinear eigenvalue and singular-value
optimization problems. The proposed approach is illustrated by means of a chemical
engineering pertinent example.

2. EIGENVALUE OPTIMIZATION
In the following several eigenvalue optimization problems are described.

2.1 Maximization of the minimum eigenvalue of a symmetric matrix

The problem of maximizing the smallest eigenvalue, λmin, of a symmetric matrix A(y) has
been addressed in Ringetz2:
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This formulation corresponds to the problems of maximizing the lowest natural vibration
frequency of a structure and of linear buckling in the field of structural engineering.

Vectors h(y) and g(y) stand for equalities and inequalities of the model respectively, and
vector y comprises the optimization variables.

Problem (P1) can be reformulated in terms of an auxiliary variable, z:
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The strategy is to bound the spectrum of A(y) from below and to maximize the lower
bound z. Since IvAv λ=  ⇒  IvvIA z)λ()z( −=− , the condition 0zλ i >− ( zλ i > ) implies
that 0z !IA −  (! represents positive definiteness). Therefore, the above problem may be
rewritten as:
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Ringertz’s approach to cope with positive definiteness makes use of the property that it is a
sufficient and necessary condition for a real symmetric matrix to be positive definite that its
eigenvalues be positive. Such a strategy requires a special purpose algorithm to be
implemented2.

An alternative possibility is to apply Sylvester conditions on matrix A. Sylvester’s criterion
states that the necessary and sufficient conditions that a symmetric matrix Q(n, n) is positive
definite are that its successive principal minors Qi (i=1,…,n) be positive: det[Q(1,1)],
det[Q(2,2)], …, det[Q(n, n)]. Therefore, (P1’’) can be reformulated into a new problem as:
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This is a standard NLP problem, since the determinants are themselves smooth, and can be
solved with standard and efficient gradient based algorithms. The constraints of greater than
zero on the determinants are handled through a small constant ξ: det(.) ≥ ξ, ξ > 0 (typically
ξ=1E-5)  .
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2.2 Minimization of the maximum eigenvalue of a symmetric matrix
In a similar fashion, it is possible to formulate the minimization of the maximum

eigenvalue of a symmetric matrix A(y):
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The strategy is to bound the spectrum from above with an auxiliary variable z and to
minimize this upper bound. By performing analogous considerations to the maximization
problem it results:
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Again this is a regular NLP problem which can be tackled with standard NLP solvers.

2.3 Multiple objective eigenvalue optimization of a symmetric matrix
There might exist a conflict when it is desired to simultaneously maximize the minimum

eigenvalue and minimize the maximum eigenvalue of a symmetric matrix. This means that
while maximizing the minimum eigenvalue, its maximum eigenvalue is also maximized. Such
a behavior may or may not occur depending on the involved non-linearities. It may happen for
example that the maximum eigenvalue is in fact minimized when maximizing the minimum
one. However, in the case when maximum and minimum eigenvalues are in conflict for
minimization and maximization respectively, a multiple objective optimization problem
arises:
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Common practice in multiple objective optimization is to reflect the tradeoff between the
different objectives by constructing a non-inferior solution set. This is usually achieved by
applying the “ε-constraint” method 3. Therefore, problem (P3) can be reformulated as follows:

Y
)(
)(

ε))((λs.t.

))((λmax))}((λ{min

max

minymin

∈
≤
=

≤

≡−

y
0yg
0yh
yA

yAyA
y

                                     (P3’)

By progressive increase of the value of parameter ε, different figures of both objectives can
be generated. If the constraint on the maximum eigenvalue is binding at the solution, that pair
of objectives belongs to the non-inferior solution set.

Problem (P3’) can be further reformulated as follows, according to (P1’):
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Applying Sylvester condition as in problems (P1N) and (P2N) it results:

Y
)(
)(

n1,...,i0}))((εdet{
n1,...,i0})z.-)((det{s.t.

zmax

i

i

z,

∈
≤
=

=>−
=>

y
0yg
0yh

yAI
IyA

y

                             (P3N)

The proposed eigenvalue optimization approach provides a systematic framework to
handle the whole spectrum of even medium and large-scale symmetric matrices by bounding
both, minimum and maximum eigenvalues.
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3. SINGULAR VALUE CONTROLLABILITY ANALYSIS

Controllability and resiliency (C&R) measures, such as singular values, condition number
and Relative Gain Array are important assessment tools in dynamic and control problems 4.
They are based on linearized versions of the multiple-input/multiple-output dynamic models
in the Laplace and frequency domains.

The dynamics of a process may be accurately described by a set of (generally non-linear)
differential algebraic equations in the state space:

),,(
dt
d duxfxx =="

),,(ss duxgy =

where u is the vector of inputs, ys the vector of outputs, x is the vector of states and d the
vector of disturbances (all the vectors represent deviation variables from some nominal
value). Performing linearization on such models gives:

EdBuAxx ++="
FdDuCxy ++=s

By applying Laplace transforms to the linearized version, it is possible to obtain the
transfer function representation of the system:

(s)(s)(s)(s)(s)s dGuGy d+=

where

DBAICG +−= −1)s((s)
FEAICG d +−= −1)s((s)

In particular the minimum singular value of the steady state (zero frequency) transfer
function matrix, G:

2
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indicates how close this matrix is to being singular and represents the smallest gain of the
process among possible input directions. A large value of this measure implies that the
process is resilient to disturbances. The singular values of matrix G may be calculated as the
square roots of the eigenvalues of H=GTG:
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n1,...,i)(λ)(σ ii == HG

in particular

)(λ)(σ minmin HG =

Another meaningful index, which will be introduced in order to provide a most complete
description of the controllability theory, is the condition number of matrix G, defined as:
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which verifies the following relation:
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A small condition number means that model errors do not cause large manipulated variable
errors.

In the following, a chemical process engineering problem will be solved in the context of
formulation (P3) in order to trace the relation of the singular value structure of a matrix whose
elements depend in a nonlinear fashion on the optimization variables. The condition number
of the matrix is also reported in order to provide a more complete picture of the system.

4. CONTROL OF A REACTOR–SEPARATOR–RECYCLE SYSTEM
Chemical plants used to be cascades of individual units. The key for successful dynamic

operation of such processes, is proper control of each unit. Modern chemical plants on the
other hand are highly integrated (mass and energy recycles) in order to maximize conversion
throughout the whole process and accomplish efficient energetic operation. Integrated plants
present in general very complex dynamic behavior due to the positive feedback introduced by
the recycles. Conventional wisdom to cope with such complex dynamics is to isolate units by
means of large surge tanks, in order to reduce dynamic interaction. This practice, however, is
expensive and may be environmentally unacceptable when hazardous chemicals are involved.
The challenge is therefore to design for feasible operation of tightly integrated processes.
Recycle systems gave rise to the concept of plantwide control, which considers processes as a
whole, rather than cascades of units for control purposes5.

 In previous work6 the cost/controllability design problem of a reactor-separator-recycle
system was addressed by means of multiple objective optimization in order to illustrate their
conflicting nature. In this work, a particular control configuration for the reactor-separator-
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recycle system, is studied in the context of problem (P3) regarding singular value
controllability. The considered model is taken from Luyben3. The basic flow-sheet is shown
in Fig. 1.

F, zR

V

B, xB

N

F0, z0

Vm

D, xD

R

Reactor

Column

Reboiler

Condenser

Fig. 1: Reactor-Separator-Recycle System

A first order A→B reaction takes place in the isothermal reactor. The reactor effluent is fed
to a column where non-reacted A and product B are separated. Non-reacted A is recycled
back to the reactor. For a given fresh feed flow-rate, F0, and composition, z0, and a certain
product specification, xB, the goal is to calculate the design variables, which optimize the the
controllability objective. The optimization variables are: feed flow-rate, F, and composition,
zR, to the column; number of trays, N; vapor boil-up, V; reflux flow-rate, R; reflux ratio, RR;
recycle flow-rate, D, and composition, xD; and reactor hold-up, Vm, and product flow-rate, B.

Usual simplifying assumptions are considered in the column model: (i) constant relative
volatility between components throughout the whole separation, (ii) equimolar over-flow, (iii)
total condenser, (iv) partial reboiler and (v) saturated liquid feed. The following equations
describe the mathematical model for this process. For further details see Luyben3.
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Process model

Total balance around reactor
FDF0 =+                                                         (m1)

Component balance around reactor
RmRD00 kzVFzDxzF +=+                                            (m2)

Component balance around column
BDR BxDxFz +=                                                   (m3)

Eduljee design equation
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Reflux ratio

D
RRR =                                                         (m7)

Condenser balance
DRV +=                                                       (m8)

Total balance
F0=B                                                           (m9)

Applicability of Eduljee design equation
0.01011.0101RRRR m +≥                                        (m10)

Constraint on reflux concentration
xD≥0.90                                                        (m11)
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This model has three degrees of freedom since nine equality constraints and twelve
variables are involved. The quality specification xD≥0.90 is included in the analysis to prevent
the optimal solution from having a single stripper column (R=0). α stands for relative
volatility.

Economic Objective

The economic objective is the total cost to be minimized. It involves capital and utility
costs:

( ) ( )utilitiestaxexchangerscolumnreactor
pay

CβCCC
β

1Cost +++=

where βpay is the payback period and βtax the tax factor. All the costs involved are in units of
$/yr.

Cutilities mostly corresponds to the hot utility at the reboiler of the distillation column and is
calculated as

1207VCutilities =

where V is supplied in kmol/hr.
The capital cost of the reactor depends on its size and is calculated here as:

( ) ( )0.802
R

1.066
Rreactor 2DD17639C =

where

( ) 3
1

mR 0.6366V0.3967D =

These equations assume that the height of the reactor is twice its diameter. DR is in meters
and Vm is in kmol.

The capital cost of the column depends on the diameter, DC, and the number of trays, N,
according to the following equation:

N)548.8(D(2.4N))6802(DC 1.55
C

0.0821.066
ccolumn +=

The diameter depends on the vapor velocity in the column, which is related to the vapor
boilup. It follows then:

V0.0832DC =
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The capital cost of heat exchangers depend upon the areas of the reboiler, AR, and the
condenser, AC, which are at the time related to the vapor boilup:

0.65
C

0.65
Rexchangers 8701A8701AC +=

 where

0.512VA R =  and V548.0A C =

The areas are in m2 and V is in kmol/hr.

Steady State Gains

In order to construct matrix G at zero frequency, the steady state gains for the desired
pairing of controlled and manipulated variables should be provided. In the present work,
compositions xD and xB will be considered as controlled variables.

The following expressions7 relate the aforementioned compositions to some arbitrary
manipulated variable, u, and permit the calculation of the steady state gains:
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With these expressions, the steady state transfer function matrix for certain control
configurations can be constructed.

RV Control Configuration

In this work a singular value study of the controllability will be performed in the context of
problem (P3) for the RV control configuration, where the reflux R, and the vapor boilup V,
are chosen to control compositions xD and xB. For the sake of simplicity, perfect level control
is assumed in the process (reactor, reflux drum and column base).

The desired process transfer function matrix is:
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Its elements can be calculated from (1), (2) and the following relations:
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Singular values depend on the scaling of the variables for fair comparison4. Here, matrix G
is scaled as follows:

( ) unscaled
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 −
=

where the overbar denotes the nominal variable value.
The parameters of the process are presented in Table 1.
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Table 1: Physical Data
F0 108.7 kmol/hr
z0 0.9
xB 0.00105
α 2
k 0.34086 hr-1

βpay 3 yr
βtax 1
F 125 kmol/hr

Bx 0.00105

The following problem is solved to obtain the non-inferior solution set according to (P3N):

Y
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The non-inferior solution set for -λmin(H) and λmax(H) is reported in Table 2. The
corresponding singular values σmin(G) and σmax(G) are also reported in Table 2 and
graphically presented in Fig. 2. The conflicting nature of both objectives can be clearly traced.
The condition number γ(G) is also included in Table 2 and graphed against σmin(G) in Fig. 3.
The costs of the corresponding designs are also presented in Table 2.

The proposed technique intends to provide to the process/control designer, a picture of the
criteria that should be considered regarding controllability. In particular the tradeoff between
minimum-singular-value and condition-number of the process transfer function can be
addressed by analyzing the reported results.
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Table 2. Non inferior solution set for - λmin(H) and λmax(H)
λmin(H) λmax(H) σmin(G) σmax(G) γ (G) Cost ($/yr)

10149.69 200000.00 100.75 447.21 4.44 509785.95
12493.85 250000.00 111.78 500.00 4.47 510813.28
14814.17 300000.00 121.71 547.72 4.50 512208.33
17115.98 350000.00 130.83 591.61 4.52 513773.42
19402.87 400000.00 139.27 632.29 4.54 515411.73
21677.37 450000.00 147.23 670.82 4.56 517072.29
23941.36 500000.00 154.73 707.11 4.57 518727.12
26196.31 550000.00 161.85 741.62 4.58 520360.54
28443.33 600000.00 168.65 774.60 4.59 522074.22
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Fig. 2: Non inferior solution set for - σmin(G) and σmax(G)
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Fig. 3: γ(G) vs. σmax(G)
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5. CONCLUSIONS
In this work, eigenvalue optimization theory and formulations for symmetric matrices have

been introduced and applied in the context of singular value optimization. The conflicting
nature of simultaneously maximizing/minimizing the minimum/maximum eigenvalues that
may arise in certain cases, is addressed by means of multiple objective optimization.

Eigenvalue optimization has been applied in structural engineering problems2 and in recent
studies to chemical engineering pertinent models6.

The proposed technique was applied here to the meaningful chemical engineering
design/control problem, where the considered controllability objectives were the minimum-
singular-value and the condition-number of the steady-state transfer function matrix. In
particular a classic control configuration of the outstanding reactor-separator-recycle system
was addressed.
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