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Abstract.We investigate the numerical dispersive properties of two finite element meth-
ods yielding a first order spatial approximation, a nonconforming one (NC-method) and
the Q1 conforming method (C-method) when applied to solve the scalar wave equation in
dispersive media in the space-frequency domain. The dispersive properties of the subsur-
face are simulated via a viscoacustic model yielding a constant quality factor in a given
fixed frequency range. The study is performed by constructing and analyzing the numeric
dispersion relations, and by evaluating derived quantities such as the frequency dependent
normalized attenuation, phase and group velocities. It is observed that the NC-method
introduces less numerical anisotropy and dispersion than the C-method. Moreover, for a
given fixed frequency, the NC-method nearly halves the number of points per wavelength
necessary to reach a given accuracy when calculating the mentioned derived quantities.
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1 INTRODUCTION

We are interested in investigating the dispersion properties of numerical solutions yield
by a nonconforming finite element method (NC-method)1,2 and in comparing them with
those of the well-known conforming finite element method using bilinear basis functions
(C-method) when solving the scalar wave equation in viscoelastic media. The Helmholtz
equation arises from a number of applications; in particular, we are going to consider it
within the frame of exploration seismology.
Knowing the dispersive properties of the numerical solution is of practical importance,
since an underestimation of their relevance can lead to significant numerical error. The
dispersive effects in numerical solutions of the scalar wave equation have been widely
investigated,3–9 although in all cases, the coefficients of the equation were considered real
and independent of the frequency, i.e., they are valid in the elastic regime. Real materials,
however, not always can be considered to behave this way. It is observed that seismic waves
loose energy and change their shape when traveling through the subsurface, so a better
model for the materials must be used. In the present effort, we are going to consider
a viscoelastic model to account for the dispersive behaviour of the soil. On the other
hand, most of the modeling of wave propagation in viscoelastic media is done, as far as
we are aware, by finite differences in the time domain,10–13 for which methods yielding an
approximately constant quality factor Q have been developed.14–17 This situations arose
mainly because of the lack of portability of previously developed spectral schemes, and also
their lack of flexibility to deal with non-periodic boundary conditions.11 Consequently,
the works devoted to study dispersion properties in viscoacustics/viscoelasticity deal only
with finite differences methods, and moreover, the literature in this area is not vast.18

and11 made some studies using only one relaxation mechanism, which does not yield
a constant Q over the studied frequency range, and,19 although modelling viscoelastic
materials, used real and frequency independent plane wave and shear moduli for their
dispersion analysis.
Working in the space-frequency domain, in Section 2 we start our study presenting the
chosen viscoelastic model, which allows us to use a constant quality factor, and a complex
and frequency dependent plane wave modulus in the acoustic equation. We follow in the
same section deriving the finite element approximations to this equation. In Section 3
we derive both the analytic and numeric dispersion relations. We devote Section 4 to
thoroughly analyze the numeric dispersion relations for both finite element methods, and
finally in Section 5 we draw our conclusions.

2 THEORETICAL BACKGROUND

2.1 Viscoelasticity

The anelastic behaviour of real earth media, attenuating and dispersing traveling me-
chanical waves is generally described by means of viscoelastic models, i.e., materials are
modelled through their mechanical analogs using springs and dashpots. Since long widely
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accepted viscoelastic models are the standard linear solid (SLS), consisting in a spring
and a dashpot in series (Maxwell body) connected in parallel to a spring having a spring
constant associated to the elastic properties of the material, and its improvement the
generalized SLS or GSLS (for a detailed description see17), which has a finite number of
Maxwell bodies connected in parallel to a spring. Each Maxwell body is also called relax-
ation mechanism, and is characterized by a pair of parameters τε, the strain retardation
time and τσ, the stress relaxation time, being this two times connected to the constants
of the spring and dashpot by simple relations.2021 proposed the idea of a continuous
distribution of relaxation mechanisms, and developed a viscoelastic model that renders
the observed behaviour of a constant quality factor Q for a given frequency range -e.g.
the exploration seismology one, 1-200 Hz-. Being this model easily used in the frequency
domain,16 we employ it in this paper.
Following21,22 we see that whenever τ−1

1 << ω << τ−1
2 , where τ1,2 are relaxation times

characterizing the model, it is possible to describe the behaviour of the compressional
plane wave modulus by

M(x, ω) =
M r(x)

A(ω)− i B(ω)
, (1)

where M r(x) ≡ M(x, 0) is its relaxed value and

A(ω) = 1− 1

π Q
log

(
1 + ω2 τ 2

1

1 + ω2 τ 2
2

)
,

B(ω) =
2

π Q
tan−1

(
ω (τ1 − τ2)

1 + ω2 τ1 τ2

)
. (2)

This expressions are valid only for dry rocks; analogous ones can be obtained using,
for example, the dissipative Gassman model for porous media saturated by one or two
inmiscible fluids.23

2.2 Helmholtz equation

Let us consider a bounded bidimensional isotropic, viscoelastic medium, where we want
to model the propagation of compressional waves. The region considered will be called
Ω, and its boundary Γ. Working in the frequency domain the governing equations are

−ω2

M(x, ω)
p̂(x, ω)−∇ ·

(
1

ρ(x)
∇p̂(x, ω)

)
= f̂(x, ω), x ∈ Ω,

∂p̂(x, ω)

∂ν
+ i ω α(x, ω) p̂(x, ω) = 0, x ∈ Γ. (3)

Here p̂(x, ω) and f̂(x, ω) are the Fourier transforms of the pressure p(x, t) and the external
source respectively, ρ(x) is the density of the medium, ν is the unit outward normal on Γ
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and the coefficient α(x, ω) = X(x, ω)− i Y (x, ω), where

X(x, ω) = Cr

(
2
(
C4

r + C4
i

))
−1/2

(
1 +

((
1 + (Ci/Cr)

4
)1/2

))1/2

,

Y (x, ω) =
C2

i

Cr

(
2
(
C4

r + C4
i

))
−1/2

(
1 +

((
1 + (Ci/Cr)

4
)1/2

))
−1/2

, (4)

and

C2
r =

Mr(x, ω)

ρ(x)
, C2

i =
Mi(x, ω)

ρ(x)
. (5)

24 have demonstrated that problem (3) is well posed. Its associated variational formulation
is given by1

−ω2

(
1

M
p̂, ϕ

)
+

(
1

ρ
∇p̂,∇ϕ

)
+ iω

〈
α

ρ
p̂, ϕ

〉

Γ

= (f̂ , ϕ), ϕ ∈ H1(Ω). (6)

The solution to this equation belongs to H1(Ω), the usual Sobolev space of functions in
L2(Ω) with first derivatives in L2(Ω). We use (f, g) =

∫
Ω

fg dx and 〈f, g〉 =
∫
Γ
fg dΓ to

denote the complex [L2(Ω)]2 and [L2(Γ)]2 inner products.
We state the nonconforming Galerking procedure to find p̂h, the approximated solution
of Eq. (6), as

−
(

ω2

M
p̂h, ϕ

)
+

∑

j

(
1

ρ
∇p̂h,∇ϕ

)

j

+ iω

〈〈
α

ρ
p̂h, ϕ

〉〉

Γ

= (f̂ , ϕ), ϕ ∈ NCh, (7)

The notation 〈〈·, ·〉〉 stands for the approximation of the inner product on the boundary
by means of the mid-point rule. The properties of the nonconforming finite element space
NCh are extensively studied in;1 we simply recall here that it can be constructed from

S2(R̂) = Span

{
1

4
± 1

2
x− 3

8

(
(x2 − 5

3
x4)− (y2 − 5

3
y4)

)
,

1

4
± 1

2
y +

3

8

(
(x2 − 5

3
x4)− (y2 − 5

3
y4)

)}
, (8)

where R̂ = [−1, 1]2 is the reference rectangular element. Notice that this basis is just
a rotation of the usual bilinear conforming basis. This form ensures that the difference
of two functions belonging to NCh is orthogonal to constants on the boundaries,1 a
characteristic used in the convergence proof. No higher spatial approximation (than using
bilinear conforming elements) is gained with this rotation. The four degrees of freedom

associated with S2(R̂) are the values at the mid points of the faces of R̂, i.e., the values at
the nodal points a1 = (−1, 0), a2 = (0,−1), a3 = (1, 0) and a4 = (0, 1). For example the
basis function ϕL(x, y) = 1

4
− 1

2
x − 3

8

(
(x2 − 5

3
x4)− (y2 − 5

3
y4)

)
is such that ϕL(a1) = 1

and ϕL(aj) = 0, j = R, T, B.
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3 DISPERSION ANALYSIS: FORMULATION

In this section we set the source term to zero in Eq. (7) and restrict ourselves to a
portion of the domain far away from the artificial boundaries so that we can neglect their
contribution.25,26 Further, we assume all domains to be squares with side h. For the sake
of simplicity, from now on we will omit the hat over the variables.

3.1 The analytic formulae

Let k = kr + iki and replace p in Eq. (3) by the standing wave solution eikx. Performing
some algebra, we are lead to

− eikx

ρ(Mi − i Mr)

(
|M |2(k2

r − k2
i )− ρωMr + i (2|M |2krki cos(θ) + ρωMi)

)
= 0, (9)

where we have used kr (ki) to denote the modulus of kr (ki), and |M | to denote the
modulus of the complex compressional plane wave modulus. The angle θ is the one
between kr and ki. Taking real and imaginary parts of this equation, using the imaginary
part to write ki in terms of kr and replacing in the equation yielded by the real part, we
are lead to a quartic equation for kr. The only physically meaningful solution, and the
corresponding associated ki are

kr =

√
ρω(Mr +

√
M2

r + M2
i sec2(θ))

√
2|M |

,

ki = −
√

ρ ωMi sec(θ)

|M |
√

Mr +
√

M2
r + M2

i sec2(θ)
. (10)

As both quantities are real and positive, the angle θ must belong to ( π
2
, 3

2
π). The bound-

aries of the interval can be attained only in the elastic limit.27 Notice also that if the
subsurface behaves elastically, Mi is negligible, therefore ki also, and we recover the elastic
dispersion relation, which gives ω/k =

√
M/ρ. Eqs. (10) give the dispersion relations for

the complex wave vector, once the compressional plane wave modulus M is replaced by
the expression given in Eqs. (1)-(2).

3.2 The numeric formulae

In this section we detail the calculations leading to the numeric dispersion relations just
for the nonconforming finite elements. The same procedure is followed for the conforming
ones; results for both methods are shown below. To perform the dispersion analysis, we
must obtain the basic algebraic equation of a typical degree of freedom.25 In our case,
such an equation involves a stencil composed of two nonconfoming elements with seven
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Figure 1: Nodes involved in the calculation of the numeric dispersion relations. The black circles corre-
spond the ones used by the NC-method, the white ones are used by the C-method. The domains utilized
in the calculations are square.

degrees of freedom. For example, the chosen degree of freedom could be the node number
three and the domains TR and BR in Fig. (1). However, this stencil has a preferred
orientation, and therefore does not appropriately represent the whole mesh. We must
then combine two-domains stencils so as to get the smallest stencil representing the full
mesh correctly, i.e., without a preferred direction.28,29 The resulting total number of
nonconforming elements is four, involving twelve degrees of freedom. Therefore, to get
the correct algebraic problem from Eq. (7) we must add the contributions of the four
two-domains stencils we can form from the domains shown in Fig. 1. For example, if the
two-domains stencil is TR − BR, ph =

∑
j∈A pj ϕj where A = {2, 3, 4, 8, 9, 10, 11}, and

the test function ϕ to be considered in this case is equal to ϕB in domain TR and ϕT in
domain BR.
Once Eq. (7) is converted to an algrebraic problem by calculating all the integrals and
adding all four partial results, we proceed to propose a function of the form exp(ikhx) as
its solution. This expression corresponds to a standing plane wave with angular frequency
ω. We situate it on the origin of coordinates, and replace the coefficients pj, j = 1, . . . , 12
accordingly. For example the coefficient associated to the node number 7 in Fig. 1 is
replaced by exp(−ihkh(−1

2
, 1)). We set also kh

r=(k1,h
r , k2,h

r )=(kh
r cos(γ), kh

r sin(γ)), and
similarly for kh

i Of course, γ is the angle between the horizontal axis and kr in the wave
vectors space. After some algebraic manipulation, and separating real and imaginary
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parts, we obtain a set of two coupled nonlinear equations for kh
r and kh

i :

h2ω2

3|M |2
(
Mr

(
η1 η4

2 η5 η8
2 − η1

2 η2 η5
2 η6 − η1 η2

2 η5 η6
2 + η2 η3

2 η6 η7
2+

2 (η1 η3 η4 η5 η7 η8 + η2 η3 η4 η6 η7 η8 − η1 η5 − η2 η6)) +

Mi

(
η2

2 η3 η6
2 η7 + η1

2 η4 η5
2 η8 − η3

2 η4 η7
2 η8 − η3 η4

2 η7 η8
2+

2 ( η4 η8 + η3 η7 + η1 η2 η3 η5 η6 η7 + η1 η2 η4 η5 η6 η8))) +

4

ρ
(−η2 η6 (−1 + η9 η13)− η1 η5 (−1 + η10 η14) + η4 η8 η11 η15 + η3 η7 η12 η16) = 0,

h2ω2

3|M |2
(
Mr

(
η2

2 η3 η6
2 η7 + η1

2 η4 η5
2 η8 − η3

2 η4 η7
2 η8 − η3 η4

2 η7 η8
2+

2 (η3 η7 + η1 η2 η3 η5 η6 η7 + η4 η8 + η1 η2 η4 η5 η6 η8)) +

Mi

(
η1

2 η2 η5
2 η6 + η1 η2

2 η5 η6
2 − η2 η3

2 η6 η7
2 − η1 η4

2 η5 η8
2+

2 (η1 η5 + η2 η6 − η1 η3 η4 η5 η7 η8 − η2 η3 η4 η6 η7 η8)))−
4

ρ

(
η3 η7

(
1− 4 η1 η2 η5 η6 +

(
η4

2 − η2
2
) (

η6
2 + η8

2
))

+η4 η8

(
1− 4 η1 η2 η5 η6 +

(
η3

2 − η1
2
) (

η5
2 + η7

2
)))

= 0, (11)

where η1 = cos( 1

2
hkh

r cos(γ)), and the other expressions are shown in the appendix. This
system of equations must be solved numerically.

4 ANALYSIS OF THE NUMERIC DISPERSION RELATIONS

To begin with our analysis, let us shrink the domains in the grid by making h → 0 in
both coordinate directions, keeping kr,i fixed. We can expand system (11) in terms of h,
and get

1

ρ

(
k2

r − k2
i

)
− ω2 Mr

|M |2 + O(h2) = 0,

2

ρ
kr ki cos(θ) +

ω2 Mi

|M |2 + O(h2) = 0. (12)

Working with this expressions, we recover the analytic relations given by Eqs.(10). The
same results are obtained for the system associated to the conforming finite elements,
shown in the appendix.
To compare the performance of both finite element methods we use the following quanti-
ties:

Ξ =
cn(ω)

ca(ω)
, Ψ =

|kn
i (ω)|

|ka
i (ω)| , Λ =

(
∂ω

∂k
|ω0

)

n

(
∂ω

∂k
|ω0

)
−1

a

, (13)
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i.e., the ratio of the numeric phase velocity for each frequency (taken as ω/kr(ω)) over
the corresponding analytic one, the ratio of the numeric attenuation over the analytic one
and the ratio of the numeric group velocity over the analytic one. It turns out that all
quantities are independent of the frequency in the range we investigated, therefore we use
just one frequency (ω = 100π) to display our results.
In order to calculate the modulus of the numeric wave vectors (kn

r , kn
i ) for each frequency

we solve system (11) by means of Newton method, using as initial guess the analytic k’s
calculated with Eq. (10). We fix for these calculations the propagation direction γ, the
angle θ between kr and ki and the number of points per wavelength Np for each frequency.
The domain length h is calculated as 2 π/(Np ka

r (ω)). In all the calculations we set

M r = 28.7 109N/m2, τ1 =
1

2π
103s, τ2 =

1

2π
10−6s, Q = 70, (14)

corresponding the first value to dry Berea sandstone, and the chosen τ ’s ensured the cor-
responding constant quality factor. Our numerical experiments showed that the domain
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Figure 2: Display of the results for (a) the normalized phase velocity and (b) the normalized attenuation
for the NC-method, for different propagation directions, and a fixed angle between real and imaginary
parts of the wave vector.

of variation of the direction of propagation can be reduced to [0, π/4]; each solution pair
(kn

r , kn
i ) resulted to be invariant not only to reflections on the coordinate directions in

the momentum space, but also to the bisectrix of the first quadrant. In Fig.2, by ex-
emplifying with the NC-method, we show that the numerical methods introduce spatial
anisotropy, because the results depend on the direction of propagation γ. This effect leads
not only to a change of the phase of the wave, as in the elastic case, but also to different
wave decays for different propagation directions. As expected, this misbehaviour diminish
when the number of points per wavelength is increased. Notice that the apparently worst
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direction is in fact the best one, because the biggest departure from one happens when
about three points per wavelength are considered; until that, this curve is the one closer
to the ideal behaviour. Naturally, when deciding the number of points per wavelength
to use in a simulation of a real situation, the worst case is to be considered. In Fig.3
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Figure 3: Comparison of best and worst results for (a) the normalized phase velocity and (b) the normalized
attenuation yielded by both methods.

we show the best and worst behaviours for both methods. It can be observed that the
NC-method performs better than the C-method; the best behaviour of the latter is still
worse than the worst of the former for both the phase velocity and attenuation. In the
case of the phase velocity the worst NC-method curve enters the 1% error interval -the
horizontal dashed-dotted lines- at about Np = 10, while the C-method needs about twice
the number of points per wavelength for its worst curve to lie within the interval. When
Ψ is considered, both methods need more points per wavelength to lie within the chosen
error interval; in this case the difference between both methods is about six points per
wavelength. In Fig.4 we show that both methods have problems when the angle θ be-
tween kr and ki approaches values associated to the elastic case, whenever the quality
factor Q does not take correspondingly to quasi-elastic regime values. This characteristic
must be taken into account for not all polarizations will be equally well modeled for a
given dispersive medium. In order to avoid problems, if possible, angles θ near π/2 and
π should be avoided. Notice that the NC-method behaves not as bad as the C-method,
in the sense that for a fixed Np, the distance between the lines showing good and bad
behaviour is smaller for the former than for the latter. In Fig.5a we display the behaviour
of the group velocity as a function of Np, again for the NC-method. The numerator of Λ
is calculated numerically using the values of kr obtained solving system (11) to define a
second order-approximate first derivative about ω0 = 100π, the denominator calculating
the derivative of the inverse of Eq.(10) evaluated in ω0. Again the numerical anisotropy
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Figure 4: Behaviour the normalized phase velocity of both methods as a function of the angle θ between
real and imaginary parts of the wave vector. Note the increasing inaccuracy as θ → π
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Figure 5: Comparison of best and worst results of both methods when calculating the normalized group
velocity. Note that the worst NC-method approximation is better than the best one produced by the C-
method
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is apparent. In Fig.5b we show both methods best and worst results when calculating Λ.
As in previous results, also for the group velocity the NC-method performs much better
than the C-method; with, say, Np = 20, the former has an error of .1% (.001%) and the
latter of .4% (.02%) for the worst (best) directions respectively.
It can be therefore established as a rule of thumb, that the dispersion error can be calcu-
lated as the product of the error per frequency, times the number of frequencies used to
transform the results back to the space-time domain. Consequently, if one desires to have
a final relative errror less than, say 1 %, and is using 20 frequencies to transform from
one space to another one, the number of points per wavelength Np must be adjusted so
that 20ε ≤ 1%, where ε is the relative error admitted in each frequency.

5 CONCLUSIONS

We have analyzed the dispersion properties of two finite element methods, both yielding
a first order spatial approximation, when applied to solve the acoustic wave equation in
a dispersive medium. We have used the Liu et al. viscoelastic approximation to model
the frequency-dependent dispersive properties of the soil. Just because this dispersive
behaviour, it is not possible to define constant phase and group velocities -as used in
the elastic case- to compare numeric with analytic results. We have therefore used fre-
quency dependent quantities -normalized phase velocity, attenuation and group velocity-
to show the numeric behaviour of the methods. We have observed that the quality of
the approximations depends on the angle θ between the real and imaginary parts of the
wave vector. They loose accuracy when θ takes values near the ones associated to the
elastic behaviour, if correspondingly the quality factor Q is not increased. Both methods
introduce numerical anisotropy, i.e., they are more or less dispersive depending on the
direction of propagation considered. This leads not only to a phase difference between
the numeric and analytic results -as in the elastic case- but also to a direction-dependent
attenuation, due naturally to the errors introduced by the methods when approximating
the imaginary part of the wave vector. In all cases studied the NC-method proved to
work better than the C-method. Indeed, given a fixed accuracy requirement, using the
former permits to nearly halve the number of points per wavelength required by the latter
to achieve it.
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imant method. Geophys. J. Roy. Astr. Soc., 78, 105–118 (1984).

[15] H. Emmerich and M. Korn. Incorporation of attenuation into time-domain compu-
tations of seismic wave fields. Geophysics, 52(9), 1252–1264 (1987).

[16] J.O. Blanch, J.O. Robertsson, and W.W. Symes. Modeling of a constant Q: Method-
ology and algorithm for an efficient and optimally inexpensive viscoelastic technique.
Geophysics, 60(1), 176–184 (1995).

[17] T. Bohlen. Viskoelastische FD-Modellierung seismischer Wellen zur Interpretation
gemessener Seismogramme. PhD thesis, Kiel University, Germany, (1998).

[18] J.O. Blanch, J.O. Robertsson, and W.W. Symes. Viscoelastic finite difference mod-
eling. Technical Report 93-04, Dept. of Comput. and Appl. Mathematics, Rice Uni-
versity, USA, (1993).

xyz
ENIEF 2003 - XIII Congreso sobre Métodos Numéricos y sus Aplicaciones

xyz


marce
1580
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A APPENDIX

The analog to system of equations (11) corresponding to the C-method is

h2ω2

9|M |2 (Mr (−4− 2 η9 η13 − 2 η10 η14 − η9 η10 η13 η14 + η11 η12 η15 η16)+

Mi (2 η11 η15 + 2 η12 η16 + η10 η11 η14 η15 + η9 η12 η13 η16))−
2

3ρ
(−4 + η10 η14 + η9 η13 (1 + 2 η10 η14)− 2 η11 η12 η15 η16) = 0,

h2ω2

9|M |2 (Mr (2 η11 η15 + 2 η12 η16 + η10 η11 η14 η15 + η9 η12 η13 η16)+

Mi (4 + 2 η9 η13 + 2 η10 η14 + η9 η10 η13 η14 − η11 η12 η15 η16)) +

2

3ρ
(η11 η15 (1 + 2 η10 η14) + η12 η16 (1 + 2 η9 η13)) = 0. (15)

The expressions for the ηs are the following:

η1 = cos( 1

2
kh

r h cos(γ)), η2 = cos( 1

2
kh

r h sin(γ)),

η3 = sin( 1

2
kh

r h cos(γ)), η4 = sin( 1

2
kh

r h sin(γ)),

η5 = cosh( 1

2
kh

i h cos(γ + θ)), η6 = cosh( 1

2
kh

i h sin(γ + θ)),

η7 = sinh( 1

2
kh

i h cos(γ + θ)) η8 = sinh( 1

2
kh

i h sin(γ + θ))

η9 = cos(kh
r h cos(γ)), η10 = cos(kh

r h sin(γ)),

η11 = sin(kh
r h cos(γ)), η12 = sin(kh

r h sin(γ)),

η13 = cosh(kh
i h cos(γ + θ)), η14 = cosh(kh

i h sin(γ + θ)),

η15 = sinh(kh
i h cos(γ + θ)) η16 = sinh(kh

i h sin(γ + θ)). (16)
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