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Abstract. This article presents different approaches for solving problems of topdogy and
orientation ogimization d laminated shell structures. The oljedive of the design is the
minimization d volume under compliance @nstraints. The design variables are the relative
densities and the principal material diredion aientation d each layer in anelement. A two-
leved strategy is used, optimizing sequentially the orientation andthen the densty, aiming
reducing the computationd effort during each iteration. Sequential Linear Programning
method is used to solve both ogimization problems. Mathematical algorithms were derived
for the solution d the problem. These algorithms were cded for single and multi ple loadng
cases. The topdogy optimization can be consdered as an exension for laminated shell
structures of Cardoso® and Sati Anna™ works. An eight node degenerated shell finite dement
with explicit integration onthe thicknessdiredion, as in Kumar et al., is used to solve the
equili brium equations for laminated compaosites. Sare ill ustrative examples are presented
and dscusd to show the apgicabhility of the propased optimization appoaches.
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1 INTRODUCTION

Laminated shell structures are aurrently being used in many applicaions, from high
tedhnology aircraft to smple handmade surf boards. However, design methodologies for such
structures were developed only in the last few decales. Nowadays, smple structura analysisis
not enough to abtain agood design. For example, in aircraft, an agodynamic surfacestructure
is not only expeded to resist to all kind of loads it is subjed to, but is also expeded to weight
the least possble, increasing the arcraft power/weight ratio and thus increasing performance
This and other examples $ow the importance of optimization methods in the laminated shell
design.

Structural optimization is an important tool for the enginee, becaise it involves at the same
time the structural analysis and the seach for the best design under certain objedives and
constraints. These objedives depend on the whole projed, but the most common are the
minimization of total massor total volume of the structure, under compliance, stress strain or
fallure aiteria @nstraints, anong others. In a genera point of view, al objedives are related
to cost minimization.

The dharaderistics and properties of laminated shells made of orthotropic layers give the
engineg many design parameters that can be used to adieve the desired operation conditions,
such as displacements, compliance, stress strain, etc. Some of these parameters are layer
thickness layer or fiber orientation, layer material, number of plies, stacking sequence, etc.
Fiber and layer orientation are important design parameters becaise they have influence on the
structure behavior when in service life, and are often present in laminated composite structure
optimization. It was sached in this work to combine orientation optimizaion with topology
optimization methods applied to continuum isotropic structures, aiming volume minimizaion
under compliance @nstraints.

Structural optimization requires the solution of static or dynamic equili brium equations. The
most used method is the Finite Element Method (FEM). Finite dements for solution of
equili brium equations of laminated shells were derived from isotropic single layer shell finite
elements. One example is the degenerated shell finite dement with explicit trough-thickness
integration presented by Kumar and Palaninathan'®, used in the present work.

Composite material are those made of two or more different materials or phases, with
different physicd and medhanicd properties. These cmbinations are made in order to dbtain a
material with a resulting behavior that could not be adieved by conventional materials'.
Different classfications of composite material can be found. Dietz*° (apud Cardoso and
Fonseca), divides them in three groups: fibrous, particulated and laminated. A ply can be
considered as a plane arangement of unidiredional fibers or woven'®. A laminated is a
sequence of plies with different material principal diredion orientation. Laminates can be
composed of layers made of different material or made of different fiber reinforced plies. Fiber
and matrix can be even metalic or non-metallic. The most used fibers are metals sich
aluminum, cooper, iron, sted and titanium or organic material such as glass carbon, boron and
graphite’®. The methodology here presented can be used to optimize shells made of any of
these materials.
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2 LAMINATED SHELL FINITE ELEMENT

The laminated shell finite dement used in the present work is derived from an eight node
degenerated shell FE. To consider the contributions of ead layer of the structure, an explicit
through-thicknessintegration is used. Reminding that the objedive of the work is optimization
of laminated shell structures, the dement formulation must allow an easy and fast cdculation
of stiffnessmatrix derivatives.

The dement kinematics are similar to what is presented, for example, by Hughes" or
Zienkiewicz and Taylor®®. Kumar and Palaninathan'® presented an explicit integration method
for the thicknessdiredion, using threemodels. The difference between these modelsis the way
the inverse Jacobian matrix elements vary through the thickness The model chosen for this
work consider it constant. This leads to the following element stiffnessmatrix:

2
K, = fll I_ll(BIqu +B[C,B, +B]C,B, +B]C,B,) *]J|d&dé,. (1)

where matrices B; and B, are the strain-displacement matrices as presented by Kumar and
Palaninathan'®, t is the total element thicknessand J is the Jacohian. The mngtitutive tensors
above ae defined here .

C,= ipkc',f(ztm—zg‘)k m=1..3,nosumonk. 2)

In these eguations, nl is the dement number of plies and z and z, are the layer top and
bottom coordinates. The relative density px is inserted in this work because it is used as design
variable for the topology optimization, explained in the sedion 3.4. The layer constitutive
tensor Cy° is function of the layer orientation, and is obtained trough a plane rotation of C}",
which is the modified layer constitutive tensor acmunting for transversal shea effeds'® and
expressd in the layer coordinate system:

ClkC = QL CLSQ pl (3
The rotation matrix Qp is given by
0 cos’(6) sin*(6) 0 0 0 cos(8)sin(6) C
B sin®(0) cos’(0) 0 0 0 —cos(e)sin(e)cE
Qu=1 0 0 0 cos(@) -sin(8) 0 (4
O 0 0 0 sin(6) cos(6) 0 C
H-2cos(6)sin(8) 2cos(6)sin(6) 0 0 0  cos’(9)-sin?(6)F

Figure (1) presents these rotations and different systems. The C'™ constitutive tensor is
expressd in the layer coordinate system, defined by vedors €M, €" andel". The vedor €"is

1854


xyz
ENIEF 2003 - XIII Congreso sobre Métodos Numéricos y sus Aplicaciones

xyz


marce
1854


C. E. de Souza, J. S. Ono Fonseca

parallel to the larger material elasticity modulus direction. The tensor C'° is defined in the locd
coordinate system, defined by €°,ef andef. This g/stem lies on the same plane of the layer
coordinate system, and they share the same perpendicular vedor (ei" =€f). Vedors vg; and Vg,
are paralel to the parametric coordinate system and are cdculated at ead integration point,
being necessary to define the locd coordinate system. To cdculate the rotations degrees of
freedom at ead node, a nodal coordinate system is defined by vedors vy, , v and vy, being
this last one avedor norma to the reference surface & the node. The global coordinate
system, defined by ey, e, and e;, isthe reference one and used to expressnodal displacements.

Figure 1: Coordinate systems for laminated shell finite dement.

3 OPTIMIZATION PROCEDURE

Earlier works in laminated structures optimization appeaed only in the late 1960s. Foye'?
studied minimum weight of laminates, searching for strength and stiffness optimum design, for
in-plane multiple loads. Waddoups™ obtained minimum weight designs using strength
constraints under distinct multiple load cases, considering maximum strain or Tsai-Hill failure
criteria. The design variable was the ply orientation, but the seach for the optimum was
exhaustive. Schmit and Farshi®® presented a method to obtain the minimum weight optimum
design of symmetric composite laminates under multiple in-plane loads, using the layer
thickness as design variables. The optimizaion algorithm was an adaptation of the so cdled
inscribed hyperspheres and consisted in a sequence of linea programming with fast
convergence

An important work on fiber orientation optimization of composite material structures was
made by Pedersen”. He seached for the maximum and minimum energy densities on
orthotropic material structures, working only with fiber orientation. Solving plane dasticity
problems, he mncluded that the optimum orientation depends only of the relation between the
two principal strain diredions and non-dimensiona invariant material parameters. In 199Q
Pedersen®® returned to this sibjed, considering now FEM analysis. For materials with relative
low in-plane shea stiffness, the maximum stiffnessis obtained aligning the biggest material
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elasticity modulus diredion with the biggest principal strain diredion. Cheng’ has discussed
Pedersen’s results for the use of principal strain diredions to update the orientation and
compared methods presented by Suzuki e Kikuchi’” and Diaz ad Bendsee'®, who used
principal stress diredions. Pedersen’'s method presents coupling between principal strain
diredion and the design variable 6, while using methods based on stress this coupling becomes
weeker. Cheng presented then a stress based improved method, using a formulation with
generalized stress and not only principal stress

Concecd Anténio et al.® solved laminated plate and shell problems using a two-level
strategy. Their objedive was to obtain a minimum weight structure that could support a set of
external static loads without failure. The domain was glitted in maao-elements with different
stacking sequence on ead one. In the first level it was maximized the structure dficiency, the
ply orientation being the design variable and using mathematica programming. In the second
level, the weight of the structure was minimized, working with ply thicknessas design variable.

Mota Soares et a.* presented an model for the optimization of thin composite laminated
plates, using aso a two-level approad. In the first level it was minimized the maximum
displacament or maximized certain vibration mode frequency, using as design variables the
orientation angles of certain ply, under boundary constraints. The objedive of the second level
was the volume minimizaion under displacement, stress and/or Tsai-Hill falure aiteria,
spedfic vibration mode frequency or boundary constraints.

Considering the works cited above, the gproadies to be used in this work were defined.
The option for atwo-level strategy is obvious. The ideais to find a structure with the minimum
volume for a cetain compliance spedfied a priori. For laminated structures made of
orthotropic layers, it is possble to optimize the orientation, minimizing the cmpliance in a
first level. In asecond level, ead layer can have its topology optimized, reducing the structure
volume. The use of two levels leads aso to the number of design variables reduction during
ead iteration, and gves an easier and more robust way to obtain ead of the objedive
functions and al sengitivities. The topology optimization level is based on the work of
Cardoso® and Sant’ Anne”. When optimizing the topology of only some layers of the structure,
this approach is smilar to the design of shell stiffeners. The dhosen methods and optimizaion
formulas are described below.

3.1 Two level approach

In thiswork atwo-level approad is used, ead one being:

- 1st level - compliance minimization, with the ply orientation on ead element as design
variable, without constraints (size optimization);

- 2nd level - volume minimization, with relative densties of the plies of eat element as
design variable, and considering the cmpliance & constraint (topology optimization).

On Fig. (2) it can be seen a flow chart for the strategy used. As it is presented here, the
process passes through ead level just once Another strategy would be to come badk to first
level after ead step of the seoond level, but tests $rowed no improvement in this grategy.

After the convergence of the first level, the flag convd is turned on, what deviates the
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algorithm to the second level. At this level it is siown the passage through the Continuation
Method (CM) steps (see Topology Optimizaion sedion). The dgorithm verifies the
convergence of the objedive function s, and in the positive cae, verify to which CM step it
must go. Tests $owed that there is pradicaly no difference between threeor more steps, and
in the most cases only two are enough.

start

7=n, €D
convE=0
convp=0

1% level
END

1 conv6=1

P=P3

|
Figure 2: Two-level strategy procedure.

Sequential Linea Programming (SLP) is used in both levels. This method requires the
lineaization of ead objedive function and constraints. First order Taylor series are used, what
leads to differentiation of the related functions with resped to ead level design variable. A
first order approximation, however, is good only in the neighborhood of the optimum point
and then it is necessary to use move limits. A similar strategy used by Sant’ Annet®, based on
the iteration history and on design variable behavior, was applied in both levels to update the
move limits. Theory and details about SLP and Mathematicd Programming in general can be
found in Haftka and Giirdal**. The mathematica algorithms derived below were mded using
MATLAB, what allowed the use of some of its functions. One example is the “linprog”, used
to solve the Linea Programming step.

3.2 Orientation Optimization
The orientation optimization problem can be stated as:

minw (6) (5)

This is an unconstrained optimization, since the stiffest structure is seached in the first
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optimization level, dlowing a greaer volume reduction on the second level. The structure
complianceis given by:

W=q'Kq (6)

where q is the global displacanent vedor and K is the global stiffness matrix. The
differentiation of Eq. (6) with resped to the design variable 6 is given by
6W + 0K 0q
=q' —q+2q'K —
00 ~ 00 ared 00
The design variable 6 is defined on ead element layer, and thus the stiffness matrix
derivative must be cdculated at ead layer. So, AW/ is a vedor with dimension Ngesvar
(number of design variables, equal to element number multiplied by the number of layersto be
optimized). The derivative of K with resped to 8 isthen given by:

dC dC dC
1n B BT 2n B BT 2n B BT 3n B
rr % do do B—|J|dfldfz (8)

(7)

wheren varies from 1 to Ngesvar and

dC dce
B " m=1.3. 9
- p.(2"-7). - 9

In the expresson above, pn is the relative density of the dement layer being optimized, z,
and z arethe bottom and top coordinate of the layer in the thicknessdiredion.
For the differentiation of g with resped to 6, it should be used the expresson Kq =f . Since

the derivative of f with resped to 6is null, this equation leads to:

aq oK
e RN 10
20 96 a (10
Finally, inserting this equation on (7):
ow _ ; 6K 0 0K D q" oK
—=q — 11
06 =9 309 H o 9H T 56 ¢ 1D

This means that the differentiation of W with resped to 8 is given only by the differentiation
of the mnstitutive tensor on Eq. (8) and Eq. (9).

To extend this problem to multiple load cases, a strategy suggest by Krog and Olhoff
(1997 is used. The ideais to consider a weighted sum of the mmpliance a&ciated to eah
load case. This approadh maintains the formulation obtained above, keeping all advantages of
the use of a SLP method, its robustnessand smplicity, not being necessary to reformulate the
problem for different type of structures. The optimizaion problem on Eg. (5)is smply
modified to:
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minw,W, (6), =L (12

where w and W are the weight and compliance aciated to ead j load case, and Neases IS
the number of load cases applied to the structure. To obtain w, ead compliance W is
cdculated after the first FEM step, as:

W =(af), 13

Eadh weight is then cdculated in the following way:
e ) a9

3.3 Topology gotimization

For continuum structures, the topology optimization introduces an universe of possble
structural elements, in a cetain design domain, cdled ground structure, and seach for the best
material distribution inside this universe'’. A revision of the ealier works® *" ° has been
presented by Bendsge “. The use of microstructures has been introduced, leading to optimal
solutions for many cases and problems. Microstructure, however, brings the problem of
structures with intermediate densities, what may be very difficult to build, if not impossble.
To solve this problem, different procedures have been developed 2" ** 2. Here a st function
penalization™ has been chosen, asin Sant’ Anna®, and the optimization problem is defined as:

min s(p)= i Hor +ap, (1- p, )RV,
st. W (p)-W,

<0, J =1 (15
O<p<1

where §(p) is the objedive function, p is the relative density of the cél material®, defined on
eat layer being optimized, p and a are the pendizaion parameters, Win is the limit
compliance spedfied for the final solution and V, is the volume of ead layer to be optimized
inside eab element. This formulation includes multiple load cases through the @nstraints, with
W(p) being the lineaized compliance aciated to ead load case.

The use of this penalized formulation krings a new problem: the optimizaion problem
beames non-convex, what leads to the non-unicity of the discrete problem solution. To
overcome it, a Continuation Method (CM) is used °: the optimization problem is slved in two
or more steps. The problem is initially solved with alinea approac for p, usngp =1and a =
0 . This is a convex problem, what guarantees the solution unicity, even obtaining many
intermediate densities. The solution obtained is then used to start new optimizaion steps, with
p<1and a> 0, what changes the problem to a non-convex one. Intermediate densities
beaome more “expensive”, and the dgorithm seaches for solution containing only minimum or
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maximum densities areas. The behavior of the penalized function is en on Fig. (3).

1

0 ) D.‘2 D.‘tl D.‘E D.‘B 1 0 } D.I2 D.Irl D.IB D.IB 1
2
Figure 3: Penalizaion of S( p) asin (15) for a = 0 at left, and for p = 1/8 and various values of a. at right.

The volume Vn is cdculated as;

1 1
V=T, L(Zf ~2z,),|J]d&,dé, (16)
The differentiation of s(p ) with resped to p on eat “n” element layer is then given by:
0 _
=B ea (=203, a

Asit isused SLP, it is necessary also to dbtain a linea expresgon for the @nstraint. To
obtain the compliance derivative for ead “j” load case, it is used the Eq.(13), leading to:

ow, 9
ap ap
The stiffnessmatrix derivative for ead n design variable is given by:

r r BT dCl” B, +B] Loang g7 Ymp pr L |J|dEldEZ (19
1 dp dp dp
The derivatives of the cnstitutive tensors are caculated from (2) as:.

den —_ Ic m _ m —
W—B: (zt zb)a m=1.3 (20)

—(a,"Ka; )=QIZ—';Q,» (18)

4 NUMERICAL RESULTS

The two-level optimizaion strategy was applied in 2D elasticity, plates, cylindricd and
sphericd shells problems. Isotropic problems were dso tested, to compare results, and
stadking sequenceis varied, to compare orientation and topology solutions. In this paper, some
of the obtained results are presented, including multiple loads cases, using both orientation and
topology optimizaion. The structure limit compliance (Wim) has aways been defined as a
fador of the original structure compliance (W), which is caculated after the first FEM step.
Volume reduction results are expressed as function of the origina volume (Vo). In the tests
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made, it was used a homogeneous density distribution, always equal to one, and it was not
investigated the influence of different initial distributions. The material properties used are
given by Reddy .

Problems of 2D elasticity are common in the literature. Due to its smplicity, they were used
to evaluate the dgorithm during its implementation. The fixed beam problem is useful to show
the advantage of the orientation optimization before the topologicd one. On Fig. (4) and Fig.
(5), results are presented for beams made of one Graphite — Epoxy layer, with the principal
material diredion parallel to the x, diredion, using an W, of 2W.

_ — -

0.3 P

P e

0.8

—_—— — — — —

(b)
Figure 4: Final topology and orientation of afixed boundary beam: (a) only topology optimization (V; =
0,45Vy) and (b) optimizing also the orientation with PD-SLP (Vs = 0,27V;). Material: Graphite-Epoxy.
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Figure 5: Final topology and orientation of afixed boundary beam: (a) only topology optimization (V; =
0,45Vy) and (b) optimizing also the orientation with PD-SLP (Vs = 0,27V;). Material: Graphite-Epoxy.

Figure (5) shows the graphics of the objedive function, structure volume and compliance
behavior during the iteration history for both cases cited above. At left, there is only topology
optimization, in two steps. In the first step, the structure total volume is equal to the objedive
function s(p). After its convergence, the penalizaion fador is changed to 1/8, what is noticed
by the modification in the objedive function behavior. The structure compliance readies its
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maximum values (Winm ) in few iterations, and the final volume obtained when applying only
topology optimization is 0.45V,. The verticd dashed line divides the two CM steps. At right,
there ae two optimizaion levels. First, the orientation one, with minimization of structure
compliance, and s(p) and V remaining constant. The seaond level has two CM steps also, with
smilar behavior of al curves. It may be noticed that the structure compliance now starts with
lessthan 50% of its original value, what allows more volume reduction: as the dgorithm tries
to obtain a structure wmpliance of 2Ws, it can remove more material, and the final volume
deaeasesto 0.27Vo.

The solution of a single layer orthotropic shell problem is $own on Fig. (6). The original
layer orientation was 45° on the quadrant, and Wim = 0.5, what leals to a final volume of
0.75Vo. Comparing with the previous result, it can be seen the importance of the definition of
this limit compliance The first optimization level can reduce excessvely the cmpliance, what
may leal to an excessve volume reduction in the topology optimizaion level, sometimes
obtaining a staticdly underterminated structure. In this problem, three steps were used in the
CM:p=1landa=0,p=2/8and a=0.3and finally p=1/12and a = 0.5.

(b)

Figure 6: On (@), a 3D topology representation of the single orthotropic layer optimized shell with initial
orientation at 45° on each quadrant and W;,= 0.5 W, (b) topology and orientation solution. Here, R=10, L =
5, thicknessO.1.

For two layers and same boundary and load conditions of the previous problem, the solution
obtained is $1own on Fig. (7). The bottom layer had a orientation perpendicular to the upper
one, and both were made by the same materia (Gr-Ep). The limit compliance was 0.5W, with
two stepsinthe CM: p=1and p = 1/8, for a = 0. These two steps were enough to eliminate
amost all intermediate densities, and the final volume obtained was 0.55 V,. The @nstruction
of such structures is not trivial, however, since some aeas of the upper layer is not in contad
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with the lower. When optimizing all layers of multi-layer structures, holes can appea inside
the structures, or a layer can even disappea. This avoid this, the optimization should be
applied to only the external layers, asin the following problem.

Figure 7: Topology and orientation solution for atwo layer laminated shell, with Wj;,,= 0.5 W, and a central
load. At left, lower layer and at right the upper one.

The solution of a multiple load and three layers problem is presented on Fig. (8). One
applied load (Load 1) is composed by a central force (F;) and the other load (Load 2) is
composed by equal forces (0.7 F,) applied in the middle of the edges. Only the lower and
upper layers were optimized, what is equivalent to the determination of stiffeners for the
midde structure. After solving the FEM problem in the first iteration, the weight of the
compliance aciated to eat load case was cdculated, being wi = 0.642and w, = 0.357. In
this problem, the compliance with higger weight was chosen as W, but is not a rule. In this
example, the limit compliance was 0.4W, what resulted in a final volume of 48% of the initial
one for the two layers. Only two steps of the CM were used, with p = 1/8 and a = 0.3 on the
seoond one.

The iteration history in Fig. (8b) shows the two optimizaion levels and the two CM steps.
In the first level, before the verticd dashed line, it can be seen the minimizaion of the
compliance asciated to ead load case. In the second level, both compliance vaues reah
their constraint. In the first step of the topology optimization level, the objedive function and
the volume of the optimized layers are the same, since the penalization fador p is equal to one.
In the second CM step, the volume pradicdly does not change, but s increases suddenly in the
beginning to deaeese later, when reading the convergence This is the typicd behavior of all
cases tested.

In the problem above, a variation on the weight of ead load case (W) is possble only if the
loads were modified, or new load cases were taken into acount. Thus, when including new
load cases in the analysis, new weights for all |oads have to be defined. As can be seen in the
optimal design obtained, on Fig. (8a), the upper layer resisting mostly to Load 1 and the
bottom one to Load 2 Since the mmpliance &sciated to Load 2 was lower, and
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consequently itsw, < w; , it allowed more volume reduction on the bottom layer. Thisindicaes
the influence of ead weight w on the optimal design.

_%\ 5/8y ——— WW,——
|'|\I V/VU ______ Wh:m*’*”
I
:’1 !r\“m\_
I 2nd T
! | level
| ‘
PN !
~ |-
| B ——— |

L L L L L L L
401 B0 B0 70 81 90 100
iteration number

(b

Figure 8. In (a), topology solution for a threelayer optimized shell, with W,;,,= 0.4 W, and multi ple applied
load. In (b), iteration history for this probem.

5 CONCLUSION

A two-level strategy for the optimization of laminated shells has been presented. The two
levels consisted in optimization of principal material orientation on ead ply, minimizing the
structure ampliance, and topology optimization, minimizing ead ply volume. In both levels
Sequential Linea Programming (SLP) was used. Mathematicd algorithms were derived,
allowing solution of multiple load cases problems. For the equilibrium solution an eight-node
degenerated laminated shell element with exad through thickness integration was
implemented.

In the tests made, the method showed efficiency to solve many kinds of problems, from 2D
elasticity and plates to sphericd and cylindricd shells problems. The example of 2D elasticity
presented here showed the alvantage of a orientation optimizaion before the topology one: a
larger volume reduction was obtained in comparison to only topology optimizaion for
orthotropic structures. With the shell optimization examples, this advantage was emphasized.
It could be seen that the orientation optimization leads to a large ampliance reduction in the
first optimization level, alowing an efficient volume reduction in the second level, even for low
prescribed limit compliance (Wim). Care should be taken to avoid the gpeaance of holes
between layers, and good results were adieved when optimizing the externa layers of the
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structure. The dgorithm could solve dso efficiently the multiple load problems, using a
weighted compliance sum approad.

The methods presented here represent a contribution for the knowledge of laminated shells
design methodologies. The use of this kind of structure is gprealing from the a&ospace
industry to other sedors, as the dforts towards weight and cost reduction are universal.
Therefore, the research in optimization is important for the development of the whole Braali an
industry.
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