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Abstract. This article presents different approaches for solving problems of topology and 
orientation optimization of laminated shell structures. The objective of the design is the 
minimization of volume under compliance constraints. The design variables are the relative 
densities and the principal material direction orientation of each layer in an element. A two-
level strategy is used, optimizing sequentially the orientation and then the density, aiming 
reducing the computational effort during each iteration. Sequential Linear Programming 
method is used to solve both optimization problems. Mathematical algorithms were derived 
for the solution of the problem. These algorithms were coded for single and multiple loading 
cases. The topology optimization can be considered as an extension for laminated shell 
structures of Cardoso6 and Sant’Anna25  works. An eight node degenerated shell finite element 
with explicit integration on the thickness direction, as in Kumar et al., is used to solve the 
equili brium equations for laminated composites. Some ill ustrative examples are presented 
and discussed to show the applicabilit y of the proposed optimization approaches. 
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1 INTRODUCTION 

Laminated shell structures are currently being used in many applications, from high 
technology aircraft to simple handmade surf boards. However, design methodologies for such 
structures were developed only in the last few decades. Nowadays, simple structural analysis is 
not enough to obtain a good design. For example, in aircraft, an aerodynamic surface structure 
is not only expected to resist to all kind of loads it is subject to, but is also expected to weight 
the least possible, increasing the aircraft power/weight ratio and thus increasing performance. 
This and other examples show the importance of optimization methods in the laminated shell 
design.  

Structural optimization is an important tool for the engineer, because it involves at the same 
time the structural analysis and the search for the best design under certain objectives and 
constraints. These objectives depend on the whole project, but the most common are the 
minimization of total mass or total volume of the structure, under compliance, stress, strain or 
failure criteria constraints, among others. In a general point of view, all objectives are related 
to cost minimization. 

The characteristics and properties of laminated shells made of orthotropic layers give the 
engineer many design parameters that can be used to achieve the desired operation conditions, 
such as displacements, compliance, stress, strain, etc. Some of these parameters are layer 
thickness, layer or fiber orientation, layer material, number of plies, stacking sequence, etc. 
Fiber and layer orientation are important design parameters because they have influence on the 
structure behavior when in service life, and are often present in laminated composite structure 
optimization. It was searched in this work to combine orientation optimization with topology 
optimization methods applied to continuum isotropic structures, aiming volume minimization 
under compliance constraints.  

Structural optimization requires the solution of static or dynamic equili brium equations. The 
most used method is the Finite Element Method (FEM). Finite elements for solution of 
equili brium equations of laminated shells were derived from isotropic single layer shell finite 
elements. One example is the degenerated shell finite element with explicit trough-thickness 
integration presented by Kumar and Palaninathan18, used in the present work. 

Composite material are those made of two or more different materials or phases, with 
different physical and mechanical properties. These combinations are made in order to obtain a 
material with a resulting behavior that could not be achieved by conventional materials1. 
Different classifications of composite material can be found. Dietz10 (apud Cardoso and 
Fonseca5), divides them in three groups: fibrous, particulated and laminated. A ply can be 
considered as a plane arrangement of unidirectional fibers or woven16. A laminated is a 
sequence of plies with different material principal direction orientation. Laminates can be 
composed of layers made of different material or made of different fiber reinforced plies. Fiber 
and matrix can be even metalli c or non-metalli c. The most used fibers are metals such 
aluminum, cooper, iron, steel and titanium or organic material such as glass, carbon, boron and 
graphite23. The methodology here presented can be used to optimize shells made of any of 
these materials. 
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2 LAMINATED SHELL FINITE ELEMENT 

The laminated shell finite element used in the present work is derived from an eight node 
degenerated shell FE. To consider the contributions of each layer of the structure, an explicit 
through-thickness integration is used. Reminding  that the objective of the work is optimization 
of laminated shell structures, the element formulation must allow an easy and fast calculation 
of stiffness matrix derivatives.  

The element kinematics are similar to what is presented, for example, by Hughes15 or 
Zienkiewicz and Taylor29. Kumar and Palaninathan18 presented an explicit integration method 
for the thickness direction, using three models. The difference between these models is the way 
the inverse Jacobian matrix elements vary through the thickness. The model chosen for this 
work consider it constant. This leads to the following element stiffness matrix: 

 ( )1 1

1 1 1 1 2 2 2 2 1 2 3 2 1 21 1

2T T T T
e d d

t
ξ ξ

− −
= + + +∫ ∫K B C B B C B B C B B C B J ,  (1) 

where matrices B1 and B2 are the strain-displacement matrices as presented by Kumar and 
Palaninathan18, t is the total element thickness and J is the Jacobian. The constitutive tensors 
above are defined here as: 

 ( )
1

    1..3,no sum on .
nl

lc m m
m k k t b k

k

z z m kρ
=

= − =∑C C   (2) 

In these equations, nl is the element number of plies and zt and zb are the layer top and 
bottom coordinates. The relative density ρk is inserted in this work because it is used as design 
variable for the topology optimization, explained in the section 3.4. The layer constitutive 
tensor lc

kC  is function of the layer orientation, and is obtained trough a plane rotation of lm
kC , 

which is the modified layer constitutive tensor accounting for transversal shear effects16 and 
expressed in the layer coordinate system: 

 lc T ts
k pl k pl=C Q C Q   (3) 

The rotation matrix Qpl is given by 
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 − − 

Q  (4) 

Figure (1) presents these rotations and different systems. The Clm constitutive tensor is 
expressed in the layer coordinate system, defined by vectors 1 2 3,   and lm lm lme e e . The vector 1

lme is 
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parallel to the larger material elasticity modulus direction. The tensor Clc is defined in the local 
coordinate system, defined by 1 2 3,  and lc lc lce e e . This system lies on the same plane of the layer 

coordinate system, and they share the same perpendicular vector ( 3 3
lm lc=e e ). Vectors vξ1 and vξ2 

are parallel to the parametric coordinate system and are calculated at each integration point, 
being necessary to define the local coordinate system. To calculate the rotations degrees of 
freedom at each node, a nodal coordinate system is defined by vectors v1I , v2I and vnI, being 
this last one a vector normal to the reference surface at the node. The global coordinate 
system, defined by e1, e2 and e3, is the reference one and used to express nodal displacements. 

 
 

Figure 1: Coordinate systems for laminated shell finite element. 
 

3 OPTIMIZATION PROCEDURE 

Earlier works in laminated structures optimization appeared only in the late 1960's. Foye12 

studied minimum weight of laminates, searching for strength and stiffness optimum design, for 
in-plane multiple loads. Waddoups28 obtained minimum weight designs using strength 
constraints under distinct multiple load cases, considering maximum strain or Tsai-Hill failure 
criteria. The design variable was the ply orientation, but the search for the optimum was 
exhaustive. Schmit and Farshi26 presented a method to obtain the minimum weight optimum 
design of symmetric composite laminates under multiple in-plane loads, using the layer 
thickness as design variables. The optimization algorithm was an adaptation of the so called 
inscribed hyperspheres and consisted in a sequence of  linear programming with fast 
convergence.  

An important work on fiber orientation optimization of composite material structures was 
made by Pedersen21. He searched for the maximum and minimum energy densities on 
orthotropic material structures, working only with fiber orientation. Solving plane elasticity 
problems, he concluded that the optimum orientation depends only of the relation between the 
two principal strain directions and non-dimensional invariant material parameters. In 1990, 
Pedersen22  returned to this subject, considering now FEM analysis. For materials with relative 
low in-plane shear stiffness , the maximum stiffness is obtained aligning the biggest material 
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elasticity modulus direction with the biggest principal strain direction. Cheng7 has discussed 
Pedersen’s results for the use of principal strain directions to update the orientation and 
compared methods presented by Suzuki e Kikuchi27 and Díaz and Bendsøe19, who used 
principal stress directions. Pedersen’s method presents coupling between principal strain 
direction and the design variable θ, while using methods based on stress, this coupling becomes 
weaker. Cheng presented then a stress based improved method, using a formulation with 
generalized stress, and not only principal stress. 

Conceição António et al.8 solved laminated plate and shell problems using a two-level 
strategy. Their objective was to obtain a minimum weight structure that could support a set of 
external static loads without failure. The  domain was splitted in macro-elements with different 
stacking sequence on each one. In the first level it was maximized the structure efficiency, the 
ply orientation being the design variable and using mathematical programming. In the second 
level, the weight of the structure was minimized, working with ply thickness as design variable. 

Mota Soares et al.19 presented an model for the optimization of thin composite laminated 
plates, using also a two-level approach. In the first level it was minimized the maximum 
displacement or maximized certain vibration mode frequency, using as design variables the 
orientation angles of certain ply, under boundary constraints. The objective of the second level 
was the volume minimization under displacement, stress and/or Tsai-Hill failure criteria, 
specific vibration mode frequency or boundary constraints.  

Considering the works cited above, the approaches to be used in this work were defined. 
The option for a two-level strategy is obvious. The idea is to find a structure with the minimum 
volume for a certain compliance, specified a priori. For laminated structures made of 
orthotropic layers, it is possible to optimize the orientation, minimizing the compliance in a 
first level. In a second level, each layer can have its topology optimized, reducing the structure 
volume. The use of two levels leads also to the number of design variables reduction during 
each iteration, and gives an easier and more robust way to obtain each of the objective 
functions and all sensitivities. The topology optimization level is based on the work of 
Cardoso6 and Sant’Anna25. When optimizing the topology of only some layers of the structure, 
this approach is similar to the design of shell stiffeners. The chosen methods and optimization 
formulas are described below. 

3.1 Two level approach 

In this work a two-level approach is used, each one being: 
- 1st level - compliance minimization, with the ply orientation on each element as design 

variable, without constraints (size optimization); 
- 2nd level - volume minimization, with relative densities of the plies of each element as 

design variable, and considering the compliance as constraint (topology optimization). 
On Fig. (2) it can be seen a flow chart for the strategy used. As it is presented here, the 

process passes through each level just once. Another strategy would be to come back to first 
level after each step of the second level, but tests showed no improvement in this strategy.   

After the convergence of the first level, the flag convθ  is turned on, what deviates the 
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algorithm to the second level. At this level it is shown the passage through the Continuation 
Method (CM) steps (see Topology Optimization section). The algorithm verifies the 
convergence of the objective function s, and in the positive case, verify to which CM step it 
must go. Tests showed that there is practically no difference between three or more steps, and 
in the most cases only two are enough.  

 

 
Figure 2: Two-level strategy procedure. 

 
Sequential Linear Programming (SLP) is used in both levels. This method requires the 

linearization of each objective function and constraints. First order Taylor series are used, what 
leads to differentiation of the related functions with respect to each level design variable. A 
first order approximation, however, is good only in the neighborhood of the optimum point 
and then it is necessary to use move limits. A similar strategy used by Sant’Anna25, based on 
the iteration history and on design variable behavior, was applied in both levels to update the 
move limits. Theory and details about SLP and Mathematical Programming in general can be 
found in Haftka and Gürdal14. The mathematical algorithms derived below were coded using 
MATLAB, what allowed the use of some of its functions. One example is the “linprog” , used 
to solve the Linear Programming step. 

3.2 Orientation Optimization  

The orientation optimization problem can be stated as: 

 ( )minW
θ

θ   (5) 

This is an unconstrained optimization, since the stiffest structure is searched in the first 
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optimization level, allowing a greater volume reduction on the second level. The structure 
compliance is given by: 

 TW = q Kq   (6) 

where q is the global displacement vector and K  is the global stiffness matrix. The 
differentiation of Eq. (6) with respect to the design variable θ  is given by 

 2T TW

θ θ θ
∂ ∂ ∂= +
∂ ∂ ∂

K q
q q q K   (7) 

The design variable θ is defined on each element layer, and thus the stiffness matrix 
derivative must be calculated at each layer. So, ∂W/∂θ is a vector with dimension ndesvar 
(number of design variables, equal to element number multiplied by the number of layers to be 
optimized). The derivative of  K  with respect to θ  is then given by: 

 
1 1

1 2 2 3
1 1 1 2 2 1 2 2 1 21 1

2T T T Tn n n n nd d d d d
d d

d d d d d t
ξ ξ

θ θ θ θ θ− −

 = + + +  ∫ ∫
K C C C C

B B B B B B B B J   (8) 

where n  varies from 1 to ndesvar and  

 ( )       1..3.
lc

m mmn n
n t b n

d d
z z m

d d
ρ

θ θ
= − =C C

  (9) 

In the expression above, ρn is the relative density of the element layer being optimized, zb 

and  zt  are the bottom and top coordinate of the layer in the thickness direction.  
For the differentiation of q with respect to θ, it should be used the expression =Kq f . Since 

the derivative of f with respect to θ is null, this equation leads to: 

 
θ θ

∂ ∂= −
∂ ∂
q K

K q   (10) 

Finally, inserting this equation on (7):  

 2T T TW

θ θ θ θ
∂ ∂ ∂ ∂ = + − = − ∂ ∂ ∂ ∂ 

K K K
q q q q q q   (11) 

This means that the differentiation of W with respect to θ is given only by the differentiation 
of the constitutive tensor on Eq. (8) and Eq. (9).   

To extend this problem to multiple load cases, a strategy suggest by Krog and Olhoff 
(1997) is used. The idea is to consider a weighted sum of the compliance associated to each 
load case. This approach maintains the formulation obtained above, keeping all advantages of 
the use of a SLP method, its robustness and simplicity, not being necessary to reformulate the 
problem for different type of structures. The optimization problem on Eq. (5)is simply 
modified to: 
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 ( )min ,          1..j j casesw W j n
θ

θ =   (12) 

where wj and Wj are the weight and compliance associated to each j load case, and ncases is 
the number of load cases applied to the structure. To obtain wj, each compliance Wj  is 
calculated after the first FEM step, as: 

 ( )T

j
=jW q f   (13) 

Each weight is then calculated in the following way: 

 
1

=
casos

j j

n

j
j

w W W
=

∑   (14) 

3.3 Topology optimization 

For continuum structures, the topology optimization introduces an universe of possible 
structural elements, in a certain design domain, called ground structure, and search for the best 
material distribution inside this universe11. A revision of the earlier works3, 27, 9 has been 
presented by Bendsøe 4. The use of microstructures has been introduced, leading to optimal 
solutions for many cases and problems. Microstructure, however, brings the problem of 
structures with intermediate densities, what may be very difficult  to build, if not impossible. 
To solve this problem, different procedures have been developed 27, 13, 2. Here a cost function 
penalization24 has been chosen, as in Sant’Anna25, and the optimization problem is defined as: 

 

( ) ( )

( )

var

1

lim ,

min   1

s. t.    0,              1..

         0 1

desn
p
n n n n

n

j cases

s V

W W j n

ρ
ρ ρ αρ ρ

ρ
ρ

=

 = + − 

− ≤ =

< ≤

∑
  (15) 

where s(ρ) is the objective function, ρ is the relative density of the cell material4, defined on 
each layer being optimized, p and α are  the penalization parameters, Wlim is the limit 
compliance specified for the final solution and Vn is the volume of each layer to be optimized 
inside each element. This formulation includes multiple load cases through the constraints, with 
Wj(ρ) being the linearized compliance associated to each load case. 

The use of this penalized formulation brings a new problem: the optimization problem 
becomes non-convex, what leads to the non-unicity of the discrete problem solution. To 
overcome it, a Continuation Method (CM) is used 6 : the optimization problem is solved in two 
or more steps. The problem is initially solved with a linear approach for ρ, using p = 1 and α = 
0 . This is a convex problem, what guarantees the solution unicity, even obtaining many 
intermediate densities. The solution obtained is then used to start new optimization steps, with 
p < 1 and α > 0, what changes the problem to a non-convex one. Intermediate densities 
become more “expensive”, and the algorithm searches for solution containing only minimum or 
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maximum densities areas. The behavior of the penalized  function is seen on Fig. (3).  

 
Figure 3: Penalization of s( ρ ) as in (15) for  α = 0 at left, and for p = 1/8 and various values of α. at right. 
 
The volume Vn is calculated as: 

 ( )1 1

1 21 1k t b k
V z z J d dξ ξ

− −
= −∫ ∫   (16) 

The differentiation of s(ρ ) with respect to ρ on each “n” element layer is then given by: 

 ( )1 1 2pn
n n n

s
p Vρ α ρ

ρ
−∂  = + − ∂

  (17) 

As it is used SLP, it is necessary also to obtain a linear expression for the constraint. To 
obtain the compliance derivative for each “ j” load case, it is used the Eq.(13), leading to:  

 ( )j T T
j j j j

W

ρ ρ ρ
∂ ∂ ∂= =
∂ ∂ ∂

K
q Kq q q   (18) 

The stiffness matrix derivative for each n design variable is given by: 

 
1 1

1 2 2 3
1 1 1 2 2 1 2 2 1 21 1

2T T T Tn n n n nd d d d d
d d

d d d d d t
ξ ξ

ρ ρ ρ ρ ρ− −

 
= + + + 

 
∫ ∫

K C C C C
B B B B B B B B J   (19) 

The derivatives of the constitutive tensors are calculated from (2) as: 

 ( )      1..3lc m mmn
t b

n

d
z z m

dρ
 = − = 

C
C   (20) 

 
4 NUMERICAL RESULT S  

The two-level optimization strategy was applied in 2D elasticity, plates, cylindrical and 
spherical shells problems. Isotropic problems were also tested, to compare results, and 
stacking sequence is varied, to compare orientation and topology solutions. In this paper, some 
of the obtained results are presented, including multiple loads cases, using both orientation and 
topology optimization. The structure limit compliance (Wlim) has always been defined as a 
factor of the original structure compliance (W0), which is calculated after the first FEM step. 
Volume reduction results are expressed as function of the original volume (V0). In the tests 
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made, it was used a homogeneous density distribution, always equal to one, and it was not 
investigated the influence of different initial distributions. The material properties used are 
given by Reddy 23. 

Problems of 2D elasticity are common in the literature. Due to its simplicity, they were used 
to evaluate the algorithm during its implementation. The fixed beam problem is useful to show 
the advantage of the orientation optimization before the topological one. On Fig. (4) and Fig. 
(5), results are presented for beams made of one Graphite – Epoxy layer, with the principal 
material direction parallel to the x1 direction, using an Wlim of 2W0.  

  

 
Figure 4: Final topology and orientation of a fixed boundary beam: (a) only topology optimization (Vf = 

0,45V0) and (b) optimizing also the orientation with PSD-SLP (Vf = 0,27V0). Material: Graphite-Epoxy. 
 

 
Figure 5: Final topology and orientation of a fixed boundary beam: (a) only topology optimization (Vf = 

0,45V0) and (b) optimizing also the orientation with PSD-SLP (Vf = 0,27V0). Material: Graphite-Epoxy. 
 
Figure (5) shows the graphics of the objective function, structure volume and compliance 

behavior during the iteration history for both cases cited above. At left, there is only topology 
optimization, in two steps. In the first step, the structure total volume is equal to the objective 
function s(ρ). After its convergence, the penalization factor is changed to 1/8, what is noticed 
by the modification in the objective function behavior. The structure compliance reaches its 
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maximum values (Wlim ) in few iterations, and the final volume obtained when applying only 
topology optimization is 0.45V0. The vertical dashed line divides the two CM steps. At right, 
there are two optimization levels. First, the orientation one, with minimization of structure 
compliance, and s(ρ) and V remaining constant. The second level has two CM steps also, with 
similar behavior of all curves. It may be noticed that the structure compliance now starts with 
less than 50% of its original value, what allows more volume reduction: as the algorithm tries 
to obtain a structure compliance of  2W0, it can remove more material, and the final volume 
decreases to  0.27V0.   

The solution of a single layer orthotropic shell problem is shown on Fig. (6). The original 
layer orientation was 45º on the quadrant, and Wlim = 0.5, what leads to a final volume of 
0.75V0. Comparing with the previous result, it can be seen the importance of the definition of 
this limit compliance. The first optimization level can reduce excessively the compliance, what 
may lead to an excessive volume reduction in the topology optimization level, sometimes 
obtaining a statically underterminated structure. In this problem, three steps were used in the 
CM: p = 1 and α = 0, p = 1/8 and α = 0.3 and finally p = 1/12 and α = 0.5.  
 

 
Figure 6: On (a), a 3D topology representation of the single orthotropic layer optimized shell with initial 

orientation at 45º on each quadrant and Wl im = 0.5 W0 (b) topology and orientation solution. Here, R = 10, L = 
5, thickness 0.1. 

 
For two layers and same boundary and load conditions of the previous problem, the solution 

obtained is shown on Fig. (7). The bottom layer had a orientation perpendicular to the upper 
one, and both were made by the same material (Gr-Ep). The limit compliance was 0.5W0, with 
two steps in the CM:  p = 1 and p = 1/8, for α  = 0. These two steps were enough to eliminate 
almost all intermediate densities, and the final volume obtained was 0.55 V0. The construction 
of such structures is not trivial, however, since some areas of the upper layer is not in contact 
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with the lower. When optimizing all layers of multi-layer structures,  holes can appear inside 
the structures, or a layer can even disappear. This avoid this, the optimization should be 
applied to only the external layers, as in the following problem. 

 
 

Figure 7: Topology and orientation solution for a two layer laminated shell , with Wl im = 0.5 W0 and a central 
load. At left, lower layer and at right the upper one. 

 
The solution of a multiple load and three layers problem is presented on Fig. (8). One 

applied load (Load 1) is composed by a central force (F1) and the other load (Load 2) is 
composed by equal forces (0.7 F1) applied in the middle of the edges. Only the lower and 
upper layers were optimized, what is equivalent to the determination of stiffeners for the 
middle structure. After solving the FEM problem in the first iteration, the weight of the 
compliance associated to each load case was calculated, being w1 = 0.642 and w2 =  0.357. In 
this problem, the compliance with bigger weight was chosen as W0, but is not a rule. In this 
example, the limit compliance was 0.4W0, what resulted in a final volume of 48% of the initial 
one for the two layers. Only two steps of the CM were used, with p = 1/8 and α =  0.3 on the 
second one.  

The iteration history in Fig. (8b) shows the two optimization levels and the two CM steps. 
In the first level, before the vertical dashed line, it can be seen the minimization of the 
compliance associated to each load case. In the second level, both compliance values reach 
their constraint. In the first step of the topology optimization level, the objective function and 
the volume of the optimized layers are the same, since the penalization factor p is equal to one. 
In the second CM step, the volume practically does not change, but s increases suddenly in the 
beginning to decrease later, when reaching the convergence. This is the typical behavior of all 
cases tested. 

In the problem above, a variation on the weight of each load case (wj ) is possible only if the 
loads were modified, or new load cases were taken into account. Thus, when including new 
load cases in the analysis, new weights for all loads have to be defined. As can be seen in the 
optimal design obtained, on Fig. (8a), the upper layer resisting mostly to Load 1 and the 
bottom one to Load 2. Since the compliance associated to Load 2 was lower, and 
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consequently its w2 < w1 , it allowed more volume reduction on the bottom layer. This indicates 
the influence of each weight wj on the optimal design. 

 

 
 

Figure 8. In (a), topology solution for a three layer optimized shell , with Wl im = 0.4 W0 and multiple applied 
load. In (b), iteration history for this problem. 

 
 

5 CONCLUSION 

A two-level strategy for the optimization of laminated shells has been presented. The two 
levels consisted in optimization of principal material orientation on each ply, minimizing the 
structure compliance, and topology optimization, minimizing each ply volume. In both levels 
Sequential Linear Programming (SLP) was used. Mathematical algorithms were derived, 
allowing solution of multiple load cases problems. For the equili brium solution an eight-node 
degenerated laminated shell element with exact through thickness integration was 
implemented.  

In the tests made, the method showed efficiency to solve many kinds of problems, from 2D 
elasticity and plates to spherical and cylindrical shells problems. The example of 2D elasticity 
presented here showed the advantage of a orientation optimization before the topology one: a 
larger volume reduction was obtained in comparison to only topology optimization for 
orthotropic structures. With the shell optimization examples, this advantage was emphasized. 
It could be seen that the orientation optimization leads to a large compliance reduction in the 
first optimization level, allowing an efficient volume reduction in the second level, even for low 
prescribed limit compliance (Wlim). Care should be taken to avoid the appearance of holes 
between layers, and good results were achieved when optimizing the external layers of the 
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structure. The algorithm could solve also efficiently the multiple load problems, using a 
weighted compliance sum approach. 

The methods presented here represent a contribution for the knowledge of laminated shells 
design methodologies. The use of this kind of structure is spreading from the aerospace 
industry to other sectors, as the efforts towards weight and cost reduction are universal. 
Therefore, the research in optimization is important for the development of the whole Brazili an 
industry. 
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