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Abstract. We describe the interface-tracking and interface-capturing techniques we de-
veloped in recent years for computation of flows with moving boundaries and interfaces.
The interface-tracking techniques are based on the Deforming-Spatial-Domain/Stabilized
Space-Time formulation, where the mesh moves to track the interface. The interface-
capturing techniques were developed for two-fluid flows. They are based on the stabilized
formulation, over typically non-moving meshes, of both the flow equations and an advec-
tion equation. The advection equation governs the time-evolution of an interface function
marking the interface location. We also describe some of the additional methods developed
to increase the scope and accuracy of these two classes of techniques. Among them are
the Enhanced-Discretization Interface-Capturing Technique (EDICT), which was devel-
oped to increase the accuracy in capturing the interface, and extensions and offshoots of
the EDICT.
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1 INTRODUCTION

In computation of flow problems with moving boundaries and interfaces, depending on
the complexity of the interface and other aspects of the problem, we can use an interface-
tracking or interface-capturing technique. An interface-tracking technique requires meshes
that “track” the interfaces. The mesh needs to be updated as the flow evolves. In an
interface-capturing technique for two-fluid flows, the computations are based on fixed
spatial domains, where an interface function, marking the location of the interface, needs
to be computed to “capture” the interface. The interface is captured within the resolution
of the finite element mesh covering the area where the interface is. This approach can be
seen as a special case of interface representation techniques where the interface is somehow
represented over a non-moving fluid mesh, the main point being that the fluid mesh does
not move to track the interfaces. A consequence of the mesh not moving to track the
interface is that for fluid-solid interfaces, independent of how well the interface geometry
is represented, the resolution of the boundary layer will be limited by the resolution of
the fluid mesh where the interface is.

The interface-tracking and interface-capturing techniques we have developed in re-
cent years (see1–6) are based on stabilized formulations. The stabilized methods are
the streamline-upwind/Petrov-Galerkin (SUPG),7 Galerkin/least-squares (GLS),8 and
pressure-stabilizing/Petrov-Galerkin (PSPG)1 formulations. They prevent numerical os-
cillations and other instabilities in solving problems with high Reynolds and/or Mach
numbers and shocks and strong boundary layers, as well as when using equal-order in-
terpolation functions for velocity and pressure and other unknowns. Furthermore, this
class of stabilized formulations substantially improve the convergence rate in iterative
solution of the large, coupled nonlinear equation system that needs to be solved at every
time step of a flow computation. Such nonlinear systems are typically solved with the
Newton-Raphson method, which involves, at its every iteration step, solution of a large,
coupled linear equation system. It is in iterative solution of such linear equation systems
that using a good stabilized method makes substantial difference in convergence, and this
was pointed out in.9

The Deforming-Spatial-Domain/Stabilized Space-Time (DSD/SST) formulation,1 de-
veloped for moving boundaries and interfaces, is an interface-tracking technique, where
the finite element formulation of the problem is written over its space-time domain. At
each time step the locations of the interfaces are calculated as part of the overall solu-
tion. As the spatial domain occupied by the fluid changes its shape in time, mesh needs
to be updated. In general, this is accomplished by moving the mesh with the motion
of the nodes governed by the equations of elasticity, and full or partial remeshing (i.e.,
generating a new set of elements, and sometimes also a new set of nodes) as needed.

In computation of two fluid-flows (we mean this category to include free-surface flows)
with interface-tracking techniques, sometimes the interface might be too complex or un-
steady to track while keeping the frequency of remeshing at an acceptable level. Not be-
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ing able to reduce the frequency of remeshing in 3D might introduce overwhelming mesh
generation and projection costs, making the computations with the interface-tracking
technique no longer feasible. In such cases, interface-capturing techniques, which do not
normally require costly mesh update steps, could be used with the understanding that the
interface will not be represented as accurately as we would have with an interface-tracking
technique. Because they do not require mesh update, the interface-capturing techniques
are more flexible than the interface-tracking techniques. However, for comparable levels
of spatial discretization, interface-capturing methods yield less accurate representation
of the interface. These methods can be used as practical alternatives in carrying out
the simulations when compromising the accurate representation of the interfaces becomes
less of a concern than facing major difficulties in updating the mesh to track such inter-
faces. The desire to increase the accuracy of our interface-capturing techniques without
adding a major computational cost lead us to seeking techniques with a different kind
of “tracking”. The Enhanced-Discretization Interface-Capturing Technique (EDICT) was
first introduced in10,11 to increase accuracy in representing an interface. We will describe
the EDICT more in a later section. In later sections, we will also describe some of the
extensions and offshoots of EDICT.

2 GOVERNING EQUATIONS

Let Ωt ⊂ IRnsd be the spatial fluid mechanics domain with boundary Γt at time t ∈ (0, T ),
where the subscript t indicates the time-dependence of the spatial domain. The Navier-
Stokes equations of incompressible flows can be written on Ωt and ∀t ∈ (0, T ) as

ρ(
∂u

∂t
+ u · ∇∇∇u− f)−∇∇∇ · σσσ = 0, (1)

∇∇∇ · u = 0, (2)

where ρ, u and f are the density, velocity and the external force, respectively. The stress
tensor σσσ is defined as

σσσ(p,u) = −pI+ 2µεεε(u). (3)

Here p is the pressure, I is the identity tensor, µ = ρν is the viscosity, ν is the kinematic
viscosity, and εεε(u) is the strain-rate tensor:

εεε(u) =
1

2
((∇∇∇u) + (∇∇∇u)T ). (4)

The essential and natural boundary conditions for Eq. (1) are represented as

u = g on (Γt)g, n · σσσ = h on (Γt)h, (5)

where (Γt)g and (Γt)h are complementary subsets of the boundary Γt, n is the unit normal
vector, and g and h are given functions. A divergence-free velocity field u0(x) is specified
as the initial condition.
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If the problem does not involve any moving boundaries or interfaces, the spatial domain
does not need to change with respect to time, and the subscript t can be dropped from
Ωt and Γt. This might be the case even for flows with moving boundaries and interfaces,
if in the formulation used the spatial domain is not defined to be the part of the space
occupied by the fluid(s). For example, we can have a fixed spatial domain, and model the
fluid-fluid interfaces by assuming that the domain is occupied by two immiscible fluids,
A and B, with densities ρA and ρB and viscosities µA and µB. In modeling a free-surface
problem where Fluid B is irrelevant, we assign a sufficiently low density to Fluid B. An
interface function φ serves as a marker identifying Fluid A and B with the definition φ =
{1 for Fluid A and 0 for Fluid B}. The interface between the two fluids is approximated
to be at φ = 0.5. In this context, ρ and µ are defined as

ρ = φρA + (1− φ)ρB, µ = φµA + (1− φ)µB. (6)

The evolution of the interface function φ, and therefore the motion of the interface, is
governed by a time-dependent advection equation, written on Ω and ∀t ∈ (0, T ) as

∂φ

∂t
+ u · ∇∇∇φ = 0. (7)

3 STABILIZED FORMULATIONS

3.1 Advection-Diffusion Equation

Let us consider over a domain Ω with boundary Γ the following time-dependent advection-
diffusion equation, written on Ω and ∀t ∈ (0, T ) as

∂φ

∂t
+ u · ∇∇∇φ−∇∇∇ · (ν∇∇∇φ) = 0, (8)

where φ represents the quantity being transported (e.g., temperature, concentration, in-
terface function), and ν is the diffusivity. The essential and natural boundary conditions
associated with Eq. (8) are represented as

φ = g on Γg, n · ν∇∇∇φ = h on Γh, (9)

A function φ0(x) is specified as the initial condition.
Let us assume that we have constructed some suitably-defined finite-dimensional trial

solution and test function spaces Sh
φ and Vh

φ . The stabilized finite element formulation of

Eq. (8) can then be written as follows: find φh ∈ Sh
φ such that ∀wh ∈ Vh

φ :∫

Ω

wh

(
∂φh

∂t
+ uh · ∇∇∇φh

)
dΩ +

∫

Ω

∇∇∇wh · ν∇∇∇φhdΩ−
∫

Γh

whhhdΓ

+

nel∑
e=1

∫

Ωe

τSUPGu
h · ∇∇∇wh

(
∂φh

∂t
+ uh · ∇∇∇φh −∇∇∇ · (ν∇∇∇φh

))
dΩ = 0. (10)

Here nel is the number of elements, Ωe is the domain for element e, and τSUPG is the SUPG
stabilization parameter. For various ways of calculating τSUPG, see.

4,12–15
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3.2 Navier-Stokes Equations of Incompressible Flows

Given Eqs. (1)-(2), let us assume that we have some suitably-defined finite-dimensional
trial solution and test function spaces for velocity and pressure: Sh

u, Vh
u, Sh

p and Vh
p = Sh

p .
The stabilized finite element formulation of Eqs. (1)-(2) can then be written as follows:
find uh ∈ Sh

u and ph ∈ Sh
p such that ∀wh ∈ Vh

u and qh ∈ Vh
p :

∫

Ω

wh · ρ
(
∂uh

∂t
+ uh · ∇∇∇uh − f

)
dΩ +

∫

Ω

εεε(wh) : σσσ(ph,uh)dΩ−
∫

Γh

wh · hhdΓ

+

∫

Ω

qh∇∇∇ · uhdΩ +

nel∑
e=1

∫

Ωe

1

ρ
[τSUPGρu

h · ∇wh + τPSPG∇qh] ·
[
ρ

(
∂uh

∂t
+ uh · ∇∇∇uh

)
−∇∇∇ · σσσ(ph,uh)− ρf

]
dΩ

+

nel∑
e=1

∫

Ωe

τLSIC∇∇∇ ·whρ∇∇∇ · uhdΩ = 0. (11)

Here τPSPG and τLSIC are the PSPG and LSIC (least-squares on incompressibility constraint)
stabilization parameters. For various ways of calculating τSUPG, τPSPG and τLSIC, see.

4,12–15

4 DSD/SST FINITE ELEMENT FORMULATION

In the DSD/SST method,1 the finite element formulation of the governing equations is
written over a sequence of N space-time slabs Qn, where Qn is the slice of the space-time
domain between the time levels tn and tn+1. At each time step, the integrations involved
in the finite element formulation are performed over Qn. The space-time finite element
interpolation functions are continuous within a space-time slab, but discontinuous from
one space-time slab to another. The notation (·)−n and (·)+n denotes the function values
at tn as approached from below and above. Each Qn is decomposed into elements Qe

n,
where e = 1, 2, . . . , (nel)n. The subscript n used with nel is for the general case in which
the number of space-time elements may change from one space-time slab to another. The
Dirichlet- and Neumann-type boundary conditions are enforced over (Pn)g and (Pn)h, the
complementary subsets of the lateral boundary of the space-time slab. The finite element
trial function spaces (Sh

u)n for velocity and (Sh
p )n for pressure, and the test function spaces

(Vh
u)n and (Vh

p )n = (Sh
p )n are defined by using, over Qn, first-order polynomials in both

space and time. The DSD/SST formulation1,14,15 is written as follows: given (uh)−n , find



���

,�����,���&-�
�����������������������������������������������������������������

uh ∈ (Sh
u)n and ph ∈ (Sh

p )n such that ∀wh ∈ (Vh
u)n and qh ∈ (Vh

p )n:

∫

Qn

wh · ρ
(
∂uh

∂t
+ uh · ∇∇∇uh − fh

)
dQ+

∫

Qn

εεε(wh) : σσσ(ph,uh)dQ

−
∫

(Pn)h

wh · hhdP +

∫

Qn

qh∇∇∇ · uhdQ+

∫

Ωn

(wh)+n · ρ (
(uh)+n − (uh)−n

)
dΩ

+

(nel)n∑
e=1

∫

Qe
n

1

ρ

[
τSUPGρ

(
∂wh

∂t
+ uh · ∇wh

)
+ τPSPG∇qh

]
· [ML(ph,uh)− ρfh

]
dQ

+

nel∑
e=1

∫

Qe
n

τLSIC∇∇∇ ·whρ∇∇∇ · uhdQ = 0, (12)

where

ML(qh,wh) = ρ

(
∂wh

∂t
+ uh · ∇∇∇wh

)
−∇∇∇ · σσσ(qh,wh), (13)

and τSUPG, τPSPG and τLSIC are the stabilization parameters (see14,15). This formulation is
applied to all space-time slabs Q0, Q1, Q2, . . . , QN−1, starting with (uh)−0 = u0. For an
earlier, detailed reference on the DSD/SST formulation see.1

5 MESH UPDATE METHODS

How the mesh should be updated depends on several factors, such as the complexity of
the interface and overall geometry, how unsteady the interface is, and how the starting
mesh was generated. In general, the mesh update could have two components: moving the
mesh for as long as it is possible, and full or partial remeshing (i.e., generating a new set
of elements, and sometimes also a new set of nodes) when the element distortion becomes
too high. In mesh moving strategies, the only rule the mesh motion needs to follow is that
at the interface the normal velocity of the mesh has to match the normal velocity of the
fluid. Beyond that, the mesh can be moved in any way desired, with the main objective
being to reduce the frequency of remeshing. In 3D simulations, if the remeshing requires
calling an automatic mesh generator, reducing the cost of automatic mesh generation
becomes a major incentive for trying to reduce the frequency of remeshing. Furthermore,
when we remesh, we need to project the solution from the old mesh to the new one. This
introduces projection errors. Also, in 3D, the computing time consumed by this projection
step is not a trivial one. All these factors constitute a strong motivation for designing
mesh update strategies which minimize the frequency of remeshing. In some cases where
the changes in the shape of the computational domain allow it, a special-purpose mesh
moving method can be used in conjunction with a special-purpose mesh generator. In such
cases, simulations can be carried out without calling an automatic mesh generator and
without solving any additional equations to determine the motion of the mesh. One of the
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earliest examples of that, 2D computation of sloshing in a laterally vibrating container,
can be found in.1 Extension of that concept to 3D parallel computation of sloshing in a
vertically vibrating container can be found in.9

In general, however, we use an automatic mesh moving scheme16 to move the nodal
points, as governed by the equations of linear elasticity. The motion of the internal nodes
is determined by solving these additional equations, with the boundary conditions for
these equations specified in such a way that they match the normal velocity of the fluid
at the interface. Similar mesh moving techniques were used earlier by other researchers
(see for example17). In our mesh moving method based on linear elasticity, the structured
layers of elements generated around solid objects (to fully control the mesh resolution near
solid objects and have more accurate representation of the boundary layers) move “glued”
to these solid objects, undergoing a rigid-body motion. No equations are solved for the
motion of the nodes in these layers, because these nodal motions are not governed by the
equations of elasticity. This results in some cost reduction. But more importantly, the
user has full control of the mesh resolution in these layers. For early examples of automatic
mesh moving combined with structured layers of elements undergoing rigid-body motion
with solid objects, see.9 Earlier examples of element layers undergoing rigid-body motion,
in combination with deforming structured meshes, can be found in.1

In computation of flows with fluid-solid interfaces where the solid is deforming, the
motion of the fluid mesh near the interface cannot be represented by a rigid-body motion.
Depending on the deformation mode of the solid, we may have to use the automatic mesh
moving technique described above. In such cases, presence of very thin fluid elements
near the solid surface creates a challenge for the automatic mesh moving technique. In
the Solid-Extension Mesh Moving Technique (SEMMT),3,4,6 we propose to treat those
thin fluid elements like an extension of the solid elements. In the SEMMT, in solving the
equations of elasticity governing the motion of the fluid nodes, we assign a much higher
rigidity to these thin elements, compared to the other fluid elements. This could be
implemented in two ways; we can solve the elasticity equations for the nodes connected to
the thin elements separate from the elasticity equations for the other nodes, or together.
If we solve them separately, for the thin elements, as boundary conditions at the interface
with the other elements, we would use traction-free boundary conditions. For mesh moving
studies with the SEMMT, see.18

6 EDICT

In the EDICT (Enhanced-Discretization Interface-Capturing Technique),10,11 we start
with the basic approach of an interface-capturing technique such as the volume of fluid
(VOF) method.19 The Navier-Stokes equations are solved over a non-moving mesh to-
gether with the time-dependent advection equation governing the evolution of the interface
function φ. In writing the stabilized finite element formulation for the EDICT (see11),
the notation we use here for representing the finite-dimensional function spaces is very
similar to the notation we used in the section where we described the DSD/SST formula-
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tion. The trial function spaces corresponding to velocity, pressure and interface function
are denoted, respectively, by (Sh

u)n, (Sh
p )n, and (Sh

φ)n. The weighting function spaces cor-
responding to the momentum equation, incompressibility constraint and time-dependent
advection equation are denoted by (Vh

u)n, (Vh
p )n (= (Sh

p )n), and (Vh
φ)n. The subscript n in

this case allows us to use different spatial discretizations corresponding to different time
levels.

The stabilized formulations of the flow and advection equations can be written as
follows: given uh

n and φh
n, find uh

n+1 ∈ (Sh
u)n+1, p

h
n+1 ∈ (Sh

p )n+1, and φh
n+1 ∈ (Sh

φ)n+1, such

that, ∀wh
n+1 ∈ (Vh

u)n+1, ∀qh
n+1 ∈ (Vh

p )n+1, and ∀ψh
n+1 ∈ (Vh

φ)n+1:

∫

Ω

wh
n+1 · ρ

(
∂uh

∂t
+ uh · ∇∇∇uh − fh

)
dΩ +

∫

Ω

εεε(wh
n+1) : σσσ(p

h,uh)dΩ

−
∫

Γh

wh
n+1 · hhdΓ +

∫

Ω

qh
n+1∇∇∇ · uhdΩ

+

nel∑
e=1

∫

Ωe

1

ρ
[τSUPGρu

h · ∇wh
n+1 + τPSPG∇qh

n+1] ·
[
ML(ph,uh)− ρfh

]
dΩ

+

nel∑
e=1

∫

Ωe

τLSIC∇∇∇ ·wh
n+1ρ∇∇∇ · uhdΩ = 0, (14)

∫

Ω

ψh
n+1

(
∂φh

∂t
+ uh ·∇∇∇φh

)
dΩ

+

nel∑
e=1

∫

Ωe

τφu
h ·∇∇∇ψh

n+1

(
∂φh

∂t
+ uh ·∇∇∇φh

)
dΩ = 0. (15)

Here τSUPG, τPSPG and τφ are the stabilization parameters, and τφ is calculated by applying
the definition of τSUPG to Eq. (15). For ways of calculating τSUPG and τPSPG, see.

4,12–15

To increase the accuracy, we use function spaces corresponding to enhanced discretiza-
tion at and near the interface. A subset of the elements in the base mesh, Mesh-1, are
identified as those at and near the interface. A more refined mesh, Mesh-2, is constructed
by patching together second-level meshes generated over each element in this subset. The
interpolation functions for velocity and pressure will all have two components each: one
coming from Mesh-1 and the second one coming from Mesh-2. To further increase the
accuracy, we construct a third-level mesh, Mesh-3, for the interface function only. The
construction of Mesh-3 from Mesh-2 is very similar to the construction of Mesh-2 from
Mesh-1. The interpolation functions for the interface function will have three components,
each coming from one of these three meshes. We re-define the subsets over which we build
Mesh-2 and Mesh-3 not every time step but with sufficient frequency to keep the interface
enveloped in. We need to avoid this envelope being too wide or too narrow.
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7 EXTENSIONS AND OFFSHOOTS OF EDICT

An offshoot of EDICT was first reported in20 for computation of compressible flows with
shocks. This extension is based on re-defining the “interface” to mean the shock front. In
this approach, at and near the shock fronts, we use enhanced discretization to increase the
accuracy in representing those shocks. Later, the EDICT was extended to computation
of vortex flows. The results were first reported in.21,22 In this case, the definition of
the interface is extended to mean regions where the vorticity magnitude is larger than a
specified value.

Here we describe how we extend EDICT to computation of flow problems with bound-
ary layers. In this offshoot, the “interface” means solid surfaces with boundary layers.
In 3D problems with complex geometries and boundary layers, mesh generation poses
a serious challenge. This is because accurate resolution of the boundary layer requires
elements that are very thin in the direction normal to the solid surface. This needs to be
accomplished without having a major increase in mesh refinement also in the tangential
directions or creating very distorted elements. Otherwise, we might be increasing the
computational cost excessively or decreasing the numerical accuracy unacceptably. In
the Enhanced-Discretization Mesh Refinement Technique (EDMRT),3,4,6 we propose two
different ways of using the EDICT concept to increase the mesh refinement in the bound-
ary layers in a desirable fashion. In the EDICT-Clustered-Mesh-2 approach,2–4,6 Mesh-2
is constructed by patching together clusters of second-level meshes generated over each
element of Mesh-1 designated to be one of the “boundary layer elements”. Depending
on the type of these boundary layer elements in Mesh-1, Mesh-2 could be structured or
unstructured, with hexahedral, tetrahedral or triangle-based prismatic elements. In the
EDICT-Layered-Mesh-2 approach,2–4,6 a thin but multi-layered and more refined Mesh-2
is “laid over” the solid surfaces. Depending on the geometric complexity of the solid
surfaces and depending on whether we prefer the same type elements as those we used
in Mesh-1, the elements in Mesh-2 could be hexahedral, tetrahedral or triangle-based
prismatic elements. The EDMRT, as an EDICT-based boundary layer mesh refinement
strategy, would allow us accomplish our objective without facing the implementational
difficulties associated with elements having variable number of nodes.

In the Enhanced-Discretization Space-Time Technique (EDSTT),3–6 we propose to use
enhanced time-discretization in the context of a space-time formulation. The motivation
is to have a flexible way of carrying out time-accurate computations of fluid-structure
interactions where we find it necessary to use smaller time steps for the structural dy-
namics part. There would be two ways of formulating EDSTT. In the EDSTT-Single-
Mesh (EDSTT-SM) approach,3–6 a single space-time mesh, unstructured both in space
and time, would be used to enhance the time-discretization in regions of the fluid domain
near the structure. This, in general, might require a fully unstructured 4D mesh genera-
tion. In the EDSTT-Multi-Mesh (EDSTT-MM) approach,3–6 multiple space-time meshes,
all structured in time, would be used to enhance the time-discretization in regions of the
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fluid domain near the structure. In a way, this would be the space-time version of the
EDMRT. This approach would not require a fully unstructured 4D mesh generation, and
therefore would not pose a mesh generation difficulty. In general, EDSTT can be used in
time-accurate computations where we require smaller time steps in certain parts of the
fluid domain. For example, where the spatial element sizes are small, we may need to
use small time steps, so that the element Courant number does not become too large.
In computation of two-fluid interface (or free-surface) flows with the DSD/SST method,
time-integration of the equation governing the evolution of the interface (i.e. the interface
update equation) may require a smaller time step than the one used for the fluid inte-
riors. This requirement might be coming from numerical stability considerations, when
time-integration of the interface update equation does not involve any added stabilization
terms. In such cases, time-integration with sub-time-stepping on the interface update
equation can be based on the EDSTT-SM or EDSTT-MM approaches. As an alternative
or complement to these approaches, the sub-time-stepping on the interface update equa-
tion can be accomplished with the Interpolated Sub-Time-Stepping Technique (ISTST).

In the ISTST, time-integration of the interface update equation with smaller time steps
would be carried out separately from the fluid interiors. The information between the
two parts would be exchanged by interpolation. The sub-time-stepping sequence for the
interface update, together with the interpolations between the interface and fluid interiors,
would be embedded in the iterative solution technique used for the fluid interiors, and
would be repeated at every iteration. The iterative solution technique, which is based on
the Newton-Raphson method, addresses both the nonlinear and the coupled nature of the
set of equations that needs to be solved at each time step of the time-integration of the
fluid interiors. When the ISTST is applied to computation of fluid-structure interactions,
a separate, “inner” Newton-Raphson sequence would be used at each time step of the
sub-time-stepping on the structural dynamics equations.

8 ITERATIVE SOLUTION METHODS

The finite element formulations reviewed in the earlier sections fall into two categories:
a space-time formulation with moving meshes or a semi-discrete formulation with non-
moving meshes. Full discretizations of these formulations lead to coupled, nonlinear equa-
tion systems that need to be solved at every time step of the simulation. Whether we
are using a space-time formulation or a semi-discrete formulation, we can represent the
equation system that needs to be solved as follows:

N (dn+1) = F. (16)

Here dn+1 is the vector of nodal unknowns. In a semi-discrete formulation, this vector
contains the unknowns associated with marching from time level n to n + 1. In a space-
time formulation, it contains the unknowns associated with the finite element formulation
written for the space-time slab Qn. The time-marching formulations described earlier
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can also be used for computing a steady-state flow. In such cases time does not have a
physical significance, but is only used in time-marching to the steady-state solution.

We solve Eq. (16) with the Newton-Raphson method:

∂N

∂d

∣∣∣∣
di

n+1

(
∆di

n+1

)
= F−N

(
di

n+1

)
, (17)

where i is the step counter for the Newton-Raphson sequence, and ∆di
n+1 is the increment

computed for di
n+1. The linear equation system represented by Eq. (17) needs to be solved

at every step of the Newton-Raphson sequence. We can represent Eq. (17) as a linear
equation system of the form

Ax = b. (18)

In the class of computations we typically carry out, this equation system would be too
large to solve with a direct method. Therefore we solve it iteratively. At each iteration,
we need to compute the residual of this system:

r = b−Ax. (19)

This can be achieved in several different ways. The computation can be based on a
sparse-matrix storage of A. It can also be based on storing just element-level matrices
(element-matrix-based), or even just element-level vectors (element-vector-based). This
last strategy is also called the matrix-free technique. After the residual computation, we
compute a candidate correction to x as given by the expression

∆y = P−1r, (20)

whereP, the preconditioning matrix, is an approximation toA. P has to be simple enough
to form and factorize efficiently. However, it also has to be sophisticated enough to yield
a desirable convergence rate. How to update the solution vector x by using ∆y is also a
major subject in iterative solution techniques. Several update methods are available, and
we use the GMRES23 method. We have been focusing our research related to iterative
methods mainly on computing the residual r efficiently and selecting a good precondi-
tioner P. While moving in this direction, we have always been keeping in mind that the
iterative solution methods we develop need to be efficiently implemented on parallel com-
puting platforms. For example, the “parallel-ready” methods we designed for the residual
computations include those that are element-matrix-based,24 element-vector-based,24 and
sparse-matrix-based.25 The element-vector-based methods were successfully used also by
other researchers in the context of parallel computations (see for example26,27).

In preconditioning design, we developed some advanced preconditioners such as the
Clustered-Element-by-Element (CEBE) preconditioner28 and the mixed CEBE and Clus-
ter Companion (CC) preconditioner.28 We have implemented, with quite satisfactory
results, the CEBE preconditioner in conjunction with an ILU approximation.25 However,
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our typical computations are based on diagonal and nodal-block-diagonal preconditioners.
These are very simple preconditioners, but are also very simple to implement on parallel
platforms. More on our parallel implementations can be found in.24

9 ENHANCED SOLUTION TECHNIQUES

Sometimes, some parts of the computational domain may offer more of a challenge
for the Newton-Raphson method than the others. This might happen, for example, at
the fluid-solid interface in a fluid-structure interaction problem, and in such cases the
nonlinear convergence might become even a bigger challenge if the structure is going
through buckling or wrinkling. It might also happen at a fluid-fluid interface, for ex-
ample, if the interface is very unsteady. In the Enhanced-Iteration Nonlinear Solution
Technique (EINST),3–6 as a variation of the Newton-Raphson method, we propose to use
sub-iterations in the parts of the domain where we are facing a nonlinear convergence
challenge. This could be implemented, for example, by identifying the nodes of the zones
where we need enhanced iterations, and performing multiple iterations for those nodes
for each iteration we perform for all other nodes. In time-accurate computations of fluid-
structure interactions with the EDSTT-SM or EDSTT-MM approaches, the EINST can
be used to allow for a larger number of nonlinear iterations for the structure.

In some challenging cases, using a diagonal or nodal-block-diagonal preconditioners
might not lead to a satisfactory level of convergence at some locations, in the parts of the
domain posing the challenge. This might happen, for example, in a fluid-structure interac-
tion problem, where the structure or the fluid zones near the structure might be suffering
from convergence problems, the situation might become worse if the structure is going
through buckling or wrinkling. It might also happen at a fluid-fluid interface. We might
also face this difficulty in the SEMMT described in the section on mesh update methods,
if the elasticity equations for the nodes connected to the thin elements are solved together
with the elasticity equations for the other nodes. In the Enhanced-Approximation Linear
Solution Technique (EALST),3,4,6 we propose to use stronger approximations for the parts
of the domain where we are facing convergence challenges. This could be implemented,
for example, by identifying the elements covering the zones where we need enhanced
approximation, and reflecting this in defining the element-level constituents of the ap-
proximation matrix. For example, for the elements that need stronger approximations,
we can use as the element-level approximation matrix the full element-level matrix, while
for all other elements we use a diagonal element-level matrix. This particular EALST can
be summarized by first expressing the assembly process for A and P as

A =
nel

A
e=1

Ae (21)

P =
nel

A
e=1

Pe , (22)
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where A is the finite element assembly operator, and then defining Pe for the elements
belonging to the enhanced-approximation and diagonal-approximation groups:

Pe =

{
Ae for Enhanced Approximation Group

DIAG(Ae) for Diagonal Approximation Group
, (23)

where DIAG represents a diagonal or nodal-block-diagonal approximation operator. We
note that in factorizing the submatrices ofP corresponding to the enhanced-approximation
group, we can use a direct solution method, or, as an alternative, a second-level iteration
sequence. This second-level iteration sequence would have its own preconditioner (possi-
bly a diagonal or nodal-block-diagonal preconditioner) and its own GMRES vector space
(possibly shorter than the GMRES vector space used in the first-level iterations).

10 MIXED ELEMENT-MATRIX-BASED/ELEMENT-VECTOR-BASED
COMPUTATION TECHNIQUE (MMVCT)

Consider a nonlinear equation system of the kind given by Eq. (16), re-written in the
following form:

N1 (d1,d2) = F1,

N2 (d1,d2) = F2, (24)

where d1 and d2 are the vectors of nodal unknowns corresponding to unknown functions
u1 and u2, respectively. Similarly, we re-write Eq. (18) in the form

A11x1 +A12x2 = b1,

A21x1 +A22x2 = b2, (25)

where

Aβγ =
∂Nβ

∂dγ

. (26)

Re-writing Eqs. (16) and (18) in this fashion would help us recognize or investigate
the properties associated with the individual blocks of the equation system. It would
also help us explore selective treatment of these blocks during the solution process. For
example, in the context of a coupled fluid-structure interaction problem, u1 and u2 might
be representing the fluid and structure unknowns, respectively. We would then recognize
that computation of the coupling matrices A12 and A21 poses a significant difficulty and
therefore alternative approaches should be explored.

Iterative solution of Eq. (25) can be written as

P11∆y1 +P12∆y2 = b1 − (A11x1 +A12x2) ,

P21∆y1 +P22∆y2 = b2 − (A21x1 +A22x2) , (27)
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where Pβγ’s represent the blocks of the preconditioning matrix P. Here we focus our
attention to computation of the residual vectors on the right hand side, and explore
alternative ways for evaluating the matrix-vector products.

Let us suppose that we are able to compute, without a major difficulty, the element-
level matrices Ae

11 and Ae
22 associated with the global matrices A11 and A22, and that

we prefer to evaluate A11x1 and A22x2 by using these element-level matrices. Let us
also suppose that calculation of the element-level matrices Ae

12 and Ae
21 is prohibitively

difficult. Reflecting these circumstances, the computations can be carried out by using a
mixed element-matrix-based/element-vector-based computation technique:2

(A11x1 +A12x2) =
nel

A
e=1

(Ae
11x1) +

nel

A
e=1

lim
ε1→0

[
N

e

1(d1,d2 + ε1x2)−N
e

1(d1,d2)

ε1

]
,

(A21x1 +A22x2) =
nel

A
e=1

(Ae
22x2) +

nel

A
e=1

lim
ε2→0

[
N

e

2(d1 + ε2x1,d2)−N
e

2(d1,d2)

ε2

]
, (28)

where ε1 and ε2 are small parameters used in numerical evaluation of the directional
derivatives. Here, A11x1 and A22x2 are evaluated with an element-matrix-based com-
putation technique, while A12x2 and A21x1 are evaluated with an element-vector-based
computation technique.

In extending the mixed element-matrix-based/element-vector-based computation tech-
nique described above to a more general framework, evaluation of a matrix-vector prod-
uct Aβγxγ (for β, γ = 1, 2, . . . , N and no sum) appearing in a residual vector can
be formulated as an intentional choice between the following element-matrix-based and
element-vector-based computation techniques:

Aβγxγ =
nel

A
e=1

(Ae
βγxγ), (29)

Aβγxγ =
nel

A
e=1

lim
εβ→0

[
N

e

β(. . . ,dγ + εβxγ, . . .)−N
e

β(. . . ,dγ , . . .)

εβ

]
. (30)

Sometimes, computation of the element-level matrices Ae
βγ might not be prohibitively

difficult, but we might still prefer to evaluate Aβγxγ with an element-vector-based com-
putation technique. In such cases, instead of an element-vector-based computation tech-
nique requiring numerical evaluation of directional derivatives, we might want to use the
element-vector-based computation technique described below.

Let us suppose that the nonlinear vector function Nβ corresponds to a finite element
integral form Bβ(Wβ,u1, . . . ,uN). Here Wβ represents the vector of nodal values asso-
ciated with the weighting function wβ, which generates the nonlinear equation block β.
Let us also suppose that we are able to, without a major difficulty, derive the first-order
terms in the expansion of Bβ(Wβ,u1, . . . ,uN) in uγ . Let the finite element integral form
Gβγ(Wβ,u1, . . . ,uN ,∆uγ) represents those first-order terms in ∆uγ. We note that this
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finite element integral form will generate
∂Nβ

∂dγ
. Consequently, the matrix-vector product

Aβγxγ can be evaluated as2

Aβγxγ =
∂Nβ

∂dγ

xγ =
nel

A
e=1

Gβγ(Wβ,u1, . . . ,uN ,vγ), (31)

where, vγ is a function interpolated from xγ in the same way that uγ is interpolated from
dγ. This element-vector-based computation technique allows us to evaluate matrix-vector
products without dealing with numerical evaluation of directional derivatives. To differ-
entiate between the element-vector-based computation techniques defined by Eqs. (30)
and (31), we will call them, respectively, numerical element-vector-based (NEVB) and
analytical element-vector-based (AEVB) computation techniques.

11 EDSUM

In this section, we describe a multi-level iteration method for computation of flow behavior
at small scales. The Enhanced- Discretization Successive Update Method (EDSUM)2 is
based on the Enhanced-Discretization Interface-Capturing Technique (EDICT). Although
it might be possible to identify zones where the enhanced discretization could be limited
to, we need to think about and develop methods required for cases where the enhanced
discretization is needed everywhere in the problem domain to accurately compute flows
at smaller scales. In that case the enhanced discretization would be more wide-spread
than before, and possibly required for the entire domain. Therefore an efficient solution
approach would be needed to solve, at every time step, a very large, coupled nonlinear
equation system generated by the multi-level discretization approach.

Such large, coupled nonlinear equation systems involve four classes of nodes. Class-
1 consists of all the Mesh-1 nodes. These nodes are connected to each other through
the Mesh-1 elements. Class-2E consists of the Mesh-2 edge nodes (but excluding those
coinciding with the Mesh-1 nodes). The edge nodes associated with different edges are
not connected (except those at each side of an edge, but we could possibly neglect that a
side node might be connected to the side nodes of the adjacent edges). Nodes within an
edge are connected through Mesh-2 elements. Class-2F contains the Mesh-2 face nodes
(but excluding those on the edges). The face nodes associated with different faces are not
connected (except those at sides of a face, but we could possibly neglect that those side
nodes might be connected to the side nodes of the adjacent face). Nodes within a face are
connected through Mesh-2 elements. Class-2I nodes are the Mesh-2 interior nodes. The
interior nodes associated with different clusters of Mesh-2 elements are not connected.
Nodes within a cluster are connected through Mesh-2 elements.

Based on this multi-level decomposition concept, a nonlinear equation system of the
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kind given by Eq. (16) can be re-written as follows:

N1 (d1, d2E, d2F , d2I) = F1,

N2E (d1, d2E, d2F , d2I) = F2E,

N2F (d1, d2E, d2F , d2I) = F2F ,

N2I (d1, d2E, d2F , d2I) = F2I , (32)

where the subscript “n+ 1” has been dropped to simplify the notation.
This equation system would be solved with an approximate Newton-Raphson method.

At each nonlinear iteration step, we would successively update the solution vectors corre-
sponding to each class. While updating each class, we would use the most recent values
of the solution vectors in calculating the vectors N1, N2E, N2F , and N2I and their deriva-
tives with respect to the solution vectors. We would start with updating the Class-1
nodes, then update the Class-2E, Class-2F, and Class-2I nodes, respectively. The process
is shown below, where each class of equations are solved in the order they are written.

∂N1

∂d1

∣∣∣∣
(di

1, di
2E , di

2F , di
2I)

(
∆di

1

)
= F1 −N1

(
di

1, d
i
2E, di

2F , di
2I

)
,

∂N2E

∂d2E

∣∣∣∣
(di+1

1 , di
2E , di

2F , di
2I)

(
∆di

2E

)
= F2E −N2E

(
di+1

1 , di
2E, di

2F , di
2I

)
,

∂N2F

∂d2F

∣∣∣∣
(di+1

1 , di+1
2E , di

2F , di
2I)

(
∆di

2F

)
= F2F −N2F

(
di+1

1 , di+1
2E , di

2F , di
2I

)
,

∂N2I

∂d2I

∣∣∣∣
(di+1

1 , di+1
2E , di+1

2F , di
2I)

(
∆di

2I

)
= F2I −N2I

(
di+1

1 , di+1
2E , di+1

2F , di
2I

)
. (33)

This sequence would be repeated as many times as needed, and, as an option, we could
alternate between this sequence and its reverse sequence:

∂N2I

∂d2I

∣∣∣∣
(di

1, di
2E , di

2F , di
2I)

(
∆di

2I

)
= F2I −N2I

(
di

1, d
i
2E, di

2F , di
2I

)
,

∂N2F

∂d2F

∣∣∣∣
(di

1, di
2E , di

2F , di+1
2I )

(
∆di

2F

)
= F2F −N2F

(
di

1, d
i
2E, di

2F , di+1
2I

)
,

∂N2E

∂d2E

∣∣∣∣
(di

1, di
2E , di+1

2F , di+1
2I )

(
∆di

2E

)
= F2E −N2E

(
di

1, d
i
2E, di+1

2F , di+1
2I

)
,

∂N1

∂d1

∣∣∣∣
(di

1, di+1
2E , di+1

2F , di+1
2I )

(
∆di

1

)
= F1 −N1

(
di

1, d
i+1
2E , di+1

2F , di+1
2I

)
. (34)
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Updating the solution vector corresponding to each class would also require solution of
a large equation system. These equations systems would each be solved iteratively, with
an effective preconditioner, a reliable search technique, and parallel implementation. It is
important to note that the bulk of the computational cost would be for Class-1 and Class-
2I. While the Class-1 nodes would be partitioned to different processors of the parallel
computer, for the remaining classes, nodes in each edge, face or interior cluster would be
assigned to the same processor. Therefore, solution of each edge, face or interior cluster
would be local. If the size of each interior cluster becomes too large, then nodes for a
given cluster can also be distributed across different processors, or a third level of mesh
refinement can be introduced to make the enhanced discretization a tri-level kind.

A variation of the EDSUM could be used for the iterative solution of the linear equation
system that needs to be solved at every step of a (full) Newton-Raphson method applied
to Eq. (32). To describe this variation, we first write, similar to the way we wrote Eqs. (25)
and (26), the linear equation system that needs to be solved:

A11x1 +A12Ex2E +A12Fx2F +A12Ix2I = b1,

A2E1x1 +A2E2Ex2E +A2E2Fx2F +A2E2Ix2I = b2E,

A2F1x1 +A2F2Ex2E +A2F2Fx2F +A2F2Ix2I = b2F ,

A2I1x1 +A2I2Ex2E +A2I2Fx2F +A2I2Ix2I = b2I , (35)

where

Aβγ =
∂Nβ

∂dγ

, (36)

with β, γ = 1, 2E, 2F , 2I. Then, for the iterative solution of Eq. (35), we define two
preconditioners:

PLTOS =




A11 0 0 0
A2E1 A2E2E 0 0
A2F1 A2F2E A2F2F 0
A2I1 A2I2E A2I2F A2I2I


 , (37)

PSTOL =



A11 A12E A12F A12I

0 A2E2E A2E2F A2E2I

0 0 A2F2F A2F2I

0 0 0 A2I2I


 . (38)

We propose that these two preconditioners are used alternatingly during the inner itera-
tions of the GMRES search method. We note that this mixed preconditioning technique
with multi-level discretization is closely related to the mixed CEBE and CC precondition-
ing technique28 we referred to in Section 8. To differentiate between the two variations
of the EDSUM we described above, we call the nonlinear version, described by Eqs. (33)
and (34), EDSUM-N, and the linear version, described by Eqs. (35) - (38), EDSUM-L.
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12 CONCLUDING REMARKS

In this paper, we provided an overview of the stabilized finite element interface-tracking
and interface-capturing techniques we have developed in recent years for computation of
flow problems with moving boundaries and interfaces. The interface-tracking techniques
are based on the DSD/SST formulation, where the mesh moves to track the interface.
The interface-capturing techniques, which were developed for two-fluid flows, are based
on the stabilized formulation, over non-moving meshes, of both the flow equations and an
advection equation. The advection equation governs the time-evolution of the interface
function marking the interface location. We also described in this paper some of the
additional methods developed to increase the scope and accuracy of the interface-tracking
and interface-capturing techniques. Among these methods are the EDICT, which was
developed to increase the accuracy in capturing the interface, and extensions and offshoots
of the EDICT, such as the EDMRT, EDSTT, EINST, EALST, and EDSUM.
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