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Abstract. An algorithm to simulate 3-D fluid-structure interaction problems using the finite
element technique is presented in this work. A two-step Taylor-Galerkin scheme and linear
tetrahedra elements are employed to analyze the fluid flow, which may be compressible or
incompressible. An Arbitrary Lagrangean-Eulerian (ALE) formulation is adopted, which must
be compatible with the motion of the fluid-structure interface. A fractional method with
velocity correction is used for incompressible fluids. The structure is analyzed using
triangular elements with three nodes and six degrees of freedom in each node (three
displacement components and three rotation components). Geometrically non-linear effects
are included. The Newmark method is employed to integrate in time the dynamic equilibrium
equations using an Updated Lagrangean description. The algebraic system of equations is
solved using the conjugated gradient method and an incremental-iterative scheme is used to
solve the non-linear system resulting from finite displacements and rotations. The code is
optimized to take advantages of vector processors.
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1 INTRODUCTION

Important progress has been obtained in the solution of complex fluid-structure interaction
problems in recent years, allowing the study of multidisciplinary applications in different
engineering areas. This progress is due mainly to the increase of the speed of modern
computers, to the evolution of multidisciplinary solution algorithms and of pre and pos-
processing tools. The methods of simulation of fluid-structure interaction problems are
divided basically in two groups called partitioned and monolithic schemes 2 In the
partitioned schemes the governing equations of the fluid and the structure are integrated in
time alternately in an isolated way. In the monolithic schemes the two fields are considered as
a single entity, allowing to integrate in time the two sub-domains simultaneously. In
partitioned schemes such as proposed by Soria and Casadei®, Rifai et al.®, Farhat et al.’,
Cebral and Loéhner® and many other authors, the kinematic and dynamic boundary
conditions in the interface are the unique information changed between the sub-domains. In
these schemes each sub-domain can be solved by discretization techniques and by efficient
solution algorithms in an individual way. New methods and models can be introduced in a
modular way in order to get more flexibility. Besides, the meshes of each sub-domain can be
built without the coincidence of fluid and structural nodes at the interfaces *’. These modular
characteristics and flexibility may be extremely convenient.

An algorithm to simulate fluid-structure interaction problems using a partitioned scheme is
presented in this work. A two-step explicit Taylor-Galerkin scheme 89 with linear tetrahedral
finite elements is employed. An Arbitrary Lagrangean-Eulerian (ALE) description is adopted
for the fluid domain, while for the structural domain an Updated Lagrangean formulation is
considered. The structure is analyzed using generalized conforming triangular plates and shell
elements with drilling degrees of freedom 0, Geometrically non linear effects are included.
The Newmark method ' is employed to integrate in time the dynamic equilibrium equation.
The non linear and the algebraic systems are solved using an incremental-iterative scheme and
the conjugate gradient method, respectively. The code was vectorized to take advantages of
vectorial processors. Two problems are used to validate the methods developed in this work
and illustrate the difference between linear and non linear aeroelastic computations.

2 THE FLUID DYNAMIC SOLVER

2.1 The explicit two-step Taylor-Galerkin scheme for compressible flows

In the ALE description, the computational frame is a reference independent of the particle
movement and may be moving with an arbitrary velocity in the laboratory system (this motion
is called the “mesh” motion in the finite element formulation); the continuum view from this
reference is denoted as €2, and the coordinates of any point are denoted as 2. The equations
expressing mass, momentum and energy conservation in ALE formulation may be written in a
compact form as

av| JF: av
— + = Wi

o i o

X

(=1,2,3) (1)
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with F; =F,+ F,, and
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where v; and w; are the fluid and the mesh velocity components in the direction of the spatial
coordinate x; respectively, p is the density, p is the thermodynamic pressure, 7; are the
components of the deviatoric stress tensor, 7 is the temperature, € is the total specific energy
and k; are the components of the conductivity tensor; vector V contains the conservation or
the field variables and F; are the components of the flux variables (F;4 contains the advective
terms and F;p the viscous terms). Finally, §; is the Kronecker delta. Equation (1) is
complemented by the equation of state for an ideal gas and by the constitutive equations.
Initial and boundary conditions must be added to these equations in order to define uniquely
the problem.

In the Taylor-Galerkin scheme, conservation equations are expanded in time by Taylor
series, and after, space discretization is accomplished by the classical Bubnov-Galerkin
scheme. A two-step method is used % in which can be interpreted as the finite element version
of the Lax-Wendroff scheme used in finite differences . In the first step, corresponding to
the time interval [, 7**"*], the unknown vector V at /=¢"""? is expanded in Taylor series.
Using a linear shape function N associated with each node to interpolate V", a constant shape
function Pz=1 associated with element E to interpolate V""" and applying the classical
Galerkin weighted residual method to the expression resulting from Taylor series expansion,
the following equation is obtained:

Q%+]/2VZ+I/Z_( Q,,N dg) Vﬂ

A

aN =y} —n aN 7" j—
S g 5@ | Fo| Jp N WS ae v a=1.23)

£ Ox; ox;

where Q%2 is the element volume, V"2 is a constant value at element level and the upper

bar indicates nodal variables.

In the second step, the unknown vector at =¢""" is expanded in Taylor series. Using again
the same shape functions, and applying the Bubnov-Galerkin method, the following equation
is obtained for the second step:
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where 52 is the boundary of the element domain Q%"/? and /; is the cosine of the angle

formed by the outward normal axis to T%"/? with the positive direction of the reference axis
x;. Index B is referred to values at the boundary of the element domain. In Eq. (4), the
consistent mass matrix is substituted by the lumped mass matrix, and then this equation is
solved iteratively. The proposed scheme is conditionally stable, and the local stability
condition is applied.

In order to stabilize numerically the solution, specially in the presence of strong shocks, it
is necessary to add numerical damping to the flow solver. In this work the viscosity model ",
is adopted. An artificial viscosity is added explicitly to the non-smoothed solution, as follows

V=V (v D )
where V"' and V"' are the smoothed and non-smoothed solution at r=¢""', respectively.
M. is the assembled lumped mass matrix at t=t""". The vector D is given by

D= CrL:CC5, My, —M; Vs (6)

where F is an index referred to a specific element, CFLg is the local Courant number, CC is a
global constant specified by the user, §, is a coefficient of pressure distribution®’, M’ and

M, are the consistent and lumped mass matrices, respectively.

2.2 The two-step Taylor-Galerkin scheme for incompressible flows

Mass conservation for slightly compressible fluids, assuming constant entropy, may be
expressed by the following equation:

dp _ 1 @__QU[

P

(1=1,23), (N
where c is the sound speed and U, = pv; (i =1,2,3).

Expanding the momentum conservation equations in Taylor series, the following
expression is obtained for the first step:

2o 7 2| oy o 2aw U aw

AUy _ . A oty ' 10w _ ,3Ur

Ut =y + (ij=12,3), ®
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where fy =v,U; (ij=1,2,3) and p"H/Z = pn + 1/2 Ap, with Ap = an — p’1 . Using

of” " " "
grir=yp- A Y 9T @ LU sy, ©)
ox; Ox; Oxi oxi
Eq. (8) is given by the following expression:
=g A0 03, (10)

4 oxi
Discretizing Eq. (7) in time and using Eq. (10), it is obtained:

n+1/2 Fn+l/2
m;:%Ap=—mQQL—=—AzQQL——éﬂéfée (i=1273). (11)
C 8x,- ax,» 4 aXi 8x,-

The second time step is given by the following expression:

n+l/2 n+l/2 n+l1/2 +1/2
af _81,, +3p _W,,+1/28U7

ox; ox; oxi oxi

aUn+1/2
Ut=ui+ At — o CUimAf (1/=123) (12)
Then the flow is analyzed, after space discretization, by the following algorithm: (1)
determine U'””z with Eq. (9); (2) determine Ap with Eq. (11) and calculate p""' = p"+Ap;

(3) determine {/7*"'? with Eq. (10); (4) determine {77+ with Eq. (12).

Considering the same shape functions used in compressible flows and applying the
classical Galerkin method for space discretization, the following matrix expressions are
obtained for Eq. (9), (11), (10) and (12), respectively:

_. At oN _
n 1/z~n+1/2 n n
Q ([ N dg) —2[ o dQJ [j dQJ T

- (13)
oN oN _
—dQ Nw Q| u; ,j=1,2,3
+{ o o, J [I F } (712
At aN ON — aNT ~n+l/2
[J. N N dQ+T o +|,2§igl dQJ Ap _At J;,mu% dQ] UiE
[ ~Nwar) @] am123) o
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In Eq. (13) to (16) the index E indicates that the corresponding variables are taken with a
constant value over the element domain. Eq. (14) is solved using the conjugate gradient
method with diagonal pre conditioning.

2.3 The algorithm for mesh movement

The mesh velocity field w is computed looking for small element distortions, conserving
prescribed velocities in moving and stationary boundary surfaces. The mesh movement
algorithm adopted in this work uses a smoothing procedure for the velocities based in these
boundary surfaces. The updating of the mesh velocity at a point 7 of the finite element domain
is based on the mesh velocity of the points j belonging to the boundary surfaces in the
following way (see Fig. 1):

ns
zavw

w=r— a7

Zaz-f
J=1

where ns is the total number of points belonging to the boundary surfaces and a;; are the
influence coefficients between the point i inside the domain and the point j of the boundary
surface given by the following expression:

ay=—; (18)
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with dj; being the distance between the points i and j. In other words, a; represents the weight
that each point j of the boundary surface has on the value of the mesh velocity at points i
inside the domain. When dj; is small, a;; has an high value, favouring the influence of points 7,
located closer to the boundary surface containing point ;.

Jz2

Fixed boundary surface

i

Structural domain \

Fluid domain

| Moving surface

Figure 1: Distances from the boundary surfaces to a point “i”” in the fluid domain

3 THE STRUCTURAL DYNAMIC SOLVER WITH A TRIANGULAR THIN PLATE
ELEMENT

A generalized conforming triangular thin plate element including the drilling degree of
freedom, in which the compatibility conditions at each node and along each side are applied,
is used in the present work (see Fig. 2) 0

The total stiffness matrix of the element is obtained by the overlap of the membrane
stiffness matrix with the bending stiffness matrix. A typical membrane triangular element is
adopted where each point has two degrees of freedom of translation u,; and u,; (i = 1,2,3) and
one of rotation 6, (i=1,2,3) in the plane of the element middle surface. The membrane
displacements are expressed in the following way:

wo=lhe w ] =N, (19)
where u;, is the nodal membrane generalized displacements vector given by
w=les ws 0. (=123) (20)
and N,, is the membrane interpolation function defined as follows:
i 0 ubi
=BT Nel 103 @1
0 Li NvGi
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being L; the area coordinates and

1 1
NL:G[:ELi(mej_b/‘Lm)’ Nvei:EL[(Cij_C/‘Lm)a bi:yj_ym 5

C. (22)
ci=xn—x; (jm=123)
2wy 0 x
Figure 2: The thin plate triangular element
The transverse displacement field is discretized by
u: = Nyuj (23)

where y; is the nodal bending generalized displacements vector, which is written in the
following way:

wo=le 0. 6. (=123) (24)

being u; the nodal transverse displacements, and 6,; and 6,; the nodal rotations around the
axes x and y, respectively. N, is the bending interpolation function given by

No=IN, No N =1.23) (25)
with

N,':L[_2Fi+(1_rj)Fj+(l+Vm)Fm

N.= —%[b,,,L,vL,—b,-LmL,-+ (b/ —ba)F+ (V./bj +bm)Fj +(rub —b,-)F,,,]

m~m

Nyi= —% len L= ¢, Lo L4 = ) Fut e+ ) F 4 (rnen = ) Fl (26)
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1
Fi=L(Li-05\L-1), ri=a-5). 1;=yxi+y,

m
Xi=Xi™Xj> Vy=ViTV; (ij,m=1,23)

The linear stiffness matrix at element level due to membrane and bending effects are given,
respectively, by the following expressions:

Kimi :J‘Q((;)sziDm B, dQ ; KLbi:j (U)Blz;iDbBbi dQ (i=1,2,3) (27)

Q

where Q is the element domain. The constitutive matrices D,, and D, are given,
respectively, by

1 v 0
Eh En
D,=—"D; D= D; D=[v.1 0 ©8)
-2 12(-v?)
v v 00 (1-v)2

where / is the elements thickness, v the Poisson’s ratio and E the Young’s modulus. Finally,
the strain-displacement relations are

2 bi 0 bi (bm Lj - bj Lm)

2¢, cilenl; =/ Ln) (ij;m=1,2,3) (29)
2Ci 2b1 (Cibm + biCm)Lj - (Cibj + biCj)Lm

B, = 4 Q(e)

and

Ni“\'x in,xx Nyi;cx
Bb[ = Ni.yy in,}’y N}’i~,‘i" (l:1’2’3) (30)
2Ni,xy 2in,xy 2 Nyi,xy

The non linear geometric stiffness matrix is given by

K= ., Gh TG dQ  (=12.3) (31

Q( €

where T; contains the membrane internal forces and is given by

i

~ |:Tm T

= i=1,2,3 32
Tyxi T}[}’i} ( ) ( )

with
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while Gg; is given by

Go = |:Ni,x Naix Nyi,x:| (=1,2.,3) (34)

The dynamic equilibrium equations of the structural system are obtained by the space
discretization of the virtual work equations, which must be solved for each time step using a
numerical integration scheme. In the present work the well-known Newmark method is
used !, with parameters 8 =1/2 and o =1/4. In geometrically non linear problems the
solution of these balance equations is accomplished for each time step with an incremental
iterative procedure using an Updated Lagrangean formulation. The resulting system of
algebraic equations are solved using the gradient conjugate method with incomplete Cholesky
factorization.

4 THE FLUID-STRUCTURE INTERACTION ALGORITHM

Commonly, fluid and structure fields have different scales of time. The global time step is
usually commanded by the fluid. Although the use of the same time step for the fluid and the
structure may provide some implementation advantages, the procedure with subcycles of
factor ngr= Ats/Atr (Where Ats and Aty are the time intervals adopted for the structure and the
fluid, respectively) may offer substantial computational advantages, including an economy of
CPU time due to the smaller number of time steps in the structural analysis and an economy
in the information transfer. The partitioned algorithm with subcycles adopted in the present
work consists in the following steps (see Fig. 3):

(a)Set the initial conditions for the structure and the fluid.

(b)Update the structure displacements, velocities, accelerations and stresses.

(c)Update the fluid velocities, specific mass, pressure and total energy using subcycles.
(c.1) Compute the new mesh taken into account the structural motion.
(c.2) Update the fluid flow variables with the new boundary conditions.

(d)Update the structural variables with the loads transferred by the fluid.

(e)Repeat steps (c) and (d) until the objectives of the simulation are reached.
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Kinematics boundary conditions, taken into account the structural motion, must be applied
to the fluid domain. Therefore, at the fluid-structure interface the following condition must be
satisfied:

1+At

I T,

n+l
Xi

(=1,2,3), (35)

where x| and "y,

I r
solid interfaces I'r and I'z, respectively. For viscous fluids the same velocity components are
prescribed for the mesh, the fluid and the structure at the interface. Therefore,

are the updated coordinates for the instant +At at the fluid and

n+l
i

— ntl _ AL .
=V = u

: =1,2,3). 36
FF IF (l 9’) ( )

I
For non viscous fluids the corresponding prescribed boundary conditions are:

n+l
i

n+l

‘N —V;

+At .

. I,

T, -Ni (l:19293) 5 (37)

where #; is the normal versor with respect to the interface surface at time #+A¢. Equation (37)
is applied to each node located in the interface surface.

t ! AL AL
u; X,

u.

STRUCTURE

Figure 3: Algorithm for fluid-structure interaction with subcycles

5 NUMERICAL APPLICATIONS

5.1 Unsteady flow around an oscillating NACA0012 airfoil

In this example an inviscid transonic flow (Mach number M=0.755) over the NACA0012
airfoil, with a rotational vibration around a point located at the quarter chord, is analized. The
movement of the airfoil is prescribed such that the angle of attack varies according to the
following relation:

(x:anz+a0 sen (ZMmkf), (38)
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where o, =0.016 deg is the mean angle of attack, op=2.51 deg is the unsteady angle of
attack amplitude, 7 is the dimensionless time and the chord length L, is used as the reference
length. The NACAO0012 airfoil is assumed to rotate with a reduced frequency £=0.0814,
defined as &k =w,L,/2v., where w, is the frequency in radians per second and v.. is the
freestream velocity.

Boundary conditions in the planes of symmetry xy and in the other external surfaces
are prescribed. Boundary conditions given by Eq. (35) and (37) are prescribed in the fluid-
structure interface. A non structured mesh with 5150 nodes and 21700 tetrahedral elements,
with only one layer of elements in the perpendicular direction to the flow, is used for the fluid
domain and is shown in Fig.4.

The unsteady calculations start from a steady-state solution. CC=2.0 and Ar=0.00025
are adopted for the damping constant of Eq. (6) and for the smallest dimensionless time
interval, respectively. A multi-time-step integration technique ? is used, resulting in a
theoretical computational saving of 2.38.
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Figure 4: Finite element mesh. (a) General view. (b) Detail of the region close to the airfoil

Fig. 5 shows the lift coefficient C; plotted against the time-dependent angle of attack o
and time per period w,#/2n. A comparison with the experimental results !5 and obtained by
Crumpton and Giles '® and Willcox and Peraire '’ is presented in this figure. Pressure
distributions are shown in Fig. 6 for ¢t = 12.544 (o= 2.525°) and ¢ = 40.768 (¢ = -2.383°).
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Figure 5: Lift coefficient C;, as function of angle of attack o and time per period w,#/2n

Figure 6: Distribution of pressure for (a) 1= 12.544 (oc= 2.525°) and (b) 1 = 40.768 (ot = -2.383°)
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5.2 Air flow past an inflated membrane

The interaction between air flow (considered as an incompressible flow) and a flexible
membrane is analyzed. The problem is described in Fig. 7. The membrane has a semi-
cylindrical format with diameter d and width / equal to 20 m and 3.0 mm, respectively, and is
clamped at both ends.

The external boundary of the fluid domain is a semi-cylinder with radius R and width L in
the perpendicular direction to the plane where the flow takes place equal to 200 m and 1 m,
respectively. At the external boundary a velocity profile, which is a function of the distance
with respect to the ground level, is prescribed. This velocity is referred to the velocity at 10 m
above the ground level, which varies with time. This function is smoothed at
t=0s,3s,6sand9s using a quadratic senoidal function. A reference pressure p=0 is
prescribed in the point located in the external boundary condition, 200 m above the ground
level. The air and membrane properties are given in Tab. 1. The internal pressure p,, which
keeps the membrane inflated, is taken equal to 60% of the air stagnation pressure at a velocity
of 28 m/s (p,=285.0 Pa).

_ 7 p= ~ Vi (m/5)
- 4 R
y(m) N 28+ ———
y 028
=V)0- 144 ———
1= Vio (l Oj
40 1 0 ¥ ¥ ¥ I
_y R=200m 0 3 6 9 12 £(s)

30 —

20

d=20m

Figure 7: Description of the problem to study the interaction between air flow and a flexible membrane

Table 1: Air and membrane properties

Membrane properties Value Air properties Value
Young’s modulus £ 3.333x 10°N/m’ Sound speed C.., 345 m/s
Poisson’s ratio v 0.0 Kinematic viscosity 17.9x10° Pa.s
Specific mass pg 1000.0 Kg/m’ Specific mass pr 1.21 Kg/m’®

Due to the existence of air inside the space covered by the membrane, a damping matrix is
included to analyze the structure. A Rayleigh viscous damping is adopted, which means that
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C=oM + K (39)

where C, M and K are the damping, mass and stiffness matrices, respectively. Considering a
linear behaviour, adopting damping ratios equal to &=1.0% e £=2.0% for the first and
second modes, respectively, and calculating the corresponding circular frequencies ; and @,
the coefficient o and B can be determined by the procedure described in Bathe ''. For this
case, @=0.003529 and $=0.443162 are obtained.

Although this case is essentially a two-dimensional problem and beam elements for the
structure may be used, a three-dimensional code is employed, where the membrane model
was built with triangular flat elements and the fluid domain was discretized with tetrahedral
elements. In the perpendicular direction to the flow, only one layer of elements is used.

The non structured finite element mesh in the fluid domain has 20550 tetrahedral elements
and 7097 nodes, as indicated in Fig. 8. The structural mesh has 124 nodes and 124 triangular
elements (these elements are coincident with the faces of the tetrahedral elements at the fluid-
structure interface). The prescribed boundary conditions on the lateral ends are w=6,=6,=0 for
the plate and v3=0 for the fluid domain.
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Figure 8: Finite element mesh. (a) General view. (b) Detail of the region close to the membrane

As Reynolds number in this problem is relatively high if it is determined with a reference
velocity equal to 28 m/s and a reference length equal to the radius of the structure (10 m) a
simple algebraic turbulence model is used. This model was also employed by Mittal and
Tezduyar '®, and consists in the addition of a eddy viscosity 7 to the molecular kinematic
viscosity . The eddy viscosity is given by the following expression

2 [1{ v, , 9v, |.[ dvi , OV,
'uT ( ) 2 ax‘ j aX[ 8x j ax i ( )

where K=0.41 is the Von Karman constant and / is the shortest distance between the point
where u7 will be determined and the closest wall to this point.
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A dimensionless time interval Azz=1.25x107is adopted for the fluid domain, while a time
step Ats=1.25x10is used to analyze the membrane. Pressure distributions, velocity vectors
and mesh configurations in the fluid domain are shown in Fig. 9, Fig 10 and Fig. 11,
respectively for1=1.55,3.05,6.05,9.05, 10.55¢ 12.0s.

Membrane configurations obtained in the present work are very similar to those presented
by Argyris'’. However, pressure distributions and velocity vectors here show that downstream
recirculating flows occur along time. This phenomenon was not well captured by the above
mentioned reference, probably because the finite element mesh was poorly refined (taking
into account the characteristics of this problem).

p: -1500 -1371 -1243 -1114 -986 -857 -729 -600 -471 -343 -214 -86 43 171 300

p: -1700 -1521 -1343 1164 -986 -807

a

© )

A\
[T T 7T T 1] N 1 [T

p: -2500 -2296 -2093 -1889 -1686 -1482 -1279 -1075 -871 -668 -464 -261 -57 146 350
(

\

™~

Figure 9: Pressure distribution at the instants (a) 1.5, (b) 3.0, (¢) 6.0, (d) 9.0, (¢) 10.5s and (f) 12.0s
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Figure 10: Velocity vectors at the instants (a) 1.5, (b) 3.0, (c) 6.0, (d) 9.0, (¢) 10.5s and (f) 12.0s
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Figure.11: Mesh configurations in the fluid domain at (a) 1.5s, (b) 3.0, (¢) 6.0, (d) 9.0 s, (e) 10.55 and (f)
12.0s

Vv,

6. CONCLUSIONS

A partitioned algorithm for the solution of fluid-structure interaction problems using a
two-step Taylor-Galerkin method for the fluid in the ALE formulation and the Newmark
implicit scheme for the solution of the structural dynamic equations is presented in this work.
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The capability of the method was shown solving examples with incompressible and
compressible flows, where satisfactory results were obtained. The good performance of the
vectorized algorithms was verified. Speeds going from 670 to 888 Mflops in a Cray T94
computer and with a CPU time of the order of 1.2 to 2.3x107 s/At node have been obtained.
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