
���

���������	�
�����

���������������
�����

�����������������������������������
�� �
�����!����"

#�������� �$%&��������������''���%%��()*�(+*

AN EFFICIENT THREE LEVEL ALGORITHM FOR THE

NUMERICAL SOLUTION OF THE NAVIER-STOKES EQUATIONS

M. Behnia
1
, G. de Vahl Davis

1
, U. Groisman

2
 and M. Wolfshtein

3

1 University of New South Wales, Sydney, Australia

2 Preuniversitario Ciudad de San Felipe, Montevideo, Uruguay
urig@sanfelipe.edu.uy

3 Faculty of Aerospace Engineering, Technion, Israel Institute of Technology, Haifa, Israel

Key words: Iterative methods, Navier-Stokes Equations, Pseudo-Transient Techniques, Non-
Linear Equations.

Abstract. A three level algorithm (in time) for the solution of parabolic flow problems is
discussed. The algorithm is used to solve time independent flow problems. It is demonstrated
that this algorithm can generate good results in a small number of time steps and thus reduce
the computer time required to solve a given problem. The algorithm is simple and its
incorporation in existing codes is straight forward.

���

#� �#����������
�����&��,
$�
����� ���
������� �$%&���������#���

1 INTRODUCTION

Rapid developments in computer technology and numerical methods allow increasingly
more complicated problems to be solved numerically. Consequently, Computational Fluid
Dynamics (CFD) is becoming more and more attractive as a design tool for problems in which
fluid flow is important. This trend has been very significant in various applications, like the
design of airplanes, cars and ships, weather forecasting, and various other problems of
practical and scientific interest. However, the process of utilizing the new possibilities often
requires rewriting of substantial parts of computer codes, as modern numerical technology
may be very different from older technology. The fact that the amount of man years invested
in existing codes is immense, resulted in a relatively slow pace of penetration of CFD to the
design process. Consequently the price performance of computer codes available to the
industry is often too bad to allow parametric studies which form an important ingredient of
design processes.

In view of this situation it is useful to seek simple improvements to existing algorithms
which can improve the computer performance. In this paper we explore such a possibility.
The problem in question is that of time independent Navier-Stokes equations. The method to
be discussed is a three level time marching algorithm that facilitates an efficient solution of
parabolic equations. This algorithm is easy to implement, and can be used to modify existing
codes with relatively little effort. Thus it allows an efficient solution but it does not require
rewriting of the code.

This three level algorithm was proposed by Israeli and Livne1 and later applied by Behnia
et al.2 to the problem of free convection in a close cavity. The results of Behnia et al.
indicated that a saving of about 30 to 50 percent in computer time is possible with this three
level scheme. Yet Behnia et al. did not perform a careful analysis of the various options and it
was felt that some numerical experiments are required to explore the potential of the method.
The present paper describes such numerical experiments. Indeed, it was found that much
higher efficiencies are possible if the parameters of the scheme are carefully selected. In this
paper we describe these numerical experiments and draw some conclusions on the usefulness
of the three level scheme

2 THE TEST PROBLEM

In order to perform the numerical experiments to determine the best parameter for the
numerical scheme we choose to apply the method to the one dimensional Burgers’ Equation.
It is written in standard form as

()
2

2
2

2
x

u

x

u

t

u

∂
∂=

∂

∂
+

∂
∂ ν 1

or in quasi-linear form as

2

2

x

u

x

u
u

t

u

∂
∂=

∂
∂+

∂
∂ ν 2

Burgers’ equation has the same form of non-linearity that appears in the momentum

���

#��-�������.����������/�0����1��.
���$�������#��2��3���

equations.

2 Physical Behavior

If the ‘viscous’ term is dropped from (2) the result is the inviscid Burgers’ equation.

0=
∂
∂+

∂
∂

x

u
u

t

u
3

The non-linearity in (3) allows discontinuous solutions to develop. The way that this can
occur is illustrated schematically fig.1a. A wave is convecting from left to right and solutions

for successive times t=0, t1, t2 are indicated. Points on the wave with larger values of u
convect faster and consequently overtake parts of the wave convecting with smaller values of
u. For (3) to have a unique solution (and a physical sensible result) it is necessary to postulate

Fig. 1(a) Formation of multivalued solution of the inviscid Burgers’ equation
(b) Evolution of the solution of Burgers’ equation

a shock (ab in fig.1) across which u changes discontinuously.
The comparable wave development for the ‘viscous’ Burgers’ equation (1) is shown in

fig.1b. The effect of the viscous term 22 xu ∂∂ν is twofold. First, it reduces the amplitude
of the wave for increasing t. Second, it prevents multivalued solutions from developing.

These features makes Burgers’ equation a very suitable model for testing computational
algorithms. This role as a test-bed for computational algorithms is facilitated by the Cole-
Hopf3 transformation which allows exact solutions of Burgers’ equation to be obtained for
many combinations of initial and boundary conditions.

x

u

x

t=0
t1

t2
a

b

u

t=0
t1

t2

(a)

(b)

���

#� �#����������
�����&��,
$�
����� ���
������� �$%&���������#���

When a solution is obtained on a grid of spacing x∆ the smallest wavelength that can be
resolved is x∆2 . The energy associated with wavelengths shorter that x∆2 reappears
associated with long wavelengths. This phenomenon is called aliasing. Unfortunately the
aliased shortwave contribution to the solution distort the true longwave solution and may even
cause instability where very long time integrations are made, as in computational weather
forecasting.

It may be recalled that if any dissipation, physical or computational, is present it attenuates
the amplitude of the short wavelengths very significantly; in this case the errors introduced by
aliasing are minimal. This is the situation for most engineering flow problems, which posses
physical dissipation, typically.

3 THE NUMERICAL SCHEME

Consider a parabolic partial differential equation of the form

SL
t

+Φ=
∂
Φ∂

4

where t is the time or a spatial marching direction, L is a elliptic differential operator and S is
the source term. The usual finite difference substitution for (4) without a source is a two-point
formula based on upstream and downstream values of the form

() ()()nnnn LLt Φ+Φ∆=Φ+Φ ++ εδβα 11 .. 5

where t∆ is the time step size and n represent the time and where εδγβα ,,,, are
dimensionless numerical constants to be chosen. In two point schemes we usually use

1=−= βα . When 21== εδ we get the second order Crank-Nicolson Scheme; when
1=δ and 0=ε the first order implicit scheme is obtained; and 0=δ and 1=ε leads to the

first order explicit scheme.
It is easy to show that the Crank-Nicolson scheme is the only two point second order scheme
and therefore it is impossible to devise a second order scheme which is more stable than the
Crank-Nicolson scheme. Enhancement of stability is possible only if additional levels are
used. The simplest possibility is the addition of a third level by adding 1−Φ n and 1−Φ nL to the
left and right sides of (5) respectively. In this work we choose not to add 1−Φ nL because the
enhancement of stability is obtained even when this term is not used. Therefore (5) is
replaced by

() ()()nnnnn LLt Φ+Φ∆=Φ+Φ+Φ +−+ εδγβα 111 .. 6

To examine consistency of (6) we substitute a Taylor series expansion of each term around
the nth step, giving the following equation

���

#��-�������.����������/�0����1��.
���$�������#��2��3���

Φ∆+





+Φ∆+Φ∆+Φ∆=







−Φ∆+Φ∆−Φ+Φ+





+Φ∆+Φ∆+Φ

Lt
t

tLt

t
t

t
t

εδ

γβα

...''
2

'

...''
2

'...''
2

'

2

22

7

where a prime denotes partial differentiation with respect to time. Collection of terms into
equal orders of t∆ shows that

0=++ γβα 8

If

εδγα +=− 9

the truncation error becomes ()2tO ∆ .
For convenience and without loss of generality we may choose 1=α . It follows that (7) –

(9) can be solved for εβ , and δ in terms of γ :

() () 212311 γδγεγβ +=−=−−= 10

Substitution of (10) into (5), with the definition

() ωγ =−11 11

yields

() ()() () () nnnnnn LtLt Φ−∆+Φ−∆=Φ−Φ−+Φ−Φ +−+ ωωωω 23211 111 12

where ω is a free parameter which may be so chosen as to enhance stability.
It appears that the larger the time step, the faster the convergence. However, stability of the

numerical procedure often restricts the time step. Moreover, the truncation error resulting
from the discretization grow with the time step. Therefore it is not beneficial to use long time
steps even if the stability problem can be overcome, unless the truncation error can be
reduced. Thus the problem is to select such a value of ω that allows maximum stability while
retaining a second order truncation error in time. This can be done analytically for given
operators L provided that the operator is linear. However the Navier-Stokes operator is not
linear, and therefore we shall try to explore the best value of ω using numerical
experimentation. It is obvious that such an approach is restricted, as it does not produce
general prescription. However, it can give us some ideas of the potential of the method.

It should be born in mind that the non-linearity of the Navier-Stokes operator means that
the discretization requires certain means if second order accuracy in time is only desired (e.g.
iterations within the time step). This was not done here as we are interested in the steady state
solution. Still linear second order accuracy was used, as it may produce smaller truncation
errors than the first order discretization.

4 NUMERICAL EXPERIMENTS

We do the following procedure in order to study the Super-Stable (SS) algorithm: we start

��	

#� �#����������
�����&��,
$�
����� ���
������� �$%&���������#���

solving Burgers’ equation giving to ω such values as to obtain some classic schemes like
Richardson explicit, Crank-Nicolson, Leap-Frog and found the t∆ which gives a minimum
iteration number. This happens just before the different schemes became unstable. After that
start giving ω grater values, and seek for minimum iteration number changing t∆ as shown
in figures 1 and 2. We did so for several Re numbers and mesh sizes.

4 Results

Results are shown in the following figures. Firstly we found an excellent agreement
between the exact and computed solutions, even for very high Re number. We check for
agreement of the solutions from Re=0.01, to Re=1e+5, being aware that there’s no physical
interest in the solutions obtained for Re>1000. On the other hand the agreement we obtained
between the two solutions when we arrived to Re>1000 talks about the robustness of the SS
algorithm.

Our aim was to find a SS parameter that minimize the number of iterations to convergence,
so we change ω and t∆ in order to achieve this. We found two different behaviors of the
solution. When we gave ω small values and start growing in t∆ , the number of iterations
decrease until the scheme became unstable. On the other hand when we gave ω higher values
we found an asymptotic behavior. This property of the scheme is summarized on table I.

We also found that the iteration number to convergence is independent of the mesh size.
This fact is very interesting because this property is found in much more complicated and
cumbersome numerical methods.

5 CONCLUSIONS

The major conclusions of this paper are:
a.- The optimal number of iterations of the classical methods appears to be

on a continuation of the SS results.

b.- The classical methods are inferior to the SS ones not only in the
number of iterations but also in the accuracy.

c.- The dip in the number of iterations is rather narrow. Therefore it is
necessary to have a pretty good estimate of the optimal ω and t∆ so it is safer to use such
omegas where an asymptotic constant value of t∆ exists.

d.- The location of the smallest number of iterations and the highest accuracy are very
close.

e.- A good estimate of the optimal omega is required, probably by using
stability analysis.

6 REFERENCES

1 M. Israeli and A. Livne, Development of a super stable scheme of second order in the flow

���

#��-�������.����������/�0����1��.
���$�������#��2��3���

direction and fourth order in the cross flow direction, for boundary layer equations,
Aerodynamic Lab. Report Nº 160-073, Technion, Israel, 1990

2 M. Behnia, G. de Vahl Davis and M. Wolfshtein, A stable fast marching scheme for
computational fluid mechanics, International Journal for Numerical Methods in Fluids, Vol.
10, pp. 607-621, 1991

3 Cole, J. D., Q. Applied Mathematics 9, pp. 225-236, 1951

Exact Solution Burgers' Equation 1D
N=16

-1

1

3

5

7

9

11

0 0,063 0,125 0,188 0,25 0,313 0,375 0,438 0,5 0,563 0,625 0,688 0,75 0,813 0,875 0,938 1
x

P
h

i

Re=0.01

Re=0.1

Re=1

Re=10

Re=100

Re=1000

Re=10000

Re=100000

Fig. 2 Exact solution of Burgers’ equation with Dirichlet boundary conditions for different Re number

���

#� �#����������
�����&��,
$�
����� ���
������� �$%&���������#���

Computed Solution Burgers' 1D
SS Scheme

N=16

-1

1

3

5

7

9

11

0 0,0625 0,125 0,1875 0,25 0,3125 0,375 0,4375 0,5 0,5625 0,625 0,6875 0,75 0,8125 0,875 0,9375

x

P
h

i

Re=0.01

Re=0.1

Re=1

Re=10

Re=100

Re=1000

Re=100000

Re=10000

Fig. 3 Computed solution of Burgers’ equation using super-stable algorithm for various Re number

- 1

1

3

5

7

9

1 1

0 0 ,0 6 2 5 0 ,1 2 5 0 ,1 8 7 5 0 , 2 5 0 , 3 1 2 5 0 , 3 7 5 0 , 4 3 7 5 0 ,5 0 ,5 6 2 5 0 , 6 2 5 0 , 6 8 7 5 0 ,7 5 0 , 8 1 2 5 0 ,8 7 5 0 ,9 3 7 5 1

x

P
h

i e
xa

ct
 a

n
d

 c
o

m
p

u
te

d

R e = 0 . 0 1 c o m p u t e d

R e = 0 . 1 c o m p u t e d

R e = 1 c o m p u te d

R e = 1 0 c o m p u te d

R e = 0 . 0 1 e x a c t

R e = 0 . 1 e x a c t

R e = 1 e x a c t
R e = 1 0 e x a c t

Fig. 4 Agreement between computed and exact solution for small Re numbers

���

#��-�������.����������/�0����1��.
���$�������#��2��3���

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

0 0,0625 0,125 0,1875 0,25 0,3125 0,375 0,4375 0,5 0,5625 0,625 0,6875 0,75 0,8125 0,875 0,9375

x

P
h

i c
o

m
p

u
te

d
 a

n
d

 e
xa

ct

Re=10000 computed

Re=100000 computed

Re=10000 exact

Re=100000 exact

Fig. 5 Agreement between computed and exact solution for small Re numbers

S S P a r a m e te r w = 0 .5 (R ic h a r d s o n e x p l ic i t)
E c u a c ió n d e B u r g e r 's 1 D

N = 4 0 , R e = 1 0 0 0

0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

8 0 0 0

9 0 0 0

1 0 0 0 0

0 0 ,0 0 0 5 0 , 0 0 1 0 , 0 0 1 5 0 , 0 0 2 0 , 0 0 2 5 0 , 0 0 3 0 , 0 0 3 5 0 , 0 0 4 0 , 0 0 4 5 0 , 0 0 5

d t

N
in

f

Fig. 6 Small omega behavior of the super-stable scheme

��

#� �#����������
�����&��,
$�
����� ���
������� �$%&���������#���

S S P a r a m e t e r w = 5 0
E c u a c ió n d e B u r g e r 's 1 D

N = 4 0 , R e = 1 0 0 0

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

3 0 0 0

3 5 0 0

0 , 0 1 1 0 0 , 0 1 2 0 0 ,0 1 3 0 0 ,0 1 4 0 0 , 0 1 5 0 0 , 0 1 6 0 0 ,0 1

d t

N
in

f

5 9 6 it e ra c io n e s ,
in d e p e n d ie n te d e d t

E l e r ro r p e rm a n e c e
c o n s ta n te e n 0 .2 %

Fig. 7 High omega behavior of the super-stable scheme

iters dt dy Re omega difer(%)

2370 0,012 0,025 1000 1,1165 1st order fully implicit
2706 0,0044 0,025 1000 0,5 1,52E+00 Richardson
2738 0,01 0,025 1000 1 1,34E+00 Crank-Nicolson
2423 0,0152 0,025 1000 1,309 1,15E+00 Behnia, de Vahl Davis, Wolfshtein
2290 0,0187 0,025 1000 1,5 1,08E+00 Leap-Frog
1645 0,0465 0,025 1000 2,5 7,24E-01
1113 0,105 0,025 1000 3,5 4,51E-01
633 0,271 0,025 1000 4,5 2,28E-01
272 1 0,025 1000 5,5 8,15E-02
100 8,2 0,025 1000 6,5 2,25E-02
91 12,5 0,025 1000 6,6 2,04E-02 minimum error
89 15,2 0,025 1000 6,7 2,05E-02
86 21,5 0,025 1000 6,8 2,22E-02
85 37 0,025 1000 6,9 2,59E-02 minimum iterations
85 40 0,025 1000 6,91 2,59E-02 minimum iterations
87 40 0,025 1000 7 2,34E-02
93 40 0,025 1000 7,5 2,85E-02

120 40 0,025 1000 9,5 3,48E-02
106 40 0,025 1000 8,5 3,41E-02
189 40 0,025 1000 15 6,51E-02
596 40 0,025 1000 50 2,35E-01

1140 40 0,025 1000 100 0,4773

Table I Numerical experiments in order to find optimal super-stable parameter omega

���

#��-�������.����������/�0����1��.
���$�������#��2��3���

0,01

0,1

1

10

100

1000

10000

0,1 1 10 100

omega

iters

dt

difer(%)

Leap-Frog

Behnia, de Vahl Davis,
Wolfshtein
Crank-Nicolson

Richardson

Fig. 8 Number of iterations, time step and error between calculated and exact solution of Burgers’ equation as
function of the super-stable parameter omega

iters dt dy Re omega difer(%)
3624 0,05 0,0625 1000 7 1,89E+00
570 0,5 0,0625 1000 7 1,99E-01

2075 0,1 0,0625 1000 7 9,54E-01
574 0,5 0,025 1000 7 1,99E-01
130 5 0,025 1000 7 3,02E-02
94 15 0,025 1000 7 2,00E-02
87 45 0,025 1000 7 2,31E-02
87 45 0,0156 1000 7 2,36E-02
87 90 0,0156 1000 7 2,29E-02
86 120 0,0156 1000 7 2,70E-02
94 15 0,0156 1000 7 2,00E-02

130 5 0,0156 1000 7 3,03E-02
130 5 0,0078 1000 7 3,04E-02
94 15 0,0078 1000 7 2,00E-02
87 45 0,0078 1000 7 2,40E-02
87 45 0,0052 1000 7 2,41E-02
94 15 0,0052 1000 7 2,00E-02

Table II Independency of number of iterations from mesh size

