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ABSTRACT

We introduce a thermo-mechanical and macrosegregation model that considers a solidifying
alloy as a binary mixture made of a liquid and a solid phase. Macroscopic conservation laws
for mass, momentum and solute are obtained by spatial averaging of the respective microscopic
conservation equations. Assuming local thermal equilibrium, a single equation for the conser-
vation of the mixture energy is then written. A single equation can be obtained for the solute as
well by invoking a proper microsegregation rule. The numerical implementation in a 2D finite
element code is then detailed. In order to validate the two-phase mechanical model, an aca-
demic problem is solved. Lastly, an industrial application for continuous casting of steel slabs
is shown, where the ability of the formulation to describe the formation of central macrosegre-
gation during the secondary cooling of slab continuous casting processes is enlightened.

1 INTRODUCTION

Macrosegregation,i.e. the lack of homogeneity of solute concentration at the whole scale of
a solidified product, is a central problem since it strongly influences the further workability
of the cast products and their mechanical properties. Macrosegregation is the result of slow
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interdendritic flow of molten liquid and transport of alloying elements at the product scale. In
most numerical models, only the natural convection induced by thermal and solutal gradients
is taken into account. The influence of the solid kinetics on the fluid flow is rarely modelled.
However, as summarized by Flemings,1 the macrosegregation of chemical species may depend
strongly on the deformation of the solid skeleton in the mushy zone. This is especially the case
in continuous casting: as bulging occurs between the supporting rolls, there exists a large mushy
zone which deforms together with the solid shell.

In the present study, the mushy zone is considered as an effective two-phase medium. On
one hand, the solid material is considered as an incompressible viscoplastic material, obeying
a constitutive equation of power-law type. Invoking homogenization results,2 its macroscopic
flow rule is viscoplastic, including compressibility, so that the solid continuum can be seen as
a deformable compressible porous medium. On the other hand, the liquid phase is intrinsically
Newtonian. At the macroscopic scale, its momentum interaction with the solid skeleton is de-
scribed by the Darcy law of flow through a porous medium. The present contribution enters then
the third family of models previously mentioned. In addition, the present formulation includes
mass transfer between liquid and solid, and the couplings with heat transfer and solute transport
is taken into account. The two-dimensional numerical implementation of the corresponding
mass, momentum, energy and solute conservation equations has been carried out in the finite
element software R2SOL, developed at CEMEF.

2 MACROSCOPIC BALANCE EQUATIONS RESTRICTED TO EACH PHASE

At the microscopic scale, inside each phase, the thermo-mechanical evolution is assumed to be
governed by the usual mass, momentum, energy and solute balances. In this work, the balance
equations for the mixture, at the (macroscopic) scale of a representative elementary volume
(REV), are obtained using the spatial averaging method over a fixed control volumeV0. This
method is classical and will not be detailed here (see3–6 for further details on its basic principles).

Given any functionψ defined over the phasek, we can define

the intrinsic average value: ψk = 〈ψ〉k =
1

Vk

∫
V0

ψ(x)χk(x) dV, (1)

the classic average value: 〈ψk〉 =
1

V0

∫
V0

ψ(x)χk(x) dV, (2)

whereVk denotes the volume occupied by phasek in the REV, andχk is the characteristic
function of phasek (= 1 in phasek and 0 elsewhere). Both average values are related by

〈ψk〉 = gkψk. (3)

wheregk is the volume fraction of phasek.
Now, let us consider the solidifying alloy in the mushy state as a saturated solid-liquid

medium, such thatgs + gl = 1.
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The application of the spatial averaging process to microscopic balance equations in each
phasek (k = s, l) yields the following set of macroscopic equations:

Momentum: ∇ · (gkσk) + Mk + gkρkg =
∂

∂t
(gkρkvk) +∇ · (gkρkvk × vk), (4)

Mass:
∂

∂t
(gkρk) +∇ · (gkρkvk) = Γk, (5)

Energy:
∂

∂t
(gkρkhk) +∇ · (gkρkhkvk) +∇ · 〈qk〉 = Qk, (6)

Solute:
∂

∂t
(gkwk) +∇ · (gkwkvk) +∇ · 〈jk〉 = Jk, (7)

whereρ denotes the density,v the velocity field,σ the Cauchy stress tensor,g the gravity
vector,h the enthalpy per unit mass,q the heat flow vector,w the solute concentration per unit
volume, andj its flux. The termsΓ , M , Q andJ are associated with the exchanges of mass,
momentum, energy and solute, respectively, between the two phases.

The following subsections will now detail the additional assumptions and constitutive models
adopted in this paper for each variable appearing in those macroscopic balance equations.

2.1 Mass conservation

The local mass balance at the interface between phases ensures thatΓs + Γl = 0.6 Then,
summing equations (5) for the liquid and solid phases, and assuming that the densities of the
two phases remain constant (but not necessarily equal), we get after some trivial operations:

(1−∆εtr)∇ · (gsvs) +∇ · (glvl) =
∂gs

∂t
∆εtr, (8)

where∆εtr = (ρl − ρs)/ρl denotes the relative change of volume associated with solidification
(often negative for metallic alloys).

2.2 Momentum conservation

The spatial averaging method used in this work is efficient to obtain in a simple way the macro-
scopic governing equations of the semi-solid alloy but does not enable to go further in the
specifications of the macroscopic model. Reliable constitutive equations would require more
sophisticated approaches such as homogenization2,7 associated with numerical simulation at
the microscopic scale, but this is not within the scope of this work. The full definition of the
two-phase model will simply be based on further constitutive assumptions, consistent with pre-
vious theoretical works.

2.2.1 Macroscopic constitutive equation for the liquid phase

At the microscopic scale, we assume that the liquid metal behaves as an incompressible New-
tonian fluid. The incompressibility hypothesis is valid as long as the temperature range of the
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solidification interval remains narrow enough. In such a case, we can write:

s = 2µlε̇(v), (9)

wheres = σ + pI is the deviatoric part of the stress tensorσ, p = − tr (σ)/3 being the
hydrostatic pressure,µl the viscosity of the liquid, anḋε(v) = (∇⊗v +(∇⊗v)T )/2 the strain
rate tensor.

As suggested by Ganesan and Poirier8 and Rappaz et al,6 we adopt the following model for
the macroscopic deviatoric stress tensor:

Σl = 〈sl〉 = 2µlgl dev(ε̇(vl)). (10)

wheredev(∗) denotes the deviatoric part of tensor(∗).

2.2.2 Macroscopic constitutive equation for the solid phase

Experimental studies on the behavior of metallic alloys at high temperature show that the re-
sponse of the solid phase is well described by constitutive equations of the Norton-Hoff type.9–11

Like the liquid, the solid is assumed to be incompressible at the microscopic scale, such that its
response can be characterized at this scale by the following constitutive equation:

s = 2Ks

(√
3ε̇eq

)m−1

ε̇(v), (11)

whereKs andm denote the consistency and the strain rate sensitivity, respectively, andε̇eq the
von Mises equivalent strain rate.

For solid fractions above the coherency fractiongscohe
, following the theoretical analysis of

Geindreau and Auriault,2 the effective stress tensor

Σs = 〈ss〉 − 〈ps〉I + gsplI (12)

is expressed as a degreem homogeneous function with respect to the strain rate tensor〈ε̇〉s =
ε̇(vs). Note that such a result is valid for small values of, which is generally the case for
the solidification problems under consideration in this work. Then, the solid phase can be
modelled as a compressible power-law fluid. We therefore adopt the compressible viscoplastic
constitutive model:9,12,13

Σs = 3Ks

(√
3〈ε̇〉seq

)m−1
(

1

A
〈ε̇〉s +

(
1

9B
− 1

3A

)
tr (〈ε̇〉s)I

)
, (13)

whereA andB are rheological functions that depend on the solid volume fraction and for
which several models can be found.9,12,14,15The constitutive equations of the solid phase at the
macroscopic scale then take the form

For lower solid fractions, i.e. belowgscohe
, the solid phase will be supposed to be stress-free,

which is an admissible hypothesis for modelling the sedimentation of free solid grains in the
liquid pool (as in globulitic solidification16).
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2.2.3 Exchange of momentum

According to Ni and Beckermann,4 Mk can be partitioned as:

Mk = M d
k + M p

k , (14)

the first part being the contribution of deviatoric stresses and the second one the contribution of
the isotropic part, and it can easily be shown that

M d
s + M d

l = 0 and M p
s + M p

l = 0. (15)

The liquid being a Newtonian incompressible fluid with a very low viscosity, we will assume
that the pressure equilibrium in the liquid phase is almost instantaneous. Subsequently, the
interfacial pressures4 in both phases (p∗k) equal the intrinsic average value of liquid pressure,i.e.
its microscopic value:

p∗l = p∗s = pl. (16)

Therefore,M p
k can be expressed as follows:4

M p
s = −M p

l = −pl∇gl = pl∇gs. (17)

On the other hand, forgs < gscohe
, the dissipative termM d

k represents the filtration force
exerted by the liquid flowing through the solid, assumed to behave as a rigid porous medium,2,6

and is expressed as:

M d
s = −M d

l =
g2

l µl

κ
(vl − vs). (18)

beingκ the permeability of the solid matrix in the mushy zone, assumed to be isotropic, defined
by the Carman-Kozeny formula

κ =
λ2

2g
3
l

180g2
s

, (19)

whereλ2 is the secondary dendrite arms spacing.

2.2.4 Final macroscopic momentum balance equations in solid and liquid

Considering the above assumptions, we obtain the following momentum balance equations for
the solid phase:

∇ ·Σs − gs∇pl +
g2

l µl

κ
(vl − vs) + gsρsg = ρs

∂

∂t
(gsvs) + ρs∇ · (gsvs × vs), (20)
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and the liquid phase:

∇ ·Σl − gl∇pl −
g2

l µl

κ
(vl − vs) + glρlg = ρl

∂

∂t
(glvl) + ρl∇ · (glvl × vl). (21)

Above equations are subject to the following boundary conditions:

vs = vl = vimp on∂Ωu, (22)

〈σs〉n = 〈σl〉n = Timp, on∂Ωs, (23)

where〈σs〉 = Σs − gsplI, vimp andTimp are the imposed surface velocity and traction on the
non-overlapped portions∂Ωu and∂Ωs of the boundary∂Ω of the analysis domainΩ; n is the
normal unit vector pointing outwards∂Ω.

2.3 Energy conservation

At the microscopic level, heat flux is described by the Fourier law:

q = −λ∇T. (24)

whereT is the temperature andλ the thermal conductivity.
Further, local thermal equilibrium is assumed, such that:

Ts = Tl = T. (25)

The enthalpies of both phases can then be written as a function of the temperatureT as follows:

hs =

∫ T

T0

cp(τ) dτ and hl = hs + L, (26)

wherecp andL are the heat capacity and latent heat per unit mass, respectively. The average
mixture enthalpy per unit mass takes the form

〈h〉 = fshs + flhl =

∫ T

T0

cp(τ) dτ + flL, (27)

wherefk is the mass fraction of phasek, defined asfk = ρkgk/〈ρ〉, 〈ρ〉 = gsρs + glρl being the
average density of the solid-liquid mixture.

By invoking hypothesis (25), the energy conservation is written as a single equation which
is the sum of the energy balance on both phases, where the terms of exchangeQs andQl

cancel themselves. After elementary calculations, we obtain the following advection-diffusion
equation for the average mixture enthalpy:

〈ρ〉∂〈h〉
∂t

+ 〈ρv〉 · ∇〈h〉 − ∇ · (κ̃∇〈h〉) + ST = 0, (28)
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being

〈ρv〉 = gsρsvs + glρlvl, (29)

κ̃ = 〈λ〉 ∂T
∂〈h〉

, (30)

ST = L∇ · (〈ρ〉(vl − vs)fsfl) , (31)

where〈λ〉 = gsλs + glλl is the average conductivity of the mixture.
The heat balance equation (28) is subject to the initial condition:

T = T0 at t = 0 in Ω, (32)

and the following boundary conditions :

T = Tw at t > 0 on∂ΩT , (33)

(−〈λ〉∇T ) · n = qw at t > 0 on∂Ωq, (34)

(−〈λ〉∇T ) · n = h(T − Text) at t > 0 on∂Ωc, (35)

prescribing the temperatureTw on ∂ΩT , the heat fluxqw through∂Ωq, and the heat exchange
through∂Ωc due to convection to the environment at temperatureText with h as the convection
coefficient;∂ΩT , ∂Ωq, and∂Ωc are non-overlapping portions of the boundary∂Ω of Ω, being
n the unit normal vector pointing outwards to∂Ω.

2.4 Solute conservation

The solute flux vectorj is determined at the microscopic scale by the first law of Fick, which
can be written for the isotropic case as follows:

j = −D∇w, (36)

beingD the solute diffusion coefficient. By summing the solute conservation equations aver-
aged for each phase, and considering thatJs = −Jl, we obtain:

∂〈w〉
∂t

+∇ · 〈wv〉+∇ · 〈j〉 = 0, (37)

where

〈w〉 = 〈ws〉+ 〈wl〉 = gsws + glwl, (38)

〈wv〉 = 〈(wv)s〉+ 〈(wv)l〉 = gswsvs + glwlvl, (39)

〈j〉 = 〈js〉+ 〈jl〉 = −〈(D∇w)s〉 − 〈(D∇w)l〉 = −gsDs∇ws − glDl∇wl. (40)

The diffusion coefficientsDk are very small (particularlyDs), so that they are usually neglected.
However, in this work we neglect the diffusion in the solid phase, but maintain the diffusion in
the liquid phase since it has a stabilizing effect on the numerical solution. Then:

〈j〉 ≈ −glDl∇wl. (41)
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Now, we assume the perfect diffusion of solute in the solid and the liquid phase at the micro-
scopic scale. This is the lever rule for microsegregation, which allows us to write

wl =
T − Tm

ml

, (42)

ws = kwl, (43)

〈w〉 = (gl + kgs)wl. (44)

whereTm is the melting temperature of the pure substance andml the slope of the liquidus
line, andk is the partition coefficient (equal to the ratio between the slopes of the liquidus and
solidus lines). The above equations imply the additional assumption of straight solidus and
liquidus lines in the equilibrium phase diagram.

Then, we can write the solute balance equation in the form of an advection-diffusion equation
for the average concentration, as follows:

∂〈w〉
∂t

+ vw · ∇〈w〉 − ∇ ·
(
D̃∇〈w〉

)
+ Sw = 0, (45)

being

vw = vs +
gl

gl + kgs

(vl − vs), (46)

D̃ =
gl

gl + kgs

Dl, (47)

Sw = 〈w〉∇ · vs + wl∇ · (gl(vl − vs)) . (48)

Equation (45) is subject to the initial condition

〈w〉 = w0 at t = 0 in Ω, (49)

beingw0 the initial solute distribution, usually equal to the nominal solute content of the alloy.
Further, we assume that there is no solute flux through the domain boundary,i.e.:

∇〈w〉 · n = 0 at t > 0 on∂Ω. (50)

3 NUMERICAL IMPLEMENTATION

This formulation was implemented in the two-dimensional code R2SOL for finite element anal-
ysis. A detailed explanation can be found in an authors’ previous work,17 so that just a brief
description will be included in this paper.

First, all the balance equations are integrated in time using an implicit two-points scheme.
The momentum balance in solid and liquid phase, equations (20) and (21) respectively, were

solved using mixed pressure-velocityP1+/P1 triangular finite elements.18 As both equation
are strongly coupled, they are solved simultaneously, together with the momentum equation (8)
that serves as closure equation.
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The different kinematics of solid and liquid phases are dealt with by means of the Arbitrary
Lagrangian-Eulerian (ALE) method proposed by Bellet and Fachinotti.19

On the other hand, both thermal and macrosegregation problems, which are governed by
similar advection-diffusion equations, are solved using linear triangular (P1) finite elements,
formulated using the Streamline-Upwind Petrov/Galekin (SUPG) method.20

3.1 Thermo-macrosegregation coupling: the “microsegregation box”

Thermal and macrosegregation solutions interacts due to the simultaneous influence of both
enthalpy and solute concentration on the local liquid or solid fraction. Assuming〈h〉 and〈w〉 to
be known from the solution of thermal and macrosegregation problems, respectively, we invoke
the enthalpy dependency ongl andT defined by equation (27), the relationship (42) betweenwl

andT derived from the equilibrium phase diagram, and the microsegregation rule (44) relating
relationship〈w〉 to wl andgl, in order to pose a system of scalar equations from whichwl, gl

andT can be computed. The so-defined “microsegregation box” can be expressed as follows:

m(wl, T, gl; 〈h〉, 〈w〉) =

 〈h〉 − ∫ T

T0
cp(τ) dτ − glL

T − Tm −mlwl

〈w〉 − (gl + kgs)wl

 = 0. (51)

Henceforth, by writing(∗; •), it is implied that(∗) are variables and(•) are parameters.
This system has a closed analytical solution only if the heat capacitycp is assumed to be con-

stant. Otherwise, it is solved numerically using a regula-falsi method, spanning betweengl = 0
at the solidus temperatureTsol (or gl = gleut at the beginning of the eutectic transformation at
temperatureTeut) andgl = 1 at the liquidus temperatureTliq. This algorithm serves also for the
computation of∂T/∂〈h〉.

Let us remark that the system (51), containing three scalar unknowns, has to be solved locally
for each sampling point of the mesh at each step of the iterative solution of the thermal and
macrosegregation problems.

3.2 Global coupling scheme

Besides the interaction between them, thermal and macrosegregation models are also coupled
to the mechanical model. On the one hand, mechanical properties are in general dependent
on temperature, and temperature and solute gradients induce natural convection. On the other
hand, the velocities computed from the mechanical analysis define the advection velocitiesṽ
andṽw in the energy and solute balance equations, respectively.

The coupled solution of all the balance equations is achieved using a simple staggered
scheme, where these equations are solved successively at each time step, as described as fol-
lows:

• New time instant t← t+∆t:

Victor D. Fachinotti†�, Steven Le Corre† and Michel Bellet†

1193



– Initialization :

k = 0,

(vs,vl, pl, 〈h〉, 〈w〉;T,wl, gl)
(0)
t+∆t = (vs,vl, pl, 〈h〉, 〈w〉;T,wl, gl)t

– New coupling iterationk ← k + 1:

1) Obtain〈h〉(k) by solving thethermal problem.

2) Obtain〈w〉(k) by solving themacrosegregation problem.

3) Obtainw(k)
l , T (k), andg(k)

l by calling the“microsegregation box”.

4) Obtainv
(k)
s , v

(k)
l , andp(k)

l by solving themechanical problem.

5) Check convergence:

∗ If ‖(∗)(k) − (∗)(k−1)‖ >tolerance, go to the next coupling iteration.

∗ Otherwise, update the variables

(vs,vl, pl, 〈h〉, 〈w〉;T,wl, gl)t+∆t = (vs,vl, pl, 〈h〉, 〈w〉;T,wl, gl)
(k)
t+∆t

Then, go to the next time step.

In the convergence checking,(∗) represents any or some of the involved variables. However,
in this work the time step is assumed to be small enough, and only one coupling iteration per
time step is performed, making that checking superfluous.

4 APPLICATION

Let us consider a steel slab continuous casting process. The cast material consists of the
18M5Nb steel from ARCELOR, modelled as a binary iron-carbon alloy, with a nominal carbon
content of0.18%. Material and process data correspond to this steel as produced by ARCELOR,
and will not be given here. The casting velocityVcast is set to 0.86 m/min.

The hypothesis of coherent solid phase obliges us to start the two-phase analysis at a trans-
verse section, say the initial two-phase section, far enough from the meniscus.

Up to this two-phase section, located 11. m-far from the meniscus in this case, a classical
“one-phase” thermo-mechanical analysis22,23 is performed.

In Figure 1 we observe thermal results from the “one-phase” analysis, particularly concern-
ing the liquid fraction distribution along the strand. The enthalpy distribution at the initial
two-phase section serves as initial condition for the two-phase thermal analysis.

Since the current version of the “one-phase” macrosegregation solver24 is not able up to date
to work under continuous casting conditions, we will assume a uniform solute concentration
w0 (equal to the nominal carbon content) in the initial two-phase section as initial condition.
Although it implies an important simplification, this hypothesis let us distinguish the effect of
solid deformation from the other sources of macrosegregation that are relevant in the earlier
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Figure 1: One-phase analysis of steel continuous casting process. On the left, distribution of liquid fraction along
the slab. On the top, the enthalpy distribution at the initial two-phase section serving as initial thermal condition
for the two-phase analysis.
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Figure 2: Two-phase analysis of steel continuous casting process: finite element mesh for the buffer zone and
mechanical boundary conditions.
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stages of the continuous casting process (for instance, macrosegregation by natural convection
driven by thermal and solutal gradients).

In order to use the global unsteady-state approach,22,23a buffer zone is defined, consisting of
a thick slice of the slab that ends at the initial two-phase section, as shown in Figure 2. Unlike
in the one-phase analysis, where the buffer zone is a fictitious right cylindrical slice located
above the meniscus, the buffer zone now lies in the curved portion of the caster. As before, the
buffer length must be greater than the maximum displacement per time step of any particle in
the initial two-phase section, otherwise it could be impossible to find the particle antecedent in
the advection calculations.

The domain of analysis will increase as the strand moves down the caster, from its initial
configuration coincident with the buffer zone to the whole domain we are interested in. In this
case, the final domain extends up to a section located at a casting distance of 3.25 m, as shown
in Figure 3, where the analysis stops after exceeding the maximum number of finite elements
admitted by the current version of R2SOL (80000).

The solid phase assumed to be coherent all along the analysis, we assume that the mesh
evolves with a velocity equal to the intrinsic solid velocity. In such a way, the mesh be-
come rarely degenerated, with the consequent saving of the computational time associated to
re-meshing.

In the buffer zone, the enthalpy and solute distributions are assumed not to vary in the longi-
tudinal (i.e. casting) direction, remaining equal to those of the initial two-phase section.

Concerning the mechanical analysis, the metallostatic pressure is applied to the upper face of
the buffer zone (H in Figure 2 denotes the metallostatic head), while at the current lower face a
fictitious extracting tool is modelled by imposing an uniform velocityvimp in the axis direction,
with ‖vimp‖ = VcastS/S0, beingS0 the area of the meniscus section andS the current lower
face area.

The two-phase analysis stops at a casting distance of 3.25 m, as shown in Figure 3, after
exceeding the maximum number of finite elements admitted by the current version of R2SOL
(80000). This figure also plots on the right top the initial liquid fraction, making apparent an
important problem concerning the coupling of one-phase and two-phase models. The one-phase
model used for initialize the two-phase analysis22 is mainly devoted to the thermo-mechanical
analysis in the solidified shell, the mushy and liquid zones being treated in an approximative
way, with rather few elements. Due to the huge computational time and memory requirements,
it is nowadays unfeasible to perform a one-phase analysis up to the initial two-phase section
with a mushy zone as refined as needed for the two-phase analysis. This problem is open and
should be the matter of future developments.

Regarding macrosegregation, the final carbon segregation〈w〉 − w0 is depicted in Figure
4. We observe there the ability of the current model to capture the phenomenon of central
(positive) segregation, characteristic of continuously cast steel slabs.25

Even if the solidification is not completed so that the solute concentrations can still evolve,
the computed level of macrosegregation seems to be significantly lower than in reality. Nev-
ertheless, we feel that this could be strongly improved by the use of more realistic constitutive
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Figure 3: Final distribution of liquid fraction in the analyzed portion of the slab.

models and parameters, especially for the solid phase compressible behavior and the mechan-
ical interaction term. Furthermore, as already mentioned, a finer mesh would be necessary to
confirm such trends.

5 CONCLUSIONS AND PERSPECTIVES

This work contributes to the understanding of the complex phenomena observed in a solidi-
fying medium, particularly in the late stages of solidification once the solid phase has already
developed a coherent structure. This assumption was thought to be adequate to characterize the
secondary cooling region of continuous casting processes, when the cast strand is subject to
the alternate effects of rolling and bulging, which induces alternate compression and expansion
states in the mushy core of the strand. The solid skeleton in the mushy region is looked as a
viscoplastic compressible body and can be assimilated to a sponge that absorbs or expels the
interstitial liquid, rich in segregated solutes. This mechanism is the main source of macroseg-
regation in the secondary cooling zone, and its responsibility on central macrosegregation in
continuously cast steel slab has been demonstrated in this work.

However, further research is needed before obtaining a robust computational tool with the
accuracy required in real casting applications. First, although the viscoplastic compressible
model9,12,13seems to be adequate to characterize the macroscopic mechanical behavior of the
coherent solid phase in the mushy zone, this is contested by the lack of experimental (and liter-
ature) data in this range for determining the material parameters. Further, this model does not
account for strain hardening, a mechanism that becomes important once the material is com-
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Figure 4: Final distribution of carbon segregation (〈w〉 − w0) in the analyzed portion of the slab.

pletely solidified. Not only isotropic hardening must me modelled, as done by the “one-phase”
models, but also kinematic hardening in order to account for alternate loading. The development
of a library of constitutive models, suitable for one-phase and two-phase mechanical analysis,
should be encouraged as future work.

Coupling between “one-phase” and two-phase analysis should be also improved when the
first one is used to provide the second with initial conditions. In fact, being focused on the
solidified shell, the “one-phase” solutions are quite inaccurate in the core of the strand, where
the two-phase analysis is centered. However, this problem will be overcome once the two-phase
analysis be operational on the whole casting domain.

A last remark concerns mesh discretization: a quite fine mesh is needed for an accurate
description of the mushy zone. In the current version of R2SOL, the mesh is refined by regions
defined a priori in the buffer zone. Then, as the solidification progresses and the width of the
mushy zone decreases, there is an excessively fine mesh outside this zone. This suggests that the
computational cost could be reduced by using adaptive remeshing,i.e., by reducing the mesh
size only where it is necessary. This is a work in progress.24
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[8] S. Ganesan and D. R. Poirier. Conservation of mass and momentum for the flow of inter-
dendritic liquid during solidification.Metall. Trans. B, 21:173–181, 1990.

[9] M. Abouaf, J.-L. Chenot, G. Raisson, and P. Bauduin. Finite element simulation of hot
isostatic pressing of metal powders.Int. J. Numer. Methods Engrg., 25:191–212, 1988.

[10] C. Geindreau, D. Bouvard, and P. Doremus. Constitutive behaviour of metal powder
during hot forming. Part I: Experimental investigation with lead powder as a simulation
material.Eur. J. Mech. A/Solids, 18:581–596, 1999.

[11] C. Geindreau, D. Bouvard, and P. Doremus. Constitutive behaviour of metal powder
during hot forming. Part II: Unified viscoplastic modeling.Eur. J. Mech. A/Solids, 18:597–
615, 1999.

[12] T. G. Nguyen, D. Favier, and M. Suery. Theoretical and experimental study of the isother-
mal mechanical behaviour of alloys in the semi-solid state.Int. J. Plasticity, 10:663–693,
1994.
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