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Abstract. In this work a numerical study of flow past circular cylinders is presented. The
simulations are carried out using two different computational codes both written in the
context of the finite element method. One of them is an optimized code developed in the
framework of PETSc libraries able to run in parallel using an interconnected system of
personal computers. The other one is a conventional serial code. The objectives of this
analysis are: to check the capabilities of a cluster composed of four nodes, to test the
performance of the proposed codes in the analysis of highly time dependent problems, to
perform comparisons with results obtained by using different convergence strategies and to
verify the behavior of alternative solvers.
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1 INTRODUCTION
The study of flows around bodies is of interest in aircraft industry, car design or bridges

flow resistance evaluation as examples of engineering applications where a properly
prediction of drag and lift forces is required. In particular, simulations of flow past circular
cylinders have been extensively proposed with different objectives [1-14]. From the
numerical point of view it is an important test to check the performance of computational
codes in highly time dependent problems. Additionally, it provides valuable information
about changes in the flow pattern when different conditions are considered in wind channels,
e.g. the influence of the relative distance between walls or inlet/outlet sections respect to the
body position. In the framework of the finite element method, several efforts have been
devoted to develop consistent incompressible Navier-Stokes flow formulations aimed at
analyzing this kind of large-scale/long-term applications [1-22]. More recently, in order to
optimize the use of computational resources, specific algorithms have been designed to work
in parallel architectures [21,22]. From the computational standpoint, it does not only imply an
adequate use of interconnected environments but also the development of appropriate codes
able to be employed in such systems improving the performance of the numerical analysis.

In the present work past cylinder flows are analyzed using two different codes involving
different finite element formulations and distinct computational structures. One of them,
named “PETSc-FEM” [23], is a parallel version of the formulation presented in [4,6,22]
written within the context of MPI routines and PETSc scientific libraries. In this framework,
standard GMRES [22-25] and IISD [23] solvers have been implemented. In particular, the
Interface-Iterative/Subdomain-Direct method (IISD) is a hybrid solver scheme based on
domain decomposition that uses a direct solver inside each subdomain and an iterative solver
on the interface between subdomains. The subdomain partition can be done either at
processor level or in one processor making this strategy extensible to scalar computations.
Depending on the number of chosen subdomains, it is possible to cover the alternatives
ranging from pure direct methods to full iterative algorithms. This strategy enhances the
convergence rate and it can be seen as a parallel direct method [23]. Moreover, PETSc-FEM
can also run as a serial code with an improved LU solver [23]. On the other hand, the second
program is a serial code based on a generalized streamline operator technique presented in
[15-17] which uses a standard direct (skyline) solver.

The aim of this work is twofold: to validate the numerical predictions in flow past cylinder
simulations and, besides, to analyze the performance of different solvers which is a crucial
aspect in large-scale/long-term computations. To this end, a comparison between the results
provided by both codes and with those reported in the literature are presented together with
some measurements related to computational efficiency. The parallel code was installed in an
interconnected system of four personal computers (Pentium IV, 400 Mhz) running in RedHat
Linux 7.1. The serial code also works in this architecture. The study is performed for a
Reynolds number of 100 showing evolutions of drag and lift coefficients, velocity and
pressure time histories at certain points of the domain and computational times obtained using
different methodologies and strategies. A brief description related to numerical aspects of
both codes used is presented in Section 2. The modeling is reported in Section 3 and, finally,
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we present the concluding remarks.

2 FINITE ELEMENT FORMULATIONS
The flow past cylinder analyzed is governed by the transient incompressible Navier-Stokes

equations written in cartesian coordinates as:

 equation of motion:

inp b)2()( vvv
(1)

 continuity equation:

in0v
(2)

together with adequate boundary and initial conditions. In these equations, standard notation
is used:  is an arbitrary open bounded domain with smooth boundary  and  is the time
interval of interest (t Y). Moreover,  is the density,  is the dynamic viscosity, v is the
velocity vector, p is the pressure, b is the specific body force vector and  is the rate of
deformation tensor. The symbol  denotes the spatial gradient operator and the dot over a
variable represents its time derivative.

2.1 Weak form obtained from scalar upwinding coefficients
In the context of the finite element analysis, the integral form of the differential system of

equations (1)-(2) can be obtained using a streamline upwinding Petrov-Galerkin technique
plus pressure stabilization terms and a Galerkin least squared form for the incompressibility
constraint [4,6,22]. The corresponding weak form can be described as follows:
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0

1
BC

eln

n
cont VV NvN                           (3)

(
where NV and Np are the basis (shape functions) of the discrete velocity and pressure spaces
respectively. As usual, the domain  is split into a collection of nel finite element domains

el. Moreover, the variables v and p are described in the discrete space (no index notation is
used for simplicity). Notice that in the first term, which belongs to the standard Galerkin
formulation, no order reduction is performed for the viscous stress tensor. The last term
represents the boundary conditions (BC) either Dirichlet or Neumann type. Several
definitions of the upwinding parameters 1

mom , 2
mom

 

and cont  have been consistently
proposed in the bibliography. In the present work, two different set of expressions for such
coefficients are adopted. The first one is taken from [4,6,22] and they read as:
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where 
2

h
Re

v
 is the elemental Reynolds number and h is a characteristic element

length. The definition of h introduces additional discussions (see [4,6,22] and references
therein for further details).

A second choice for the upwinding coefficients can be considered as [18]:
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where )( eRf  is the well known one-dimensional optimal upwinding function

eee R1RcothRf /)()(  while 1 and 2 are coefficients that depend on the finite element
topology (with values of 0.5 and 0.11, respectively, for 2D isoparametric four-noded
elements). In the numerical simulations we use the finite element formulation derived from
equation (3) including definitions given by equations (4)-(6) assuming no time-step
dependency and null cont  due to the low Reynolds number analyzed. This methodology is
identified as FEM1 in this work. A second formulation, called FEM2 in the present paper, is
obtained from equation (3) with upwinding coefficients defined by equations (7)-(9) also
considering 0cont .

2.2 Weak form obtained through a generalized streamline operator
The basic formulation described by the residual form of equations (1)-(2) can be written in

a compact manner as a generalized convection-diffusion system for ndim-dimensional
problems (ndim being the spatial dimension) using indicial notation as [15-17]:

in0FUK UAUMUR )()( njnjnn      (10)

with n=1,...,ndim and j=1,...,ndim. Considering ndim=3 throughout this Section, the variables of
equation (10) read as follows:

 U=(v1,v2,v3,p)=(Um) is the vector of unknowns.

 An is the generalized advection matrix defined as:

0
u00
0u0
00u

321
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where  is the Kronecker symbol. The components of the advection matrix are the
coefficients associated with the first derivatives of the unknowns.

 Kjn is the generalized diffusion matrix that can be written as:

0000
0)(
0)(
0)(

333231

232221

131211

jn
jnnjnjnj

njjnnjnj

njnjjnnj

K

     (12)

where the components of the constitutive laws for the deviatoric stress tensor can be clearly
identified.

 M is the generalized mass matrix:

0000
000
000
000

M
                          (13)

 F=( b1, b2, b3, 0) is the generalized force vector.

 R=(R1, R2, R3, R4) is the residual vector.

This basic notation is also considered in the description of the upwinding matrix derivation
and finite element formulation presented bellow.

The weak form of the convection-diffusion differential system (10) is obtained using a
generalized streamline operator (GSO) technique. The resulting variational formulation can
be written as [15-17]:

NURNPURN 0)()()(
1

BCdd
el

eln

n
VN   (14)

where is the space of the shape functions N. The term BC denotes the proper boundary
conditions included in the formulation. In this context, the perturbation function P(N) is
defined as follows:

)()( nn NANP                         (15)
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where  is the so-called upwinding matrix. The computation of  is performed according to
the procedure detailed in [15]. This matrix provides directional upwinding coefficients
leading to a non-uniform perturbation function particularly weighted in the required
directions. It should be noted that no additional definition for the characteristic element length
has to be used and predetermined upwinding coefficients are not required. It is also important
to remark that the perturbation function expressed by equation (15) together with the
upwinding matrix defined in a unique framework is intended to stabilize the numerical
response of the flow problem. In this context, the resulting finite element formulation,
identified as FEM3 in the present work, shares all the features of the formulation defined by
equation (3).

Finally, the temporal discretization of the unknowns is performed using a Euler backward
scheme in the three formulations described above.

3 NUMERICAL SIMULATIONS
The Von-Karman vortex street is studied in the present work for a flow past a cylinder at

Reynolds number 100 (based on the cylinder diameter D, i.e., Re= (D Uin )/ , Uin being a
characteristic inlet velocity). The geometry analyzed is sketched in Figure 1 showing slip
channel walls situated 7 diameters apart from the body of diameter D=2. As previously
studied in [6], this configuration leads to results practically independent of the lateral wall
distance. The boundary conditions are also included where, in particular, a unit constant
velocity profile is adopted as inflow located 7 diameters from the cylinder and, moreover,
traction free with zero pressure conditions are considered in the outlet section spaced out 22
diameters from the obstruction. The computations were performed with a finite element mesh
composed of 4760 four-noded isoparametric elements (with a fine discretization near the
cylinder) and a time step of 0.1 up to a final time of 300.

Figure 1. Geometry and boundary conditions.

Although this numerical test was extensively studied by several researchers and reported in
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the literature, the present analysis is aimed at studying the following particular features. In
order to assess a comparison between the formulations described above, simulations using the
FEM1, FEM2 and FEM3 are carried out. The performance of the GMRES and IISD parallel
solvers is also tested. Computational time requirements for the codes are evaluated using a
interconnected system of personal computers alternatively setting to 1, 2, 3 and 4 nodes.
Moreover, the CPU time responses of an improved LU and standard direct solvers, both
running in a serial mode, are included for comparison. All the obtained numerical results are
compared with those simulations and experiments reported in the literature.

The evolutions of the drag and lift coefficients computed with FEM1 and FEM2 models
are shown in Figure 2. Both solutions capture the well-known fact stating that the oscillating
period of the drag coefficient is approximately twice of that corresponding to the lift
coefficient and provide similar amplitudes for these evolutions.

Figures 3 to 5 respectively depicts time histories for the x and y velocity components and
pressure at four points positioned at x=2.0, x=7.9, x=40.2 and x=45.0, simulated once again
with FEM1 and FEM2 formulations. A very good agreement between both results can be
observed. Moreover, these predictions verify the numerical behavior described in [2] where,
in particular, the y-component of the velocity oscillates with a period similar to that of the lift
coefficient while the other variables (x-component of the velocity and pressure) behave in
time as the drag coefficient. It is important to remark that the results obtained do not exhibit a
high dependency of the outlet boundary conditions. To test this, pressure-free conditions were
also considered (results not shown) giving very similar results to those already presented in
Figures 2 to 5.

Table 1 shows computed mean drag value and amplitude of the lift coefficient in a
reasonably good comparison with those reported in the literature for similar geometric
configurations and space/time discretizations.

Additionally, simulations with the FEM1 model using one and four Newton-Raphson
iterations (nnwt=1 and 4 where convergence is achieved for this last value) are presented in
Figure 6 in order to illustrate the numerical effects of the iterative procedure in the numerical
response. A large difference between both numerical strategies can be observed in the
evolution of the drag and lift coefficients. Nevertheless, this discrepancy is within the
dispersion of values shown in Table 1.

Computational times required for the analysis are summarized in Table 2 for one or multi
processor simulations using different solvers. The resulting speedups for 2, 3 and 4 processors
are 1.7, 2.2 and 2.8, respectively. The time comparison for solvers GMRES and IISD is in
particular relevant due to their parallel capabilities. Furthermore, the CPU time consumed by
the serial code is lower to that required by the GMRES running in one processor but,
however, is substantially larger than that corresponding to the IISD and improved LU solvers.
Finally, the similar performance exhibit by the FEM2 and FEM3 models reflects the relative
smallness of the computational effort needed to compute the more complex perturbation
function of the latter formulation.
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Table 1. Comparison of mean drag value and amplitude of the lift coefficient.
Mean drag coefficient Amplitude of the lift coefficient

Present work – FEM1 1.362 0.257
Present work – FEM2 1.370 0.264
Present work – FEM3 1.363 0.278
Behr et al. [6] – STVP 1.384 0.374
Behr et al. [6] – VPS 1.403 0.369
Engelman and Jamnia [2] 1.411 0.350
Tezduyar and Liou [5] 1.393 0.312
Tabata amd Fujima [13] 1.350 0.300
Mittal and Tezduyar [14] 1.382 0.350
Tezduyar et al. [4] – Q1Q1/T1 1.387 0.370
Tezduyar et al. [4] – Q1Q1/T6 1.400 0.370
Tezduyar et al. [4] – P1P1/T1 1.380 0.374
Tezduyar et al. [4] – P1P1/T6 1.394 0.375
Piñol and Grau [7] – F1 1.325 0.268
Piñol and Grau [7] – F2 1.325 0.240
Piñol and Grau [7] – F3 1.325 0.240
Zhang et al. [9] 1.430 0.255
Beaudan and Moin [10] 1.320 0.340
Li et al. [11] 1.332 0.360
Braza et al. [1] 1.270 0.300
Henderson [12] – numerical correlation 1.355 ------
Tritton [26] – experimental 1.260 ------
Wieselsberger [27] – experimental 1.430 ------
Tanida et al. [28] – experimental ------ 0.075
Tritton [29] – experimental correlation 1.270 ------

Table 2. CPU times in minutes.
1 processor 2 processors 3 processors 4 processors

FEM1 - GMRES 2758 1585 1226 985
FEM1 - IISD 751 439 342 268
FEM1 - LU 543 ------ ------ ------
FEM2 - DIRECT 1816 ------ ------ ------
FEM3 - DIRECT 1886 ------ ------ ------

         
                                                                           a)                                                                                           b)

Figure 2. Time histories of a) drag and b) lift coefficients.
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                                                              a)                                                                             b)

         
                                                               c)                                                                            d)

Figure 3. Time histories of the horizontal velocity at points located at a) x=2.0, b) x=7.9, c) x=40.2 and d) x=45.0.

         
                                                              a)                                                                             b)

          
                                                              c)                                                                             d)

Figure 4. Time histories of the vertical velocity at points located at a) x=2.0, b) x=7.9, c) x=40.2 and d) x=45.0.
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                                                              a)                                                                             b)

          
                                                              c)                                                                             d)

Figure 5. Time histories of the pressure at points located at a) x=2.0, b) x=7.9, c) x=40.2 and d) x=45.0.

         
                                                              a)                                                                             b)

Figure 6. Time histories of a) drag and b) lift coefficients for different convergence strategies.

4 CONCLUSIONS
A comparative assessment of different methodologies have been presented in the

numerical simulations of past cylinder flows for Re=100. In particular, this study has
encompassed the performance analysis of three incompressible Navier-Stokes formulations
running in serial and parallel contexts with several solvers.

The numerical predictions obtained in this work reasonably fit the available results
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reported in the literature. Moreover, the evaluation of CPU requirements showed a good
behavior of the installed interconnected system of four personal computers where efficient
capabilities of the optimized IISD solver were ratified.
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