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Abstract. In this work we present a stabilized equal order finite element formulation of
incompressible Navier-Stokes equations augmented by a κ−ε turbulence model. The aim
of this paper is to evaluate the main numerical difficulties associated with the solution of
this kind of problems, mainly the possitiveness of the mathematical operators involved and
the rate of convergence of the whole system. We propose a particular way to circumvent
these drawbacks using

• .- an extra stabilization term in the transport equations of the turbulence quantities
to avoid undershoots in the κ− ε fields,

• .- a smooth enough cutoff function to avoid negative values of κ− ε fields, and

• .- an almost fully implicit monolithic solution strategy in order to reach good con-
vergence rates of the whole system.

The incompressible Navier-Stokes equations are spatially discretized by a SUPG-PSPG
technique and temporally solved by a backward Euler scheme.
This work was done as part of our project regarding to the implementation of PETSc-

FEM code (http://minerva.arcride.edu.ar/petscfem/petscfem), a general purpose, multi-
physics library running on Beowulf (Intel processors+Unix/Linux OS) cluster 2 and based
on the MPI message passing library1 and the Parallel Extensible Toolkit for Scientific
Computations (PETSc),3 written in object oriented programming using C++.
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1 INTRODUCTION

In order to fix ideas, we focus on the solution of the incompressible Navier-Stokes equa-
tions with the SUPG+PSPG method proposed by Tezduyar et.al.4 The Navier-Stokes
equations present two important difficulties for the solution with finite elements. First,
the character of the equation becomes more and more advective dominant when the
Reynolds number increases. In addition the incompressibility condition represents not
an evolution equation but, rather, a constraint on the equations. This has the drawback
that only some combination of interpolation spaces for velocity and pressure can be used,
namely those ones that satisfy the so called Brezzi-Babǔska condition. In the formulation
of Tezduyar et.al.4 advection is stabilized with the well known SUPG stabilization term,
and a similar stabilization term called PSPG is included in order to circumvent checker-
board modes. Once these equations are discretized, the resulting system of ODE’s are
discretized in time with the standard backward Euler scheme. At every time step, the
resulting non-linear system of equations is solved iteratively with the GMRES method
with Jacobi right preconditioning.

2 MATHEMATICAL MODELING OF TURBULENT INCOMPRESSIBLE
FLUID FLOW

This section deals with the mathematical modeling of the turbulent incompressible fluid
flow that is organized in the following form: it starts with the mathematical description
of the continuity and momentum equations, follows with the description of the transport
equations for the κ− ε turbulence model and finishs with the wall law function used to
represent the flow field in the vecinity of rigid walls.

2.1 Mass and momentum equations

The continuity and momentum balance equations for laminar flows can be written in the
following form:

∇ · u =  in Ω × (0, T )
ρ(

∂u

∂t
+ u · ∇u)−∇ · σ =  in Ω × (0, T ), (1)

with ρ and u the density and velocity of the fluid and σ the stress tensor, given by

σ = −pI + 2µeffε(u)

ε(u) = 1/2(∇u+ (∇u)t)
(2)

where p and µeff = ρνeff are pressure and the effective dynamic viscosity proportional
to the effective kinematic viscosity defined below, I represents the identity matrix and ε
the deformation tensor.



���

#� �#����������
�����&��-$�
����� ���
������� �$%&���������#�������������������������������������������������������������������������

2.2 Two equation turbulence modeling

In this paper the turbulent effects are included via a κ− ε model, which is based on the
transport of two additional turbulent quantities, the turbulent kinetic energy κ and its
dissipation rate ε. These two additional balance equations may be written in the following
form:

(
∂κ

∂t
+ u · ∇κ) = ∇ · (νeff

Cκ

∇κ) + Pκ − ε

(
∂ε

∂t
+ u · ∇ε) = ∇ · (νeff

Cε

∇ε) +
ε

κ
(C1Pκ − C2ε)

(3)

where νeff = ν + νt represents the effective kinematic viscosity, sum of the molecular and
the turbulent effects, being the latter defined in terms of the two added turbulent fields
as:

νt = Cµ
κ2

ε
(4)

In 3 each transport equation has a standard mathematical pattern, a temporal term
represented by a ∂

∂t
symbol, a convective term defined by a first order spatial operator ∇,

a diffusive term proportional to a second order spatial operator ∇∇ and source terms.
The incompressible Navier-Stokes equations and the κ − ε model just described are
nonlinear and coupled.
The source terms in 3 are written in terms of Pκ, defined as :

Pκ = 2νtε(u) : ε(u) (5)

The κ− ε model has five constants,

Cµ = 0.09

C1 = 1.44

C2 = 1.92

Cκ = 1.0

Cε = 1.3

(6)

The continuum formulation is completed by the initial and boundary conditions. Rela-
tive to the boundary conditions, unless for the pressure, we may split the whole boundary
in parts, imposing in each part a Dirichlet condition, a Neumann condition or a near wall



���

+��+��
���#�����
���������,�����������������������������������������������������������������������

boundary condition. For the velocity field we have

Γ = Γg ∪ Γh ∪ Γwall

Γg ∩ Γh ∩ Γwall = ∅
u = g on Γg

n · σ = h on Γh

n · σ = hwall(u∗(u)) on Γwall

(7)

For the turbulent fields the boundary conditions may be written as:

Γ = Γg ∪ Γh ∪ Γwall

Γg ∩ Γh ∩ Γwall = ∅
φ = g on Γg

n · ∇φ = h on ΓH

φ = φwall(u∗(u)) on Γwall

(8)

with φ = κ or φ = ε.
In 7 and 8 u∗ is the wall friction velocity that is computed using the wall law presented

below.
The pressure should be fixed at a reference value in at least one node in order to remove

the corresponding rigid mode in the numerical computation.
For the initial conditions we initialize the computation with a particular field for each

unknown that depends on the simulation.

2.3 Wall law function

In this section we describe how to compute the wall friction velocity needed to fully define
the boundary conditions of the momentum and turbulent transport equations.
In 7 and 8 Γwall represents that part of the boundary where wall law function is imposed.

Through this boundary condition the wall traction for the momentum equations and the
values of κ and ε close to the wall are computed. This procedure involves the computation
of the wall friction velocity u∗ whose profile is assumed to be represented by the following
expressions:

|u − uwall|
u∗

= f(y+) =






y+ for y+ < 5 laminar region

5 log(y+) + Cwall,1 for 5 < y+ < 30 buffer region

2.5 log(y+) + Cwall,2 for y+ > 30 full logarithmic region

y+ =
ywall u∗

ν

(9)
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where ywall is the distance between the wall and the first node close to the wall lying
over the computational boundary. For solving the nonlinear equation associated with the
computation of u∗ we have used a secant method. Once u∗ is computed the traction for
the momentum equation is determined by:

hwall = g(u − uwall)

g =
|τwall|

|u − uwall|
|τwall| = ρu2∗

(10)

Finally the corresponding κwall and εwall values are obtained from:

κwall =
u2∗√
Cµ

εwall =
u4∗

χy+ν

(11)

with χ the von-Karman constant.

3 NUMERICAL ANALYSIS OF THE PROBLEM

This section is devoted to analyze numerically how to improve the computation of a
turbulent flow field using a finite element formulation. In the next section we describe
the stabilized equal order finite element method applied to incompressible Navier-Stokes
equations using the standard SUPG-PSPG method. Next section deals with the numerical
formulation for the two turbulent transport equations with emphasis on the numerical
stabilization of the additional numerical instabilities produced when high source terms
appears in some localized regions of the domain. In the following section we present some
topics about improving the convergence rate of the numerical method. A coupled fully
implicit method is described putting special emphasis on the treatment of the wall law
function. Next section is devoted to the presentation of a smooth enough cutoff function
introduced to limit the appearance of negative values in the turbulent fields. Both κ < 0
and ε < 0 are physically meaningless, the former by definition and the latter because this
situation produces negative values in the turbulent viscosity according to 4. The regularity
of the cutoff function is crucial to guarantee the convergence of the algebraic system. In
the last section we present the solver adopted to get the solution of the algebraic system of
equations obtained from the numerical discretization of the incompressible Navier-Stokes
equations .

3.1 Finite element formulation for incompressible Navier-Stokes equations

The functional spaces for the weight and interpolation functions are defined as follow:
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Sh
u = {uh|uh ∈ (H1h)nsd,uh=̇gh inΓg}

V h
u = {Nh|Nh ∈ (H1h)nsd,Nh=̇ inΓg}
Sh
p = {qh|qh ∈ H1h}

V h
p = {ph|ph ∈ H1h}

(12)

ith

H1h =
{
φh|φh ∈ C0(Ω), φh|Ωe ∈ P 1,∀Ωe ∈ E

}
(13)

the Sobolev space, P 1 is a first order polynomial set, nsd is the dimension of the
physical domain Ω = ∪Ωe, E means the discrete partition of the physical domain being
Ωe the part of this partition corresponding to the element e.
The SUPG-PSPG formulation of (1) is written as:
Find uh ∈ Sh

u and ph ∈ Sh
p satisfying

∫

Ω

Nh · ρ
(∂uh

∂t
+ uh · ∇uh

)
+

∫

Ω

ε(Nh) : σhdΩ+

+
nel∑

e=1

∫

Ω

δh ·
[
ρ(

∂uh

∂t
+ uh · ∇uh)−∇ · σh

]

︸ ︷︷ ︸
(SUPG)

dΩ+

+
nel∑

e=1

∫

Ω

εh ·
[
ρ(

∂uh

∂t
+ uh · ∇uh)−∇ · σh

]

︸ ︷︷ ︸
(PSPG)

dΩ+

+
nel∑

e=1

∫

Ω

τ(CONT )∇ · Nhρ∇ · uhdΩ +

∫

Ω

qh∇ · uhdΩ =

∫

Γh

Nh · hhdΓ ∀Nh ∈ V h
u , ∀qh ∈ V h

p

(14)

The stabilization parameters are defined as:
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δh = τsupg(u
h · ∇)Nh ,

εh = τpspg
1

ρ
∇qh ,

τSUPG =
h

2||uh||z(Reu)

τPSPG = τSUPG

τCONT =
h

2
||uh||z(Reu)

(15)

with Reu and ReU are the Reynolds numbers based on the element parameters, i.e.:

Reu =
||uh||h
2ν

(16)

The element length h is computed by:

h = 2
( nen∑

a=1

|s · ∇wa|
)−1

(17)

with wa the shape function associated with the a node, nen the number of nodes in
the element, and s a unit normalized velocity vector. The function z(Re) used in (16) is
defined as:

z(Re) =

{
Re/3 0 ≤ Re < 3,

1 3 ≤ Re
(18)

The spatial discretization leads to the following system of equations:

(M +Mδ)a+N (v) +Nδ(v) + (K +Kδ)v − (G − Gδ)p = F + Fδ

Gtv +Mεa+Nε(v) +Kεv +Gεp = E +Eε

(19)

3.2 Guaranting Possitiveness in the numerical scheme for the κ− ε fields

As we have mentioned above the κ − ε transport equations are generic transient
advection-diffusion systems with source terms dependent of the state variables. In general
terms we may write 3 as:

(
∂φ

∂t
+ u · ∇φ) = ∇ · (νeff

Cφ

∇φ) + Sφ (20)
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with φ = κ or φ = ε. Cφ and Sφ depend on φ selected. Even though these two
equations are coupled through of νeff and Sφ we write them as an uncoupled system in
order to present the numerical method used to discretize them. We wish to remark that
the implementation of mass, momentum and turbulent equations is fully coupled unless
for the stabilization parameters in order to simplify the computation. Before enter into
details about the numerical method used we wish to do a special remark about to 20
equation. As the source term Sφ depends on the state variable we can redefine it as:

Sφ = c(φ)φ+ S ′
φ (21)

Rewriting 20 with 21 we arrive to the following equation:

(
∂φ

∂t
+ u · ∇φ)− c(φ)φ = ∇ · (νeff

Cφ

∇φ) + S ′
φ (22)

that is similar to a generic unsteady reaction-advection-diffusion system. Two dimen-
sionless parameters may be built from this equation, the standard Peclet number (Pe)
and other called the reaction number (Rn) defined as:

Pe =
uhgrid
2
νeff

Cφ

Rn =
ch2grid
νeff

Cφ

(23)

It is well known that numerical oscillations are found when both Pe and Re number
grows above their critical values.
In order to get a numerical solution of 20 or 22 we have adopted an SUPG strategy

enhanced by the possibility of avoiding the undershoots and overshoots associated with
high reaction number values. In the past we have designed a special perturbation function
to be added to the standard perturbation function of the SUPG method with very good
results but in that opportunity we focussed only on the scalar case.7 This kind of strategy
may be applied to each equation separately or may be extended to the case of vectorial
state variables but we leave this kind of analysis for a future work. In this work we
have chosen a very simple solution generally used to overcome some localized undershoot
and/or overshoots frequently found close to discontinuities. This strategy consists of
adding an extra isotropic numerical diffusion localized only where the reaction number
dominates over Peclet number.
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∫

Ω

w̃h
(∂φh

∂t
+ uh · ∇φh

)
+

∫

Ω

∇whνeff
Cφ

∇φhdΩ −
∫

Ω

w̃hSφ+

∫

Ω

∇whδφ∇φhdΩ

︸ ︷︷ ︸
extra isotropic numerical diffusion

−
∫

Γh

whhhdΓ = 0
(24)

The weight function in SUPG and the main stabilitization parameter are generally
defined as:

w̃h = wh + P h

P h = τuh∇ · wh

τ =
hgrid
2|uh|ψ(Pe)

ψ(Pe) = coth(Pe)− 1

Pe

(25)

In general the second stabilization parameter in the extra isotropic numerical diffusion
is defined as:

δφ = Rn
νeff
Cφ

ψ(Rn) (26)

• Reaction numbers definition for κ and ε

Specifically for the κ − ε model the second stabilization parameter for each one of
the turbulent transport equations is defined as:

δκ = λmaxψ(λmax )
νeff
Cκ

δε = λmaxψ(λmax )
νeff
Cε

λmax = h2gridmax{max{λ1, λ2}, ε}

(27)

where λ1,2 are computed by:
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Cκ,ε =

(
∂Sκ

∂κ
∂Sκ

∂ε
∂Sε

∂κ
∂Sε

∂ε

)

Dκ,ε =

(
1

νeff/Cκ
0

0 1
νeff/Cε

)

Jκ,ε = D−1
κ,εCκ,ε

Λκ,ε =

(
λ1 0
0 λ2

)
= Eigenvalues

{
Jκ,ε

}

(28)

If the eigenvalues are complex we take only the real part of them.

• Some comments about the change of the type of equations according to the type of
eigenvalues of the reaction matrix jacobians. For example real or complex and if it
is real, is possitive or negative. The relation between the type of eigenvalues and
some upper bound in the turbulent length scale to be simulated.

3.3 Improving the convergence rate by a fully implicit treatment of the whole
system

• cutoff function definition
The Cutoff function is useful to avoid the consequences of having negative values for κ

and ε in the computation of the turbulent viscosity and the κ− ε production terms. It
may be defined as

Ξ(x, ε) =






1+1/2er

1+ 1
6
r2

ε for |r| < 10−7
x−ε

1−e−2r + ε for r > 10−7
(x−ε)e2r

e2r−1 + ε for r < −10−7

r =
x

ε
− 1

(29)

Adding this cutoff function to the computation of the turbulent viscosity and the source
terms they are rewritten as:

νt = Cµ
Ξ(κ, ε)2

Ξ(ε, ε)

Pκ = 2νtε(u) : ε(u)

Sκ = Pκ − Ξ(ε, ε)

Sε =
Ξ(ε, ε)

Ξ(κ, ε)
(C1Pκ − C2Ξ(ε, ε))

(30)
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with the derivatives of the cut-off function written as:

dΞ

dx
=






1/2er

(1+ 1
6
r2)2
(1 + 1

6
r2 − 1

3
r) for |r| < 10−7

1
1−e−2r (1− 2re−2r

1−e−2r ) for r > 10−7
e2r

e2r−1(1− 2r
e2r−1) for r < −10−7

(31)

According to 28 the eigenvalues problem should be updated taking into account the
introduction of the cutoff function. Defining G = 2Cµε(u) : ε(u) to simplify the notation
the Cκ,ε matrix is written as:

Cκ,ε =

(
∂Sκ

∂κ
∂Sκ

∂ε
∂Sε

∂κ
∂Sε

∂ε

)

=

(
2GΞ(κ,ε)

Ξ(ε,ε)
∂Ξ(κ,ε)

∂κ
(−G(Ξ(κ,ε)

Ξ(ε,ε)
)2 − 1)∂Ξ(ε,ε)

∂ε

(C1G+ C2(
Ξ(ε,ε)
Ξ(κ,ε)

)2)∂Ξ(κ,ε)
∂κ

(−2C2 Ξ(ε,ε)
Ξ(κ,ε)

∂Ξ(ε,ε)
∂ε

)

) (32)

• implicit treatment of wall law function in the boundary conditions via Lagrange
multipliers.

The numerical treatment of the wall-law boundary conditions 9 and 11 is a special topic
that deserves some attention. The main reason is the great influence that this boundary
condition exerts over the global convergence of the algorithm. In 14 the Neumann bound-
ary conditions are introduced in the

∫
Γh

wh · hhdΓ term in a natural way. According to
the definition of the boundary conditions for the incompressible Navier-Stokes equations
given by 7 and having in mind that the wall law function is applied to the momentum
equations as a Neumann boundary condition (10), then the residual contribution coming
from this term looks like:

∫

Γh

wh · hhdΓ =

∫

Γh−Γwall

wh · hhdΓh +

∫

Γwall

wh · hhdΓwall =

=

∫

Γh−Γwall

wh · n · σdΓh +

∫

Γwall

wh · g(u − uwall)dΓ

(33)

The fully implicit treatment of the whole system requires the derivation of the
∫
Γwall

integral term in 33 respect to the state variables, specifically uh.
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∂Ri

∂uj

= · · · −
∫

Γwall

wh
i · (g + g′

∂|(u − uwall)|
∂u︸ ︷︷ ︸

(u−uwall)

|(u−uwall)|

(u − uwall))
∂u

∂uj︸︷︷︸
wh

j

dΓ =

=

∫

Γwall

wh
i · (g + g′|u − uwall|)wh

j dΓ

g′ =
∂g

∂|(u − uwall)| = (2f(y
+)

∂u∗
∂|(u − uwall)| − 1)

g

|(u − uwall)|

(34)

In 34 ∂u∗
∂|(u−uwall)| may be computed from 9 straightforwardly.

The main difficulty in the fully implicit treatment of wall-law boundary conditions
arises with the Dirichlet fixation of κ and ε from 11 because this fixation depends on the
unknown velocity vector at this boundary. In general this kind the boundary conditions
are numerically solved via an explicit formulation where the value of the current κ and
ε at the wall are fixed to the corresponding state variable in the last time step. Even
though this strategy is very simple to adapt to an existing code its main disadvantage is
related to the poor convergence rate reached with it. In this work we propose a strategy
based on an implicit treatment of this boundary condition. To do this we use Lagrange
multipliers in order to add the extra equations needed to impose 11. For each node where
we impose the wall law function we add a ficticious node where we solve for the fluxes
needed to balance the unbalanced fluxes in the original nodes after imposing over them
the satisfaction of the 11.
The concept of elemset (see Petscfem documentation in

http://minerva.arcride.edu.ar/petscfem/petscfem) allows to add the contribution of this
nonlinear restriction in an addittive way as:

Ra = Ra + ΛUαLSF

Rα = Rκ−ε
wall − LDF LRF Uα

Ka,α(:, 1 : 2) = −LSF Λ

Kα,a(1 : 2, :) = −Kκ−ε
wall

Kα,α(1 : 2, 1 : 2) = LDF

Λ =








0 0
...
...

1 0
0 1








(ndof × 2)

(35)

where a is the original wall node and α is the corresponding ficticious node. Each
ficticious node adds two more equations and two more degree of freedom, i.e:
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Uα =

(
λκ

λε

)
(36)

the two Lagrange multipliers containing the fluxes neded to balance the κ and ε trans-
port equations having imposed the wall-law values for the turbulent kinetic energy and
the dissipation rate. Ra and Rα are the residual vectors of these two nodes and Rκ−ε

wall is
the redidual of the added wall law equations defined as:

Rκ−ε
wall =

(
κ− κwall
ε− εwall

)

Kκ−ε
wall =

(
− 1

|u|
∂κwall

∂|u| (u − uwall) 0 1 0

− 1
|u|

∂εwall

∂|u| (u − uwall) 0 0 1

) (37)

LRF is named Lagrange Residual Factor. Using Lagrange multipliers leads to diagonal
null terms, which can cause zero pivots when using direct methods. With this option a
small term is added to the diagonal in order to fix this. The term is added only in the
Jacobian or also in the residual (which results would be non-consistent).
LDF is named Lagrange diagonal factor. A diagonal term proportional may be also

entered in the residual. If this is so using LRF = 1 then the method is “non-consistent”,
i.e. the restriction is not exactly satisfied by the non-linear scheme is exactly Newton-
Raphson. If not LRF = 0 then the restriction is consistently satisfied but with a non
exact Newton-Raphson.
LSF is named lagrange scale factor. Using Lagrange multipliers can lead to bad

conditioning, which causes poor convergence with iterative methods or amplification of
rounding errors. This factor scales the columns in the matrix that correspond to the
lagrange multipliers and can help in better conditioning the system.

4 SOLVER

PETSc-FEM is a general purpose, parallel, multi-physics FEM program for CFD appli-
cations based on PETSc, therefore all the solvers and preconditioners included in PETSc
distribution are available. However, PETSc-FEM includes the possibility of using another
method based on domain decomposition that is briefly described in the next section. For
more details visit the Web site http://minerva.arcride.edu.ar/petscfem/petscfem .
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4.1 IISD - An algebraic solver based on domain decomposition

IISD (for “Interface Iterative – Sub-domain Direct”) is an hybrid solver scheme using a
direct solver inside each subdomain and an iterative solver only on the interface among
the subdomains. The subdomain partition is not only done at processor level, also it is
possible to split the processor domain itself in several subdomains, making this strategy
extensible to scalar computation too. Chossing the number of subdomains it is possible to
cover from pure direct method in one side to full iterative method on the other side. This
strategy enhances the convergence rate and it can be seen as a parallel direct method.

Interfase I 

Subdominio L1 
Subdominio L2 

#

Elemento en el procesador 0
Elemento en el procesador 1
Incognita en el procesador 0
Incognita en el procesador 1

Figure 1: IISD deccomposition by subdomains

Let’s consider a mesh as in figure 1, partitioned such that a certain number of elements
and nodes belong to processor 0 and others to processor 1. We assume that one unknown
is associated to each node and no Dirichlet boundary conditions are imposed so that each
node corresponds to one unknown. We split the nodes unknowns in three disjoint subsets
L1,2 and I such that the nodes in L1 are not connected to those in L2 (i.e. they not share
an element, and then, the FEM matrix elements Ai,j and Aj,i with i ∈ L1 and j ∈ L2 are
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null. The matrix is split in blocks as follows

A =

[
ALL ALI

AIL AII

]

ALL =

[
A11 0
0 A11

]

ALI =
[

A1I A2I

]

AIL =

[
AI1

AI2

]

(38)

Now consider the system of equations

Ax = b (39)

which is split as

ALL xL +ALI xI = bL

AIL xL +AII xI = bI

(40)

Now consider eliminating xL from the first equation and replacing in the second so that,
we have an equation for xI

(AII − AIL A−1
LL ALI)xI = (bI − AIL A−1

LL bL)

Ã xI = b̃I

(41)

We consider solving this system of equations by an iterative method such as GMRES,
for instance. For such an iterative method, we have only to specify how to compute the
modified right hand side b̃ and also how to compute the matrix-vector product y = Ã x.
Computing the matrix product involves the following steps

1. Compute y = AII x

2. Compute w = ALI x

3. Solve ALL z = w for z

4. Compute v = AIL z

5. Add y ← y − v

involving three matrix products with matrices AII , AIL and ALI and to solve the system
withALL. As the matrixALL has no elements connecting unknowns in different processors
the solution system may be computed very efficiently in parallel.
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5 NUMERICAL EXAMPLE

We have chosen the square cylinder benchmark in order to validate our computational
implementation. This physical problem is defined by the flow past through a cylinder
of square cross-section, placed centrally in a channel.The wake of the square cylinder is
unsteady and driven by the shed vortices. This type of problem is of great importance in
engineering applications and present numerical difficulties in the solution.

5.1 Computational domain and boundary condition

The computational domain is sketched in the figure 3, when the dimensions of the channel
are the following: H=8,B=1 and L=32.The cylinder is placed at a distance of Lr=8.0
unit from the inlet.The mesh employed in the computation is unstructured, with 12000
triangular elements. A global view and a close up of the mesh is shown in figures 3 4
where we adopt a similar partition to that published in5 in order to do some preliminar
validation. In the close up figure is viewed that 10 elements by each side of the square
cylinder are placed and we think that this coarse local mesh is not adequate to capture
the main fluid patterns in the vecinity of this bluff body. So, future computations should
be done over a finer mesh in the cylinder region.

Figure 2: Geometry

At the inlet the flow enters with uniform velocity uav and the prescribed turbulence
intensity defined as I =

√
u

′2
i /2/uav is set to 10 percent at this plane. The eddy viscosity

at the inflow plane is specified as νt/νt = 10, so the value of ε is computed according to
the equation 4.
The free-slip boundary conditions have been applied at the top and bottom surface.

Wall function treatment has been used for all the solid boundaries. At the outlet plane
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Figure 3: Global mesh

the pressure and the y component of the velocity is fixed to 0 at the outflow plane.
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Figure 4: Close up of the mesh

5.2 Comparison with experiment

In the figure 5 and 6 we showed a comparison of the time-averaged streamwise velocity
profile at the different downstream locations , namely (x=1 and 5) for our κ−ε turbulence
model implementation relative to some experimental measurements. The experimental
data of Lyn et.al6 has also been plotted in this figure. The time-averaged component
of the velocities have been obtained by integrating the instantaneous fields over a long
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duration, with 20 shedding cycles.
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Figure 5: Time-averaged streamwise velocity profile at x=1

At the location x=1 we may note that the agreement is quite good. The main difference
is presented at the center of the channel, where the shape of the velocities profile is the
same, but exist some offset of the values. We suspect that the main discrepancy could
be due to a high blockage due to a small width between top and bottom channel walls.
Far downstream the comparison reveals more discrepancy, possibly caused by the same
reason.
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Figure 6: Time-averaged streamwise velocity profile at x=5

Fig 7 shows the time-average y-component of the velocity compared with the experi-
ments of Lyn et .al6 at the plane x=5.
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Figure 7: Time-averaged traverse velocity profile at x=5

6 CONCLUSIONS

This work focus on the main numerical drawbacks found in the simulation of turbulent
flows. Some first results reveals that some addtional stabilization is necessary for κ− ε
production terms and some control strategy for the wall law boundary condition is crucial.
In this preliminar version of our implementation we have adopted for the former item an
extra numerical diffusion term based on some earlier background on solving advective-
reactive-diffusive systems of equations. For the later item we have done some numerical
continuation in the ywall value in order to get good convergence rate in the Newton scheme.
Much more work on these items should be done in order to get more robustness in the
computational code.
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