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 Abstract. The study of gravity free surface flows presents difficulties as the nonlinearity of
the dynamic boundary condition in the free surface, and also the fact that the location of this
surface is not known a priori. Traditionally, this phenomenon has been investigated by
physical models, but the progress of computer science and numeric methods has been
allowing more and more the successful use of mathematical models to simulate this type of
flow. This work presents a boundary element method (BEM) numeric simulation of spillway
flows with discontinuous linear elements. The solution procedure involves an iterative process
in the determination of the free surface. The Newton-Raphson method is adopted together
with the use of pseudo-nodes on the free surface and an empiric step factor (or damping
factor) which controls the stability and the rate of convergence. An example of WES standard
spillway shape is presented. The obtained results are compared with experimental data and
they check the efficiency and good precision of the adopted method.
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1 INTRODUCTION

The application of numeric methods in water resources engineering is increasing more and
more and in an accelerated way. In many cases, these techniques provide cheap and efficient
alternatives for projects’ verification and optimization, helping engineers to diagnose and
solve possible problems.

Several water resources problems can be represented by the potential theory, such as sluice
gates or spillways flows, examples of rapidly varied free surface flows governed by gravity.
This kind of flow presents inherent difficulties for its solution. The difficulties, as pointed out
by von Karman1, arise not only from the nonlinear character of the dynamic boundary
condition on the free surface, but also from the fact that the position of this surface is not
known a priori. Since flows of this nature are characterized by highly curved contours, it is
usually necessary, for a good numeric approach, the use of refined mesh or high order
interpolation functions. Besides, due to the intrinsic nonlinearity of the problem, a great
number of iterations seems to be inevitable in the solution procedure. Thus, the efficiency of
the solution method is important and can become the main factor in the choice of the numeric
method.

According to Cheng et al.2, serious numeric solutions to free surface flows began with
Southwell & Vaisey3, using the finite difference method (FDM) with handmade calculations.
Other finite difference solutions include those by McNown et al.4, Cassidy5 and, more
recently, Liao et al.6 that combined FDM with a coordinate system that follows the contour.
Solutions with the finite element method (FEM) began with McCorquodale & Li7 for sluice
gates. Among many other works that appeared in the literature using FEM, it can be
mentioned Ikegawa & Washizu8, Isaacs9, Betts10, Khan & Steffler11, Sankaranarayanan &
Rao12. As examples of use of the boundary element method (BEM) in the solution of this
problem type, it can be mentioned Cheng et al.2, Liggett & Salmon13, Jovanovic14 and Medina
et al.15. Other adopted technique is the jointly use of complex function theory and integral
equations solved numerically, as in the works of Merino16, Vanden-Broeck17 and Guo et al.18.
Recently, the finite volume method (FVM) has also been used, as in the works of Olsen &
Kjellesvig19, Unami et al.20 and Song & Zhou21.

This work presents the numeric simulation of spillways flows through BEM classic
formulation with discontinuous linear elements, having as basis the procedure proposed by
Cheng et al.2.

2 BASIC FORMULATION

In the spillway flow problem here treated, only the irrotational steady state is considered.
The stream function ψ formulation in a domain Ω is used and the governing differential
equation is the Laplace’s equation:
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where x = (x,y) is a generic point of the domain. Both the fixed boundaries and the free
surface are streamlines, therefore the value of ψ should be constant, that is:

boundaryfixedtheon0=ψ (2)
surfacefreetheonq=ψ (3)

being q the flow rate per unit  width. On the free surface the dynamic boundary condition
(Bernoulli’s theorem) requires (Figure 1):
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where ν  is the velocity; g is the acceleration of gravity; h is the free surface elevation
measured from an arbitrary datum; B is the constant of Bernoulli; and p is the pressure.

Figure1: General Outline of the spillway

Starting from the stream function definition, the following relationship in the free surface is
valid:

n∂
∂= ψν (5)

being n the unit normal from the free surface. Substituting equation (5) in (4) gives:
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Either the flow rate, q, or the Bernoulli constant, B, are known, being the other obtained as
part of the solution of the problem.
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For the purpose of limiting a domain for the numeric solution, it is made a cut, at right
angles to the primary velocity, at a certain distance upstream and downstream the spillway
crest. On the cut sections the following boundary condition is applied:

0=
∂
∂

n

ψ (7)

which means that there is no normal velocity to the main flow. This condition, although
approximate, is applied sufficiently far away from the spillway crest that is quite accurate and
any small error that occurs doesn't affect the interesting part of the flow (Cheng et al.2). Figure
2 shows the boundary conditions on the problem domain.

Figure 2: Domain and boundary conditions

A short description of BEM classic formulation used to solve equation (1) with essential
(equations 2 and 3) and natural boundary conditions(equation 7) is presented in the following
section.

3 BEM CLASSIC FORMULATION

BEM consists of transforming a differential equation and boundary conditions that govern
a certain problem in a boundary integral equation, being one way the use of the concept of
weighted residuals (Brebbia et al.22).

The integral equation that represents the equation (1) and your boundary conditions (2), (3)
and (7), and that allows the calculation of unknowns ψ and ν at the boundary and in the
domain, can be written in the following form (Brebbia et al.22):

)x(d)x;()x()x(d)x;()x()()(c ** Γ−Γ= ∫∫ ΓΓ
ξνψξψνξψξ (8)

The function *ψ (ξ; x) is called the fundamental solution, that is, the solution of the

Poisson’s equation for an unitary source in a point ξ, being ξ and x points belonging to a
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domain Ω* that contains Ω. The points ξ and x are denominated, respectively, source and field
point. The function *ν (ξ;x)  is the normal derivative of *ψ (ξ; x) on the boundary.

Equation (8)  involves two fields: one that is known ( *ψ , *ν ) corresponding to the solution
of a unit point source in an infinite domain; and other for which we want to obtain the solution
(ψ,ν) corresponding to the boundary conditions of the problem in the domain Ω. In two
dimensions we have:
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where r is the distance between the source ξ and the field x points; and σ is the unit vector
from ξ to x direction.

Equation (8) is valid for internal points ξ or belonging to the boundary Γ since it is
observed that:
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where β is the internal angle at the point ξ. If the boundary is smooth at ξ, β = π e c(ξ) = 0,5.

3.1 Boundary discretization

The original boundary Γ is replaced by a finite number of linear boundary elements. There
are basically two types of linear elements: the continuous ones, where the functional nodes
coincide with the geometric nodes (extreme points of the element); and the discontinuous
ones, where at least one of the functional nodes is located inside the element. Figure 3
illustrates all the possible types:

type 1 → discontinuous element with both functional nodes diplaced;
type 2 → discontinuous element with the initial functional node diplaced;
type 3 → discontinuous element with the final functional node diplaced;
type 4 → continuous element.
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Figure 3: Types of linear elements

The whole BEM discretization process and numeric approach to solve equation (1) with
boundary conditions of Dirichlet type (equations 2 and 3) and Neumann type (equation 7),
which leads to a linear algebraic equations system of unknowns ψ and ν at the boundary
functional nodes, are described in full detail in Mello et al.23.

4 SOLUTION  PROCEDURE

The inclusion of the free surface dynamic boundary condition (equation 6) brings
complications for the solution of the problem. This aspect is treated here in much the same
way as it has been done for most of the finite difference and finite element solutions. That is,
for problems with a known flow rate, q, a position of the free surface boundary is adopted and
the problem solved from equations (1), (2), (3) and (7). The Bernoulli constant is then
calculated on the free surface by equation (6). If B is the same for all free surface points
(nodes), the problem is solved. Otherwise, the adopted free surface is adjusted, iteratively, in
order that the value of B becomes constant at all points. A similar procedure can be used for
problems with a known Bernoulli constant, B. A position of the free surface is assumed and
the problem is solved from equations (1), (2), (6) and (7). The flow rate, q (equation 3), is part
of the solution. If q is constant for all free surface points, the problem is solved. Otherwise, an
iterative process should be used to adjust the free surface elevation. The method of adjusting
the free surface is problem dependent (Cheng et al.2).

The more common spillway flow problem is to solve for the Bernoulli constant, knowing
the flow rate and determining the free surface profile. As indicated in Fig. 1, there is a zone of
uncertainty (Cheng et al.2) where a change in the water surface elevation has a negligible
effect on the Bernoulli constant, B. Therefore, a direct iterative procedure supposing that the
free surface points are independently adjusted cannot be applied. The corrections in the free
surface elevation should be calculated simultaneously in all points. The method of Newton-
Raphson is then adopted jointly with the concept of pseudo-nodes interpolated among the free
surface points (real nodes). The following relationship is then obtained:
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being {∆h} the elevation adjustment vector only for the real free surface nodes; {∆B} is the
departure of the Bernoulli constant for each free surface node (real and pseudo) from its
objective value. For a given iteration k+1, the objective value of B is taken to be the average
value of iteration k. The matrix [dB/dh] is computed by displacing, in turn, each real free
surface node a small distance ∆h from its adopted value (or the result of the previous iteration)
and computing the variation in the Bernoulli constant at all free surface nodes, real and
pseudo. This calculation requires a complete solution for each real free surface node, and the
BEM does it in a quite efficient way. As a practical matter, a step factor (or damping factor),
which controls the stability and the rate of convergence, is adopted in order that the
adjustments to the free surface are always reasonable. Therefore, the values of the elevation in
the iteration k+1 are obtained by the following equation:

{ } { } { }kk1k hhh ∆α+=+ (13)

where α is the step parameter. The value of this parameter is problem dependent and should
be determined empirically. The solution is considered satisfactory when the calculated
corrections on the free surface elevation become sufficiently small.

5 RESULTS

 In order to verify the efficiency of the developed procedure, some examples were simulated
and the numeric results of one of them are presented. The chosen example is a standard WES
type spillway designed for a flow rate q = 0.3744 m3/s/m and a height P = 1.52 m. This
example allows validate the implemented formulation, since it has known experimental
results (Chow24).

 The domain was limited upstream to a distance (3.05 m) of twice the spillway height and
downstream to a distance (1.16 m) in which the parament almost equaled the reservoir's
bottom level. The domain discretization was made by 54 linear elements being 24 for the free
surface. Discontinuous elements were used to considered the two values of the velocity ν in
all the real corners.

Tables 1 and 2 present, respectively, the main adopted and computed parameters for this
example and Figure 4 shows the comparison of the free surface numeric result with the
experimental water profile.
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Table 1: Main adopted parameters

Parameter Value
Number of Gauss quadrature points to numeric integration 4
Tolerance to end iterative process (permitted maximum error) (m) 0.00015
Step factor α 0.1
Displacement ∆h to numeric calculation of matrix [dB/dh] (m) 0.0762
Number of pseudo-nodes per element (NPN) on the free surface 4

Table 2: Main computed parameters

Parameter Value
Number of iterations 59
Average B on the free surface (m) 0.30448
Spillway discharge coeficient C = q / B1,5 2.228
Critical section position – coordinate x (m) 0.00343
Critical deep (m) 0.20943
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Figure 4: Comparison of experimental and numeric free surface profiles

 In relation to the data presented in Table 1 it is worth to point out the following
observations:

 The step parameter α plays a fundamental role in the calculation march scheme,
mainly in the initial iterations. To guarantee the stability in the initial phase of the process, it
was almost always necessary assume a small value. However, as it was adopted a constant
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value along the whole procedure, this led to a slower convergence and a greater number of
iterations. According to Jovanovic14, an automatic adjustment of this parameter at each
iteration, through gradient type methods, would improve the rate of convergence.

 The value of the displacement ∆h to the numeric calculation of matrix [dB/dh] also has
great influence in the success and efficiency of the iterative process. Very small values of ∆h
tend to increase the instability. It was adopted the same value of ∆h for all free surface points
and matrix [dB/dh] was calculated only once, in the beginning of the process, to become it
more computationally efficient. According to Cheng et al.2, since matrix [dB/dh] changes little
from one iteration to the next, it is not necessary to recalculate it each time. When it does have
to be recomputed, it is necessary only to disturb and recompute those points in and near the
uncertainty zone. As it is not clear when is necessary to update the matrix, it is suggested a
more detailed study to optimize this procedure. Another possible change is the adoption of
different values of the displacement ∆h for each point, for instance, proportional to the
difference between the value of the constant B in the point and an objective or average value
of B.

 The number of pseudo nodes has certain importance, since in the case of linear
elements, its absence generates instability. According to Liggett & Salmon13, the use of  cubic
splines elements eliminates the need of pseudo nodes. The procedure here developed allows
the option of 2 up to 9 pseudo nodes per element on the free surface, and was verified that
starting from the value 4, no significant improvement of the results were found.

 Now in relation to the data presented in Table 2 it can be detached the following aspects:
 The number of 59 iterations, for the circumstances commented previously, can be

considered a good result. Cheng et al.2 don't comment on this value in their work and
Jovanovic14 reports a number of iterations about 160.

 The value of the computed discharge coefficient, equal to 2.228, was very close to the
experimental value 2.225 (Chow24). This represents an error of only 0.13%. Cheng et al.2

obtained an error of 0.50% and Jovanovic14 maximum mistakes about 3%.
 The procedure also allows at its end the determination of the critical section by

interpolation, since the value of the Froude number is calculated continually at all free surface
points.

In relation to Figure 4, it can be noticed a good adherence among the numeric results and
the experimental profile (Chow24), just occurring a small discrepancy in the area of greater
curvature, having BEM underestimated a little the surface water profile, what means that the
calculated velocities were a little larger. This can be associated to the fact that the
mathematical model supposes that there are no energy losses along the flow over the spillway.

5. CONCLUSIONS

The example with known solution, here presented, confirms in general the applicability of
the potential flow theory to the analysis of spillway flows, as well as validates the numeric
simulation through BEM classic formulation with discontinuous linear elements, showing that
BEM is an efficient numeric method to solve free surface potential flow problems.
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The iterative procedure for the Newton-Raphson method adopted, and proposed by Cheng
et al.2, led to very good results, but it still presents a slow convergence in the zone of
uncertainty, taking a high number of iterations.

The role of the step parameter α, as well as the value of the displacement ∆h to the numeric
calculation of matrix [dB/dh] should be more investigated to be achieved an improvement on
the rate of convergence of the iterative process.
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