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Abstract. The goal of this paper is to study the relation of the condition numbers of the
star of nodes in normal equations for error estimates of Moving Least Square approxima-
tions in Sobolev spaces. The condition numbers are closely related to the good quality of
the set of nodes and the approximating power of the method.
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1 INTRODUCTION

The moving least square (MLS) as approximation method has been introduced by Shepard
1

in the lowest order case and generalized to higher degree by Lancaster and Salkauskas
2
.

The use of MLS in solving PDEs was pioneered by the works of B. Nayroles, T. Belytschko
and others

3,4,5,6
.

For this kind of applications it is fundamental to analyze the order of approximation,
not only for the function itself, but also for its derivatives. C. Zuppa

7
introduced con-

dition numbers of the stars of nodes in the normal equation which are closely related
to the approximation power of the method in the space of differentiable functions. We
present here some theoretical analysis of the condition numbers and error estimates in the
framework of Sobolev spaces

8
.

In this paper is discussed the close relation of the condition numbers with the good
quality point set generation problem for meshless methods. For numerical simulation
problems, meshless methods have emerged as an alternative to mesh based methods for
several reasons, among them, because mesh generation is a difficult problem, and these
methods have generated promising results in the accuracy of simulations. Ealier imple-
mentation of meshless methods employed arbitrary set of nodes, but now it is recognized
that an inteligent placement of the nodes it is necessary to avoid the under-sampling of
important physical phenomena. In X. Y. Li et al.

9,10,11,12
a set of criteria is formalized

to define good selections of nodes in the domain in order to increases accuracy of solu-
tion. The practical importance of the condition number for good quality point sets are
discussed.

2 PRELIMINARIES

In the n-dimensional space R
n let || . || denote the Euclidean norm and Br(y) denote the

open ball {x ∈ R
n| ||x− y|| < r } with center y and radius r. We use standard multi-

index notation. In particular, given any multi-index ν = (ν1, ..., νn) ∈ N
n, |ν| denotes

the sum ν1 + ...+ νn, and, if f is a sufficiently smooth function, Dνf denote the partial
derivative ∂|ν|

∂x
ν1
1 ...∂xνn

n
f .

Let Ω be an open bounded domain in R
n and QN denote an arbitrarily chosen set of

N points xα ∈ Ω referred to as nodes :

QN = {x1,x2, ...,xN} , xα ∈ Ω

Let IN := {ωα}Nα=1 denote a finite open covering of Ω consisting of N clouds ωα such
that xα ∈ ωα and ωα is ’centered ’ around xα in some way, and

Ω ⊂
N⋃

α=1

ωα, (1)

A class of functions SN := {Wα}Nα=1 is called a partition of unity subordinated to the
open covering IN if it possesses the following properties:
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• Wα ∈ Cs
0(R

n), s ≥ 0 or s = +∞

• supp(Wα) ⊆ ωα

• Wα (x) > 0, x ∈ ωα

•
∑N

α=1 Wα(x) = 1, for every x ∈ Ω.

There is no unique way to build a partition of unity as defined above. A widely used
approach in practice is the following:

For each α = 1, ..., N, ωα is an open ball Bdα(xα) such that 1 is verified. Let ϕ : R
n → R

be a Cs−function such that ϕ(x) > 0 if x ∈B1(0) and supp(ϕ) = B1(0). For α = 1, ..., N,
let us define functions ψα by formula

ψα(x) = ϕ

(
x− xα
dα

)

and Wα by

Wα(x) =
ψα(x)∑
ψβ(x)

(2)

We shall mainly be concerned in this paper with this kind of partition of unity and we
assume also that s ≥ 2. From now on, let A > 0 be a constant such that

||∇ϕ ||L∞(Rn) ≤ A (3)

Definition 2.0.1 For any α = 1, ..., N, we set

n(α) := {β|ωα ∩ ωβ �= ∅}

The following conditions on the partition of unity will be assumed from now on.

(H1) The diameter of the clouds are locally comparable, i.e., there is C1, C2 > 0 such
that ∀α, α = 1, ..., N,

C1dβ ≤ dα ≤ C2dβ ∀β ∈ n(α) (4)

(H2) The overlap of neighboring clouds are controlled by M ∈ N. That is

∀α, α = 1, ..., N, #{n(α)} ≤M (5)

(H3) There is D > 0 such that

D ≤
∑
ψβ(x) ∀x ∈ Ω (6)
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The i−partial derivative of Wα is

∂Wα

∂xi
=

∂ψα

∂xi
(
∑
ψβ) − ψα

(∑ ∂ψβ

∂xi

)

(
∑
ψβ)

2

Using (3), (4), (5) and (6) it is easily shown that

(H4) There is CG > 0 such that

||∇Wα||L∞(Ω) ≤
CG

dα
∀α, α = 1, ..., N (7)

Condition (H1) implies that there exist a parameter d > 0 such that

C̃1d ≤ dα ≤ C̃2d ∀α (8)

and this appears somewhat restrictive. It implies in particular that grid size chage
smoothly. The more general case of arbitrary support size will be studied in a forth-
coming paper.

3 THE MOVING LEAST SQUARE METHOD

Given data values f = (fα)Nα=1 at nodes xα, the MLS method produces a function f̂ ∈
Cs(Rn) that interpolates data f in a weighted square sense. Let Pq the space of polynomial
of degree q, q � N and q ≤ s, and let Bq = {p0, p1, ..., pm} be any basis of Pq. For each
z ∈ Ω (fixed) we consider

P ∗(z,x) =
∑

0≤j≤m

aj (z) pj(x)

where a = {aj(z)}0≤j≤m are chosen such that

JBq ,z(a) =
1

2

N∑

α=1

Wα (z)

(
∑

0≤j≤m

aj pj(xα)− fα

)2

(9)

is minimized. Then, we define the approximation f̂ in z by

f̂(z) = P ∗(z, z)

Definition 3.0.2 Given z ∈Ω, the set ST (z) = {α|Wα(z) �= 0} will be called the star at
z.
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It is clear that the sum in (9) is extended only over the set ST (z). The set of nodes
SN (z) in the star ST (z) is {xα|α ∈ ST (z)}. If SN (z) = {xα1 , ...,xαK

}, for the sake of
simplicity we shall denote this set as {x1, ...,xK}. Observe that the polynomial P ∗(z,x)
can be obtained by solving the normal equations for the minimization problem. In fact,
if we denote

F (Bq) =





p0(x1) p0(x2) · · · p0(xK)
p1(x1) p1(x2) · · · p1(xK)
...

...
. . .

...
pm(x1) pm(x2) · · · pm(xK)



 ,

W (z) =





W1(z) 0 · · · 0
0 W2(z) · · · 0
...

...
. . .

...
0 0 · · · WK(z)





then, a = (a0(z), ..., am(z)) is the solution of the following system:

F (Bq)W (z)F T (Bq) a = F (Bq)W (z) f (10)

In order to have the moving least square approximation well defined we need the
minimization problem to have a unique solution at every z ∈Ω and this is equivalent to
the non-singularity of matrix F (Bq)W (z)F T (Bq). Error estimates are obtained under the
following assumption about the system of nodes and weight functions {QN , SN} :
Property Rq: for any z ∈Ω, the normal matrix F (Bq)W (z)F T (Bq) is non singular.

Definition 3.0.3 If #Pq = Nq, a set of nodes {xj ∈ R
n : j = 1, ..K} is called Pq−unisolvent

if the Vandermondian

F (Bq) =





p0(x1) p0(x2) · · · p0(xK)
p1(x1) p1(x2) · · · p1(xK)
...

...
. . .

...
pm(x1) pm(x2) · · · pm(xK)





has range equal to Nq.

It is clear that this property does not depend on the basis Bq.

The next theorem
8
, gives us a necessary and sufficient condition for the satisfaction of

property Rq in a stable way. It should be remarked that a related issue was considered

by W. Han and X. Meng
13

in the context of approximations based also on partition of
unity.
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Theorem 3.0.4 A necessary and sufficient condition for the satisfaction of Property
Rq is that, for any z ∈Ω, the set

{xαk
|αk ∈ ST (z)}

is Pq−unisolvent.

Let F := R
N be the set of possible values f = (fα)Nα=1 of functions at the nodes xα.

Under the assumption above, the MLS method provides an operator A : F →Cs(Ω)
defined by

A(f)(z) = f̂(z), f ∈ F , z ∈Ω

This is not an interpolation operator in the sense that, in general, A(f)(xα) �= fα.
Given a function f ∈ Cp(Ω), the associated vector in F is f = (f(xα))Nα=1 and we shall

write A(f) for A(f). The operator A is linear and q − reproductive, that is, A(P ) = P
when P is a polynomial of degree q.

Given α ∈ {1, ..., N}, let eα = (0, ..., 0, 1, 0, ...0) the vector in R
N which has a unique

coordinate distint of zero and equal to one at the αth−place, and φα = A(eα). The set of
functions {φα}α=1,...N are the canonical shape functions associated to the approximation
operator A in the sense that, for every f ∈ F we have

A(f) =
N∑

α=1

fα · φα (11)

A fundamental ingredient in establishing error estimates in moving least square approxi-
mations is to obtain bounds for functions {φα} and its derivatives.

Property Rq does not depend on the basis of Pq and this property will play a funda-
mental role in our work. In fact, if Aq = {q0, q1, ..., qm} is another basis of Pq such that
Bq = GAq, G being a non-singular matrix, then

JAq ,z = JBq ,z ◦G, z ∈Ω

and JAq ,z has a unique minimum if and only if JBq ,z does.

Therefore, in analyzing the normal equation in a neighborhood of a given point z ∈Ω,
we can choose a convenient basis. In our work, this basis will be the Taylor monomial
centered at z :

T q
z = {(x− z)η}0≤|η|≤q

Assumption. In what follows, we shall deal only with case q = 1. This case is the most
used in practice because of the notorious snaking polynomial problem. The reader should
bear in mind however that results could be generalized to degrees higher than one.



���	

#� �#����������
�����&��,$�
����� ���
������� �$%&���������#�������������������������������������������������������������������������

3.1 The derivatives of A(f)

Given f ∈ F , for each c ∈Ω (fixed) we want to make explicit, following Zuppa
2
, the

formulae of the derivatives of A(f) at c that will be useful in future calculations.
In all what follow we shall use the basis T q

c = {(x− c)η}0≤|η|≤q of Pq, q = 1, 2, and, in
order to simplify notation, we will drop any reference to this basis in the normal equation.
Therefore, we have

A(f)(x) =
∑

0≤|η|≤q

aη(x)(x− c)η (12)

where a = (aη(x))0≤|η|≤q is the solution of :

FW (x)F T a = FW (x) f (13)

In order to calculate the values DηA(f)(c), 0 ≤ |η| ≤ 1, it is useful to use the following
notation:

• 0 ∈R
N is the multi-index (0, 0, ..., 0).

• For i = 1, ..., n, ei is the multi-index with |ei| = 1, ei = (0, ..., 1, ..., 0), with 1 in the
ith place.

First at all,
A(f)(c) = a0(c) (14)

Then, for i = 1, ..., n, we have

DeiA(f)(c) = D
eia0(c) + aei

(c) (15)

and we can get D
eia0(c) from the solution ai = (D

eiaη(c))0≤|η|≤1 of

FW (c)F T ( ai) = F (DeiW (c)) (f−F Ta) (16)

3.2 The Star of nodes at a point c ∈ Ω

As it is well know, in working with the normal equation (13) and all related equations,
one can consider only those nodes xα such that Wα(c) �= 0, that is, the star ST (c). If
ST (c) = {α1, ..., αk}, matrices F,W and f can be considered as

F =





p0(xα1
) p0(xα2) · · · p0(xαk

)
p1(xα1

) p1(xα2) · · · p1(xαk
)

...
...

. . .
...

pm(xα1) pm(xα2) · · · pm(xαk
)
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W =





Wα1(c) 0 · · · 0
0 Wα2(c) · · · 0
...

...
. . .

...
0 0 · · · Wαk

(c)





f = (fα1 , fα2 , ..., fαk
)

and so on.
The size of the star ST (c) is defined by the number

h(ST (c)) = max{dα1 , ..., dαk
}

In all of this section c ∈Ω is a fixed point and ST (c) is the star at c. In order to gain
clarity, we shall drop subscript α from the weight functions and nodes in the star. Then,
for i = 1, ..., k, Wi means Wαi

, xi means xαi
, xi,j is the j th coordinate of xαi

, etc. It will
also be useful to introduce a linear change of coordinates by the formula y = x− c. We
also set hc = h(ST (c)).

A fundamental result is:

Theorem 3.2.1 There exists a computable number CN1(ST (c)) and constant C1, C1 =
C(n, k, CN1(ST (c))), such that

|aη| ≤ Cqh
−|η|
c ||V ||, 0 ≤ |η| ≤ 1 (17)

where V ∈ R
k, and a = (aη)0≤|η|≤1 is the solution of

FWF Ta = FV (18)

The condition number CN1(ST (c)) is a geometrical measure of the quality of the star
ST (c) and it is the fundamental ingredient in the error estimate of moving least square
approximations. This result is used to obtain error estimates for MLSQ approximations in
the space of differentiable functions. We can apply this theorem 3.2.1 in order to obtain,
for example, estimates of Dηφα(c), 0 ≤ |η| ≤ 1, α = 1, ..., N .

As we have remarked before, only data at nodes of the star participate in calculations.

Theorem 3.2.2 Let CG > 0 as in (H4). Then, there exists a constant C̃1 = C̃1(n, k, CG, CN1(ST (c)))
such that

|Dηφα(c)| ≤ C̃1

hc
, 0 ≤ |η| ≤ 1, α = 1, ..., N
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4 ERROR ESTIMATES FOR INTERPOLANTS

The conditions numbers CNq, q = 1, 2, play a fundamental role in obtaining error esti-

mates for MLSQ interpolants in the space of differentiable functions
7
. Theorem 3.2.2 can

be used to obtain error estimates in the context of Sovolev spaces.
Let u ∈W 2,q(Ω), q ∈ [1,∞]. We assume

(H5) 2q > n if q > 1, or n ≤ 2 if q = 1.

Then by the Sobolev embedding theorem, u ∈ C(Ω) and it is meaningful to use point-
wise values of u(x) and the MLS approximation of u is defined. By (11), the approximation
is defined by the formula

û(x) =
N∑

α=1

u(xα) · φα(x), x ∈ Ω

Theorem 4.0.3 Assume (H1), (H2), (H3), (H4) and (H5). Then, there exists a constant

c = c(n, C̃1) such that, for any u ∈ W 2,q(Ω), we have the error estimates

||u− û ||W l,q(Ω) ≤ cd2−l| u |W 2,q(Ω), l = 0, ..., 2

where d is as in (8).

This result was proved by W. Han and X. Meng in the context of RKPM approximation
method (cf. Han

13
, Section 4.3 ). The proof of the theorem above follows exactly along

the same lines and we shall omit the proof. See also Duarte
15,16

for other error estimations.
Given the following variational problem: find u ∈ V ⊂ H1(Ω) such that

B(u, v) = L(v) ∀v ∈ V,

where B is a bilinear, continuous and coercive on V and L is a linear continuous operator,
we can use the MLS method to define Galerkin approximation in the following way:

Assuming that ϕα ∈ V, α = 1, ..., N, let VN = span{φ1, ..., φN}. Therefore we can
define the Galerkin approximation û ∈ Vd of the real solution u as

û(x) =
N∑

α=1

uαφα(x)

where u1, ..., uN is the solution of the following system

N∑

β=1

B(φα, φβ)uβ = L(φα), 1 ≤ α ≤ N
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If u ∈ H2(Ω) and assumption G above holds, then from Céa’s lemma
14

and Theorem
4.0.3 we have the following error estimate:

||u− û||V ≤ K
λ

min
v∈VN

||u− v ||V ≤ K
λ
||u− û || ≤ C d2|u |H2(Ω)

This estimate does not include Dirichlet boundary value problems. Derivation of rigorous
error estimates in the latter case is much more difficult since in general û does not satisfies
Dirichlet condition.

5 GOOD QUALITY POINT SETS FOR MLSQ

Recently there has been a rapidly growing body of literature concerning the generation
of good point sets for the use of meshless methods in solving PDEs

9,10,11,12
. Similar to

mesh generation problems, meshless method also induce challenging problems. Partition
of Unity Method (PUM) or MLS based methods are based on the definition of overlapping
patches covering the domain and they raise an important geometric problem that is how
to locate these patches so that the numerical problem is simulated accurately. Theorems
3.2.2 and 4.0.3 seem to hint that the condition number CN1(ST (c)), c ∈Ω, could be used
as a good measure of the quality of the distribution of nodes and patches. We further
explore this point in this section.

Let c ∈ Ω be fixed. Writing y = x − c, we look at the coordinates function yi,
i = 1, ..., n, as random variables over the probability space {(xα),Wα)α∈ST (c), where
Wα = Wα(c). For the sake of simplifying notation we shall also write yi,α = yi(xα).

The matrix associated to the normal equation (10) can be written

A =





1
∑

Wα · y1,α · · ·
∑

Wα · yn,α∑
Wα · y1,α

∑
Wα · y21,α · · ·

∑
Wα · y1,α yn,α

...
...

. . .
...∑

Wα · yn,α
∑

Wα · yn,α y1,α · · ·
∑

Wα · y2n,α





By Gauss procedure and recasting all elements in the matrix by elementary statistic
theory, matrix A is transformed to

Ã =

(
1 · · ·
0 A11

)

where A11 is the matrix of central moments of the random variables (yi) :





∑
Wα · (y1,α − y1)2 · · ·

∑
Wα · (y1,α − y1)(yn,α − yn)

...
. . .

...∑
Wα · (y1,α − y1)(yn,α − yn) · · ·

∑
Wα · (yn,α − yn)2
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If hc is the size of star ST (c), then we normalize matrix A11 by setting

C =

(
1

h2
c

)
A11

The 1-condition number is defined in Zuppa
7

by formula

CN1(ST (c)) = ||C−1||

It is clear that CN1(ST (c)) it is a geometrical measure of the quality of the distribution
of nodes {xα}α∈ST (c) and values {Wα(c)}α∈ST (c) around point c.

Remark 5.0.4 To be strictly invariant by dilations, functions {ψα} must be obtained at
different size grids by scaling a fixed function, a standard procedure in partition of unity
method.

A moderate oscillatory behaviour of CN1(ST (c)) over domain Ω and increasing values
when c approach the boundary of Ω are expected. This is because near the boundary the
stars tend to be of strongly unsymmetrical shape, with the center of mass shifted towards
the inside of the domains.

To get a better idea of what we should expect we have made a numerical experiment.
Tests with both random and uniformly spaced nodes were performed in Ω = [0, 1]2. In
the former case, nodes were generated by adding a random perturbation of value 0.30h
to a uniform grid with h−spacing with h = 0.0625. Following the scheme of section 2,
the cloud ωα will be the open ball Bdα(xα) such that 1 is verified and dα = rh. The
experiments was made with the choice r = 1.4. The C∞−function ϕ : R

n → R defined by

ϕ(x) =

{
exp(1) · exp

(
1

||x||2−1

)
, if ||x || < 1

0, otherwise

was used for building the partition of unity and, for α = 1, ..., N, the function ψα with
support in Bdα(xα) was defined by formula

ψα(x) = ϕ

(
x− xα
dα

)

The MLS approximation of function f(x, y) = cos(2πx) sin(2πy) was considered over
Ω and the maximal absolute error in the function and its derivatives are displayed in the
table bellow for uniform and random grids.

Grid max |u− û| max |ux − ûx| max |uy − ûy| maxCN1 mean(CN1)

Uniform 4.45e-002 1.17e+000 5.62e-001 1.46e+001 7.17e+000
Random 5.76e-002 2.16e+000 2.04e+000 4.48e+002 2.23e+001



����

 ��+&%%������������������������������������������������������������������

It is clear that works dealing with the problem of how to locate the nodes and their
patches might be improved with the inclusion in criteria that define a good point set, the
minimization of some function like

∑

α

CN1(ST (xα))

or a similar expression. This issue remains an object of further study.
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Sci. París, t. 313, Série II, 133–138 (1991).

[4] G. Touzot B. Nayroles and P. Villon. Generalizing the finite element method: Diffuse
approximation and diffuse elements. Comput. Mech., 10, 307–318 (1992).

[5] Y. Y. Lu T. Belyschko and L. Gu. Element-free galerkin methods. Int. Jour. for
Num. Meth. in Engrg., 37, 229–256 (1994).
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