
����

���������	�
�����

���������������
�����

�����������������������������������
�� �
�����!����"

#�������� �$%&��������������''���%%��(�)��(�*+

BIFURCATION THEORY IN MECHANICAL SYSTEMS

Diego M. Alonso†, Eduardo E. Paolini, and Jorge L. Moiola†

Dpto. de Ingeniería Eléctrica y de Computadoras
Universidad Nacional del Sur

Av. Alem 1253, B8000CPB Bahía Blanca, Argentina
†CONICET

e-mail: {dalonso, iepaolin, jmoiola}@criba.edu.ar

Key Words: Inverted pendulum, stabilization, bounded control, bifurcation theory, nu-
merical continuations.

Abstract.
In this paper, bifurcation theory is used to classify di erent dynamical behaviors occur-

ring in a mechanical system under bounded control actions. The example is a pendulum
with an inertia disc mounted in its free extreme. By design, the control action can only be
introduced by means of an external torque applied by a DC motor to the inertia disc. Im-
posing a bounded control action places an important obstacle to the design of a controller
capable to drive the pendulum from rest to the inverted position and to stabilize it there.
The only way in which the pendulum can reach the inverted position is by oscillations
of increasing amplitudes. Due to the saturation of the control law the trivial equilibrium
points -the rest and the inverted position- experiment a pitchfork bifurcation when one
key parameter is varied. Therefore, two additional equilibrium points associated to each
equilibrium of the non-forced system do appear. If another control parameter is varied,
homoclinic and heteroclinic bifurcations, saddle-node bifurcations of periodic orbits, and
Hopf bifurcations of equilibria do appear. Some of these codimension one bifurcations
are organized in a codimension two Bogdanov-Takens bifurcation, when varying two pa-
rameters simultaneously. The application of both numerical and analytical tools from
bifurcation theory to understand and classify the dynamical behavior of the closed-loop
system facilitates the control law design, as shown in the paper.
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1 INTRODUCTION

The stabilization of the unstable equilibrium point in pendulum-like mechanical systems
is an ubiquitous problem in nonlinear control. An e ective method to solve this problem is
based on a switched strategy, using a nonlinear controller to swing-up the pendulum and
switching to a linear controller to locally stabilize the pendulum at the inverted position.
This strategy has been applied to a wide class of inverted pendula1,2 ,3 ,4.
The stabilization with a continuous feedback presents serious obstacles for the con-

troller design. Nevertheless, it has been solved for the pole-cart system5 and the inertia
disc pendulum6 ,7. The design of a continuous controller is hard to overcome when the
amplitude of the control action is bounded. For example, Praly and co-workers8 addressed
this problem on the inertia disc pendulum and the designed controller can not guaran-
tee the stabilization of the inverted position when the control torque is insu cient to
dominate the gravity torque. In this paper, an alternative design method is presented.
The design methodology uses mathematical tools from dynamical systems theory, and
specifically from bifurcation theory. After proposing a simple continuous and bounded
control law9, both analytical and numerical methods are used to classify the di erent dy-
namical scenarios arising when control parameters are varied. It is shown that the system
dynamics is organized in a codimension two or Bogdanov-Takens bifurcation when two
control parameters are varied. By means of continuation of codimension one bifurcations,
detected by varying one control parameter, a rather complete bifurcation diagram in a
two-parameter plane is obtained. This allows to identify a region of the control parameter
space where “almost” global stabilization of the pendulum at the inverted position can
be achieved, i.e. excluding some isolated points (unstable equilibrium points) from the
initial conditions, all the trajectories end up at the inverted position.

2 THE INERTIA DISC PENDULUM

The system considered is a pendulum with an inertia disc in its free extreme (see Fig. 1).
The pendulum rotates freely around the pivot point, but the disc is driven by a DC motor.
This mechanism belongs to the class of underactuated mechanical systems, since it has
less actuators (one) than degrees of freedom (two).
The model of the inertia disc pendulum is

ẋ1 = x2,

ẋ2 = q1 sinx1 + q2x3 q3u, (1)

ẋ3 = q1 sinx1 q2 (1 + )x3 + q3 (1 + ) u,

where x1 is the arm position (x1 = 0 at the inverted position), x2 is the angular velocity
of the arm, x3 is the angular velocity of the disc respect to the arm, and q1, q2, q3, are
positive parameters. The position of the inertia disc is neglected because it is irrelevant
for control purposes. A more complete description of the model can be found in10.
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Figure 1: The inertia disk pendulum.

3 LOCAL BIFURCATION ANALYSIS

The equilibrium points of the unforced system (1) are

xe = (x1e, 0, 0) ,

where x1e is x10 = 2k (inverted position) or x1 = (2k + 1) (hanging position). To
avoid dealing with an infinite number of equilibria it will be assumed that x1 belongs to
S1, and thus only two equilibrium points are distinguishable

x00 := (x10, 0, 0) , and x 0 := (x1 , 0, 0) ,

corresponding to the pendulum at the inverted and the rest position, respectively, with
zero velocity of the disc.
Let us consider the continuous and bounded state feedback

u = umax tanh (k1 senx1 + k2x2 + k3x3) , (2)

where umax sets the maximum voltage applied to the motor, and k1, k2, k3 are real
feedback gains. This control law vanishes at x00 and x 0, and therefore the closed-loop
system preserves the equilibrium points of the open-loop system.

3.1 Bifurcation analysis of x00 and x 0

To begin with the analysis of the closed-loop system, let us consider the linearized system
at x00 and x 0, with the characteristic polynomials

P0 (s) = s
3 + a2s

2 + a1s+ a0, (3)
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and

P (s) = s3 + a2s
2 a1s a0, (4)

respectively, where

a0 = q1q3umax (k3 k3) ,

a1 = q3umax (k1 k1) ,

a2 = q3umax [k2 (k3 k3) (1 + )] ,

and

k1 :=
q1

q3umax
, k3 :=

q2
q3umax

.

Notice that by means of control gains k1, k2 and k3 all the three coe cients of the
characteristic polynomials can be modified.
Bifurcations of these equilibria are studied computing the singularities of polynomials

(3) and (4). In accordance to the number and type of eigenvalues of the linearized system
with zero real part, five di erent bifurcation scenarios may arise: one eigenvalue at the
origin (simple zero), a pair of imaginary eigenvalues (Hopf), a pair of eigenvalues at the
origin (double zero), a pair of imaginary and a zero eigenvalues, and all the three eigen-
values at the origin (triple zero). In the following, conditions on the control parameters
leading to these bifurcations are obtained.

3.1.1 A simple zero eigenvalue

A simple zero eigenvalue is the necessary condition for detecting the multiplicity of the
equilibrium solution. Three elementary static bifurcations are associated with a simple
zero: saddle-node, transcritical and pitchfork bifurcations. These are codimension one
bifurcations since, after a reduction to the normal form, they are described by means of
variations of one key parameter.
In the system under study this bifurcation occurs when a0 = 0, i.e. when k3 = k3.

The equilibria x00 and x 0 undergo a pitchfork bifurcation, and thus for k3 > k3 two
symmetrical equilibrium points associated to both x00 and x 0 do arise. The additional
equilibria are

x0+ := (x10, 0, x̂3e) , x0 := (x10, 0, x̂3e) ,

and

x + := (x1 , 0, x̂3e) , x := (x1 , 0, x̂3e) ,

where x3e is the solution of

k3x3e tanh (k3x3e) = 0. (5)
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Due to the symmetry of the bifurcation equation (5), the classification of the singularity is
evident without the need of performing any reduction to the normal form. It is also worth
mentioning that this situation frequently arises in symmetrical systems with saturations11.

3.1.2 A pair of imaginary eigenvalues

A pair of imaginary eigenvalues sets the defining condition for a Hopf bifurcation. This
bifurcation causes the appearance of sustained oscillations when the system’s parameters
move from the critical condition, i.e. a branch of oscillations of increasing amplitude
arises depending on the value of one bifurcation parameter.
The defining condition for a Hopf bifurcation is obtained when a2a1 a0 = 0, providing

that a0 6= 0, a2 6= 0, and a1 > 0 if the equilibrium is x00, or a1 < 0 if the equilibrium is
x 0. In terms of the control gains this condition results

k1 = k1
k2 (k3 k3)

k2 (k3 k3) (1 + )
, (k3 6= k3)

which is valid for k1 > k1 if the equilibrium analyzed is x00, or for k1 < k1 if the equilibrium
is x 0.
In the following the Hopf bifurcation of x00 will be referred as H1 and that of x 0 as

H3. The stability of the emerging periodic solution may be determined by computing the
curvature coe cient9 .

3.1.3 A double zero eigenvalue

The double zero bifurcation is obtained by setting a0 = a1 = 0 and a2 6= 0, which
corresponds to the control gain values

k1 = k1, k3 = k3 (k2 6= 0) .
Applying similarity transformations to the linearization matrices of system (1) with k1 =
k1 and k3 = k3 at x00 and x 0, the corresponding Jordan canonical form is

=
0 1 0
0 0 0
0 0 umaxq3k2

. (6)

This matrix has a double degeneration for k2 6= 0. Notice that for k2 > 0 the eigenvalue
umaxq3k2 is contractive.
The unfolding of this codimension two singularity was performed simultaneously but

independently by Takens and Bogdanov12. Roughly speaking, this singularity introduces
the dynamical phenomena of the previous bifurcations: the multiplicity of equilibrium
solutions and the appearance of an oscillatory branch via the Hopf bifurcation mecha-
nism. However, the complete characterization of the behavior of the system requires two
bifurcation parameters and implies the appearance of trajectories starting and ending in
the same equilibrium (homoclinic orbits) or in di erent equilibria (heteroclinic orbits).
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3.1.4 A pair of pure imaginary eigenvalues and a simple zero

This is a codimension two bifurcation, also named Gavrilov-Guckenheimer, and occurs
when a1 = a2 = 0 and a1 > 0 for x00 and a1 < 0 for x 0. This happens when the control
gains take the vales

k3 = k3, k2 = 0,

providing that k1 > k1 for x00, or k1 < k1 for x 0.
In this case the interactions between the multiplicity of the equilibrium solution and the

oscillatory branch can lead to quasiperiodic motion and even chaotic motion in the vicinity
of the singularity in the parameter plane. These complex dynamics are not examined in
the present work since the main objective is the stabilization of the pendulum at the
inverted position.

3.1.5 A triple zero eigenvalue

The triple zero bifurcation occurs when a0 = a1 = a2 = 0 or

k1 = k1, k2 = 0, k3 = k3.

This is a codimension three bifurcation (see matrix in (6) with k2 = 0) and its complete
characterization is still under development13. However, the same comments given in the
previous singularity apply here since the triple zero contains all the previous singularities
as particular cases.

3.2 Bifurcation analysis of the equilibria x0± and x ±

The characteristic polynomials at x0± and x ± (the additional equilibrium points that
appear due to the saturated control law) are

P0± (s) = s3 + ā2s2 + ā1s+ ā0,

and

P ± (s) = s3 + ā2s2 ā1s ā0,

with

ā0 = q1q3umax (k3 k3/ ) ,

ā1 = q3umax (k1 k1/ ) ,

ā2 = q3umax (k2 (k3 k3/ ) (1 + )) ,

and := sech2 (k3x̂3e).
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It can be proved that ā0 < 0 for k3 > k3. Therefore these equilibria may only exhibit
Hopf bifurcations when ā2ā1 ā0 = 0 provided that a1 > 0 in the case of x0±, or a1 < 0
in the case of x ±. In terms of control gains this results in

k1 =
k1 k2 (k3 k3/ )

k2 (k3 k3/ ) (1 + )
,

and provided that k2 > 0, only x ± can exhibit Hopf bifurcations. In the following this
bifurcation will be referred to as H2.

4 LOCAL BEHAVIOR: STABILIZATIONAT THE INVERTEDPOSITION

The main objective of the analysis of the system dynamics is to find values for the control
gains assuring the stabilization of the pendulum at the inverted position x00. By applying
standard stability tests such as the Routh-Hurwitz criterion, it is possible to achieve the
local asymptotic stability of x00 when the control gains do satisfy

k3 > k3,

k2 > (1 + ) (k3 k3) , (7)

k1 > k1
k2 (k3 k3)

k2 (1 + ) (k3 k3)
.

Notice that (7) implies that k1, k2 and k3 must be positive.
To analyze the stability of the remaining equilibria, let us consider the parameter

plane k1 k3 by fixing k2 at some positive value. Then, applying conventional stability
tests, five di erent scenarios arise as depicted in Fig. 2. The stability of the six physically
distinguishable equilibrium points in each of these cases is shown in Table 1.
Notice that in zone I the only stable equilibrium point is x00, i.e. the inverted position.

Therefore, if no other attractor exists for k1 and k3 in this zone, the stabilization of the
pendulum at the inverted position can be achieved.
In the following Section the global dynamical behavior of the system is addressed

in order to classify other bifurcations which can not be detected by the local stability
analysis of the equilibria. These additional bifurcations are homoclinic and heteroclinic
connections and bifurcations of the limit cycles appearing via the Hopf mechanism.

5 GLOBAL BEHAVIOR: NUMERICAL STUDY

The bifurcation of higher codimension considered in this paper is the double-zero or
Bogdanov-Takens bifurcation. In a small neighborhood of x00 or x 0, the system behavior
may be analyzed by reducing the dynamics to the center manifold associated to this
singularity. Nevertheless, to perform the analysis over a larger domain the whole nonlinear
system should be considered. For this reason the analysis is performed numerically using
the continuation package XPP-AUTO14.



���	

,��#��
�������������	�����������-��.��#����������������������������������������������������������������������

0.05 0 0.05 0.1 0.15 0.2 0.25

0

50

100

150

200

250

300

k
3

k 1

BT

P
H2

H1

H3

 k
1
*

 k
3
*

V

I

II

IV III

Figure 2: Zones in the parameter space with di erent stability of the equilibrium points (k2 = 50). H1,
H2 and H3 are Hopf bifurcation curves, P is a pitchfork bifurcation (simple zero) and BT is the condition
for the Bogdanov-Takens bifurcation (double zero).

Zone x00 x 0 x0± x ±
I S U U U
II S U U S
III U U U S
IV U S - -
V U U - -

Table 1: Stability of the equilibrium points in the parameter plane k1 k3 when k2 = 50. See zones I-V
in Fig. 2
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Figure 3: Numerical unfolding of the Bogdanov-Takens bifurcation.

For the numerical study of the system behavior the following parameter values were
used: q1 = 30, q2 = 0.0245, q3 = 0.0393, = 250; the bound on the control amplitude
was fixed at umax = 60. Since the Bogdanov-Takens bifurcation occurs at the point
k1 = k1 = 12.7226 and k3 = k3 = 0.01039 for k2 6= 0, the control gain k2 was fixed
arbitrarily at k2 = 50. As it will be shown, this codimension two point acts as an
organizing centre for the dynamics when k2 is fixed.
The unfolding of this codimension two bifurcation is depicted in Fig. 3. For k3 < k3

only two equilibrium points do exist: the rest position x 0 and the inverted position
x00; for k3 > k3 six equilibria do exist due to the pitchfork bifurcation (P). Simulation
results allow us to conjecture on the existence of a bidimensional manifold where all the
qualitative changes of the dynamics take place. The equilibrium points for k3 > k3 on
this manifold are depicted in Fig. 4 where the stability may change depending on the
parameter values. Notice that the segments A-A’ and B-B’ are homologues since the
state variable x1 is periodic.
Let us consider k3 = 0.02 (see the dashed line in Fig. 3). The di erent behaviors

obtained when k1 is varied are shown in Fig. 5 where the period of the limit cycles is
plotted against parameter k1. Beginning at the left, the first detected phenomenon is
a Hopf bifurcation (H1) experimented by x00 when k1 = 13.365 (see also the curve H1
in Fig. 3). The equilibrium point x00 changes the stability from unstable to stable as
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Figure 4: Equilibrium points for k3 > k3 .
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Figure 5: Continuation curves for k3 = 0.02 (k2 = 50). (•) Stable limit cycles; ( ) unstable limit cycles.
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Figure 6: Limit cycles obtained with k1 = 42.5358, k2 = 50 and k3 = 0.02.

k1 passes through this critical value. In addition, an unstable limit cycle arises. The
amplitude of this cycle grows until it collides with x0+ and x0 for k1 = 18.303 leading to
an heteroclinic bifurcation (or homoclinic cycle). At this point the unstable manifold of
x0+ is connected to the stable manifold of x0 , and conversely. Notice that the period of
this cycle grows asymptotically to infinity.
A second local phenomena is a Hopf bifurcation (H2) experimented by x + and x

at k1 = 90.699. For k1 < 90.699, x + and x are stable and they are surrounded
by antisymmetric unstable limit cycles. These cycles do collide with the equilibrium
point x 0 at k1 = 41.809 when a double saddle connection or homoclinic bifurcation
occurs (HOM1). The typical eight figure is shown in Fig. 6. For k1 < 41.809 both cycles
form an unique unstable cycle which coalesces with the stable one at k1 = 36.700. For
k1 = 159.331 a cyclic fold bifurcation (CF3) occurs. A stable and unstable cycles do arise
for k1 > 159.331. The stable one coalesce in an heteroclinic bifurcation (HET2) when
k1 = 173.228, while the unstable one coalesce in a cycle fold (CF1) at k1 = 223.386.
Finally, an homoclinic bifurcation (HOM2) occurs for k1 = 281.069. Beyond this value

a stable cycle arises, corresponding to rotations of the pendulum around the pivot point.
Now, let us consider k3 = 0 (dash and dot line in Fig. 3). Since k3 < k3 the equilibrium

points are x00 and x 0 only. The bifurcation diagram, obtained varying k1, is shown in
Fig. 7. The equilibrium point x 0 exhibits a Hopf bifurcation for k1 = 12.0945 and a stable
limit cycle appears for increasing values of k1. For k1 = 155.385 a cyclic fold bifurcation
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Figure 7: Continuation curves for k3 = 0 (k2 = 50). (•) Stable limit cycles; ( ) unstable limit cycles.

(CF3) occurs and a stable and unstable cycles do appear and thus three cycles coexist for
higher values of k1. The stable cycle undergoes an homoclinic bifurcation at k1 = 225,
since it reaches the equilibrium point x00, and it is destroyed by this bifurcation. Finally,
the remaining unstable and stable cycles coalesce in a cyclic fold bifurcation (CF1) at
k1 = 221.032.
The described bifurcations are all of codimension one, and by numerical continuation

of these points the full picture of Fig. 3 is obtained. Notice from this figure that curves
H1, HET1, CF2, HOM1, H2 and P converge to the point k1 = k1 and k3 = k3, i.e. the
Bogdanov-Takens bifurcation BT. It is important to mention that the continuation of
heteroclinic bifurcations HET1 and HET2 are very di cult to compute due to numerical
problems. HET2 could only be continued partially, and the curve HET1 has been obtained
by continuing a cycle of a large period, near the bifurcation, instead of continuing the
true heteroclinic bifurcation.
The homoclinic cycle formed at the bifurcation HET2 change its stability at the point A

where the cyclic fold bifurcation CF3 meets the curve HET2. This is a global phenomena
which can not be described by the local analysis of the Bogdanov-Takens bifurcation, and
corresponds to the unfolding of a higher codimension bifurcation. Two other distinctive
points are worth mentioning. Point B appears at the confluence of four curves: the
pitchfork P and the homoclinic and heteroclinic HOM3, HOM2 and HET2. The point C
is a cusp of cyclic fold bifurcations.
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Figure 8: In zone (a) the equilibrium x00 (inverted position) is the unique attractor of the system. See
the phase portraits of Fig. 9.

6 “ALMOST”GLOBAL STABILIZATIONATTHE INVERTEDPOSITION

An important result from the numerical study is that for k1 and k3 in the region named
(a) in Fig. 8 the equilibrium point x00 is the unique attractor of the system and thus the
asymptotic stabilization of the pendulum at the inverted position is obtained. Figure 9a
shows the qualitative behavior in this region (provided that trajectories are reduced to
the invariant manifold).
Crossing the curve H2 in Fig. 8 from left to right, the equilibria x + and x undergo

a Hopf bifurcation, they become stable and two unstable limit cycles do arise, restricting
the domain of attraction of x00. This situation is depicted in Fig. 9b.
In region (c) a pair of limit cycles of opposed stability appear due to the cyclic fold

bifurcation CF1. This bifurcation drastically reduces the basin of attraction of x00 (see
Fig. 9c). When crossing the curve H2 towards region (d), two additional small antisym-
metric cycles surrounding x + and x (depicted in Fig. 9d) do appear.
Finally, a numerical simulation for values of control gains lying inside region (a) of

Fig. 8 (k1 = 250, k3 = 0.02, k2 = 50) is shown in Fig. 10. The simulation is started near
the rest position, at x = ( , 0, 1) and after a series of oscillations of increasing amplitude
the pendulum is stabilized at the inverted position.
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Figure 9: Phase portraits in the two dimensional manifold for parameter values in regions (a), (b), (c)
and (d) in Fig. 8.

7 CONCLUSIONS

In this paper, tools from bifurcation theory have been applied to obtain proper feedback
gains values for the stabilization of a pendulum-like mechanical system at the inverted
position. A local analytical bifurcation study has been performed and a rather complete
bifurcation diagram in two parameters have been presented. The dynamics is organized
in a codimension two bifurcation, more precisely in a Bogdanov-Takens bifurcation with a
special symmetry. From the bifurcation analysis, a region in the parameter space assuring
“almost” global stabilization of the pendulum at the inverted position has been detected
and illustrated with simulations.
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